#### Class - X

## Mathematics-Basic (241)

# Sample Question Paper 2019-20

Max. Marks: 80

Duration: 3 hrs.

#### General Instructions:

- a) All questions are compulsory
- b) The question paper consists of 40 questions divided into four sections A, B, C & D.
- c) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises 6 questions of 4 marks each.
- d) There is no overall choice. However internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- e) Use of calculators is not permitted.

## **SECTION - A**

Q 1- 10 are multiple choice questions. Select the most appropriate answer from the given options.

| 1. | HCF of 1  | HCF of 168 and 126 is |             |                     |                  | 1  |   |
|----|-----------|-----------------------|-------------|---------------------|------------------|----|---|
|    | (a) 21    |                       | (b) 42      | (c) 14              | (d)              | 18 | l |
|    |           |                       |             |                     |                  |    |   |
| 2. | Empirical | relationship          | between the | e three measures of | central tendency | is | 1 |

| 3. | <ul> <li>(a) 2 Mean = 3 Median<br/>Median - Mean</li> <li>(c) Mode = 2 Mean - 3<br/>Mode + Mean</li> </ul> In the given figure, if TP a | Median                                               | (b) 2 Mode =<br>(d) 3 Medi | an = 2             |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------|--------------------|
|    | that $\angle POQ = 110^\circ$ , then $\angle$                                                                                           |                                                      | XT                         |                    |
|    |                                                                                                                                         |                                                      | P a                        |                    |
|    | (a) 110°                                                                                                                                | (b) 90°                                              |                            |                    |
|    | (c) 80°                                                                                                                                 | (d) 70°                                              | $\smile$                   |                    |
|    |                                                                                                                                         |                                                      |                            |                    |
| 4. | 325 can be expressed as a                                                                                                               | a product of its prin                                | nes as                     | 1                  |
|    | () -2 -                                                                                                                                 | (1) <u>-</u> 2 · -                                   |                            |                    |
|    |                                                                                                                                         | (b) $5^2 \times 13$<br>(d) $2 \times 3^2 \times 5^2$ |                            |                    |
|    | (c) $5 \times 13^2$                                                                                                                     | (d) 2×3 ×5                                           |                            |                    |
|    |                                                                                                                                         |                                                      |                            |                    |
| 5. | One card is drawn from a                                                                                                                | well shuffled deck                                   | of 52 cards. The proba     | bility <b>1</b>    |
|    | that it is black queen is                                                                                                               |                                                      |                            |                    |
|    | (a) $\frac{1}{26}$                                                                                                                      | (b) $\frac{1}{13}$                                   | (c) $\frac{1}{52}$         | (d) $\frac{2}{13}$ |
|    | \$ 7 26                                                                                                                                 | \$ 7 13                                              | 52                         | . , 13             |
|    |                                                                                                                                         | 2                                                    |                            |                    |
| 6. | The sum of the zeroes of                                                                                                                | the polynomial 2x <sup>2</sup> -8                    | 8x +6 is                   | 1                  |
|    | (a) - 3                                                                                                                                 | (b) 3                                                | (c) - 4                    |                    |
|    | (d) 4                                                                                                                                   |                                                      |                            |                    |
|    |                                                                                                                                         |                                                      |                            |                    |
|    |                                                                                                                                         |                                                      | <u> </u>                   |                    |
| 7. | Which of the following is the                                                                                                           | ne decimal expansio                                  | on of an irrational numb   | ber <b>1</b>       |
|    | (a) 4.561 (b) 0.12                                                                                                                      | (c) 5.010                                            | 010001 (d)                 | 6.03               |
|    |                                                                                                                                         |                                                      |                            |                    |

Г

| 8.    | The following figure shows the graph of $y = p(x)$ , where $p(x)$ is a                                          | 1 |
|-------|-----------------------------------------------------------------------------------------------------------------|---|
|       | polynomial in variable x. The number of zeroes of the polynomial p(x) is                                        |   |
|       | (a) 1 (b) 2 (c)3 (d) 4                                                                                          |   |
|       |                                                                                                                 |   |
|       |                                                                                                                 |   |
|       | У                                                                                                               |   |
|       |                                                                                                                 |   |
|       |                                                                                                                 |   |
|       | x                                                                                                               |   |
|       |                                                                                                                 |   |
| 9.    | The distance of the point P (3, - 4) from the origin is                                                         | 1 |
|       |                                                                                                                 |   |
|       | (a) 7 units (b) 5 units (c)4 units                                                                              |   |
|       | (d) 3 units                                                                                                     |   |
|       |                                                                                                                 |   |
| 10.   | The mid point of the line segment joining the points (- 5, 7) and (- 1, 3) is                                   | 1 |
| 10.   |                                                                                                                 | • |
|       | (a) (-3, 7) (b) (-3, 5) (c) (-1, 5)                                                                             |   |
|       | (d) (5, -3)                                                                                                     |   |
|       |                                                                                                                 |   |
| (11   | 15) Fill in the blanks.                                                                                         |   |
| (11 - | 15) Fill in the blanks:                                                                                         |   |
| 11.   | The point which divides the line segment joining the points A (0, 5) and                                        | 1 |
|       | B (5, 0) internally in the ratio 2:3 is                                                                         |   |
|       |                                                                                                                 |   |
| 10    | The pair of lines represented by the emetions (), (), (), (), (), (), (), (), (), (),                           | 1 |
| 12.   | The pair of lines represented by the equations $2x+y+3 = 0$ and $4x+ky+6 = 0$ will be parallel if value of k is | 1 |
|       |                                                                                                                 |   |
|       | OR                                                                                                              |   |
|       | If the quadratic equation $x^2 - 2x + k = 0$ has equal roots, then value of k                                   |   |

|       | is                                                                                                         |   |
|-------|------------------------------------------------------------------------------------------------------------|---|
|       |                                                                                                            |   |
| 13.   | The value of sin 60° cos 30° + sin 30° cos 60° is                                                          | 1 |
|       |                                                                                                            |   |
| 14.   | Value of cos 0°. Cos 30° .cos 45° . cos 60° . cos 90° is                                                   | 1 |
|       |                                                                                                            |   |
| 15.   | The sides of two similar triangles are in the ratio 2:3, then the areas of                                 |   |
|       | these triangles are in the ratio                                                                           |   |
|       |                                                                                                            |   |
| (16 - | 20) Answer the following :                                                                                 |   |
| 16.   | $\triangle$ PQR is right angled isosceles triangle, right angled at R. Find value of                       | 1 |
|       | sin P.                                                                                                     |   |
|       |                                                                                                            |   |
|       | OR                                                                                                         |   |
|       | If 15 cot A = 8, then find value of cosec A.                                                               |   |
|       |                                                                                                            |   |
| 17.   | If area of quadrant of a circle is 38.5 cm <sup>2</sup> then find its diameter (use $\pi = \frac{22}{7}$ ) | 1 |
|       |                                                                                                            |   |
| 18.   | A dice is thrown once. Find the probability of getting a prime number.                                     | 1 |
|       |                                                                                                            |   |
| 19.   | In the given fig. If DE    BC Find EC.                                                                     | 1 |
|       | 1.5  cm $1.5  cm$ $1  cm$ $E  c$ $B  c$                                                                    |   |

| 20. | Find the common difference of the A.P whose first term i                         | s 12 and fifth   | 1 |
|-----|----------------------------------------------------------------------------------|------------------|---|
|     | term is 0.                                                                       |                  |   |
|     |                                                                                  |                  |   |
|     | SECTION - B                                                                      |                  |   |
|     |                                                                                  |                  |   |
| 21. | If two coins are tossed simultaneously. Find the probabilit                      | y of getting 2   | 2 |
|     | heads.                                                                           |                  |   |
|     |                                                                                  |                  |   |
|     |                                                                                  |                  |   |
| 22. | A lot of 25 bulbs contain 5 defective ones. One bulb is c                        |                  | 2 |
|     | from the lot. What is the probability that the bulb is good                      |                  |   |
|     | OR                                                                               |                  |   |
|     | Two dice are thrown simultaneously at random. Find the                           | probability of   |   |
|     | getting a sum of eight.                                                          | p                |   |
|     |                                                                                  |                  |   |
|     |                                                                                  |                  |   |
| 23. | Prove that the tangents drawn at the ends of a diameter                          | of a circle are  | 2 |
|     | parallel.                                                                        |                  |   |
|     |                                                                                  |                  |   |
|     | Show that $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ} = 1.$ |                  | • |
| 24. | Show that $\tan 48^\circ \tan 23^\circ \tan 42^\circ \tan 67^\circ = 1$ .        |                  | 2 |
|     | OR                                                                               |                  |   |
|     | Evaluate cos 48º cos 42º – sin 48º sin 42º                                       |                  |   |
|     |                                                                                  |                  |   |
|     |                                                                                  |                  |   |
| 25. | Find the area of circle whose circumference is 22cm.                             |                  | 2 |
|     |                                                                                  |                  |   |
|     |                                                                                  |                  |   |
| 26  | Read the following passage and answer the questions that                         |                  | 2 |
|     | A teacher told 10 students to write a polynomial on the b                        | black board.     |   |
|     | Students wrote                                                                   |                  |   |
|     |                                                                                  | x - 3            |   |
|     |                                                                                  | $x^4 + x^2 + 1$  |   |
|     |                                                                                  | $x^{2} + 2x + 1$ |   |
|     | 4. $x^3 + 2x^2 + 1$ 9.                                                           | $2x^3 - x^2$     |   |

|     | 5. $x^2 - 2x + 1$ 10. $x^4 - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | (i) Llour monu studente urete subie nelunemiel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|     | (i) How many students wrote cubic polynomial<br>(ii) Divide the polynomial $(x^2 + 2x + 1)$ by $(x + 1)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|     | SECTION C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| 27. | Find the zeroes of the quadratic polynomial $x^2 - 3x - 10$ and verify the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 |
|     | relationship between the zeroes and coefficient.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 28. | Draw a circle of radius 4 cm. From the point 7 cm away from its centre,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 |
|     | construct the pair of tangents to the circle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|     | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|     | Draw a line segment of length 8 cm and divide it in the ratio 2:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 29. | Following figure depicts a park where two opposite sides are parallel and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 |
|     | left and right ends are semi-circular in shape. It has a 7m wide track for walking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|     | The second secon |   |
|     | Ţom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|     | 1-120 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|     | Two friends Seema and Meena went to the park. Meena said that area of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|     | the track is 4066m <sup>2</sup> . Is she right? Explain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| 30. | Prove that $\frac{\cot A - \cos A}{\cot A + \cos A} = \frac{\csc A - 1}{\csc A + 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 |
|     | cotA+cosA cosecA+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|     | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|     | Prove that: $\frac{\tan A + \sin A}{\tan A - \sin A} = \frac{\sec A + 1}{\sec A - 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |

| 31. | Prove that 5 - $\sqrt{3}$ is irrational, given that $\sqrt{3}$ is irrational.                                                                                                                                                                 | 3 |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|
|     | <b>OR</b><br>An army contingent of 616 members is to march behind an army band of<br>32 members in a parade. The two groups are to march in the same<br>number of columns. What is the maximum number of columns in which<br>they can march ? |   |  |  |
| 32. | Prove that the lengths of tangents drawn from an external point to a circle are equal.                                                                                                                                                        | 3 |  |  |
| 33. | Read the following passage and answer the questions that follows:<br>In a class room, four students Sita, Gita, Rita and Anita are sitting at A(3,4), B(6,7), C(9,4), D(6,1) respectively. Then a new student Anjali joins the class          | 3 |  |  |
|     | <ul> <li>(i) Teacher tells Anjali to sit in the middle of the four students. Find the coordinates of the position where she can sit.</li> </ul>                                                                                               | 1 |  |  |
|     | (ii) Calculate the distance between Sita and Anita.                                                                                                                                                                                           | 1 |  |  |
|     | (iii) Which two students are equidistant from Gita.                                                                                                                                                                                           | 1 |  |  |

| 34. | Solve $2x + 3y = 11$ and $x - 2y = -12$ algebraically and hence find the value of 'm' for which $y = mx + 3$ .                                                                                                                                                                                                                            | 3 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | SECTION D                                                                                                                                                                                                                                                                                                                                 |   |
| 35. | Find two consecutive positive integers sum of whose squares is 365.                                                                                                                                                                                                                                                                       | 4 |
| 36. | If the sum of first 14 terms of an A.P. is 1050 and its first term is 10, find the 20 <sup>th</sup> term.                                                                                                                                                                                                                                 | 4 |
|     | <b>OR</b><br>The first term of an A.P. is 5, the last term is 45 and sum is 400. Find<br>the number of terms and the common difference.                                                                                                                                                                                                   |   |
| 37. | As observed from the top of a 75m high light house above the sea level, the angles of depression of two ships are $30^{\circ}$ and $45^{\circ}$ respectively If one ship is exactly behind the other on the same side of the light house and in the same straight line, find the distance between the two ships. (use $\sqrt{3}$ = 1.732) | 4 |
| 38. | If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then prove that the other two sides are divided in the same ratio.                                                                                                                                                             | 4 |
|     | OR                                                                                                                                                                                                                                                                                                                                        |   |
|     | State and prove the Pythagoras theorem.                                                                                                                                                                                                                                                                                                   |   |
|     |                                                                                                                                                                                                                                                                                                                                           |   |
| 39. | A copper rod of diameter 1 cm and length 8 cm is drawn in to a wire of length 18 m of uniform thickness. Find the thickness of wire.                                                                                                                                                                                                      | 4 |
|     | Or                                                                                                                                                                                                                                                                                                                                        |   |

| A | metallic sphere of rac     | dius 4.2 c  | m is melte    | d and reca   | st into the  | shape of      |
|---|----------------------------|-------------|---------------|--------------|--------------|---------------|
| а | cylinder of radius 6 c     | m. Find t   | he heiaht o   | f the cylin  | der.         | ·             |
|   |                            |             | ine neight e  | i the ejint  |              |               |
|   |                            |             |               |              |              |               |
|   |                            |             |               |              |              |               |
|   |                            |             |               |              |              |               |
| - | The following distribution | on gives t  | the daily ind | come of 50   | ) workers    | of a          |
|   | actory                     | 0           | 5             |              |              |               |
|   |                            |             |               |              |              |               |
|   |                            |             |               |              |              |               |
|   | Deille in come             | 400         | 400 440       | 440 4/0      | 4/0 400      | 400 500       |
|   | Daily income               | 400-        | 420-440       | 440-460      | 460-480      | 480-500       |
|   | Daily income               | 400-<br>420 | 420-440       | 440-460      | 460-480      | 480-500       |
|   | Daily income<br>Number of  |             | 420-440       | 440-460<br>8 | 460-480<br>6 | 480-500<br>10 |
|   |                            | 420         |               |              |              |               |
|   | Number of                  | 420         |               |              |              |               |
|   | Number of<br>workers       | 420<br>12   | 14            | 8            | 6            | 10            |
| С | Number of                  | 420<br>12   | 14            | 8            | 6            | 10            |

# Class - X

# Mathematics-Basic (241)

# Marking Scheme-SQP 2019-20

# Max. Marks: 80

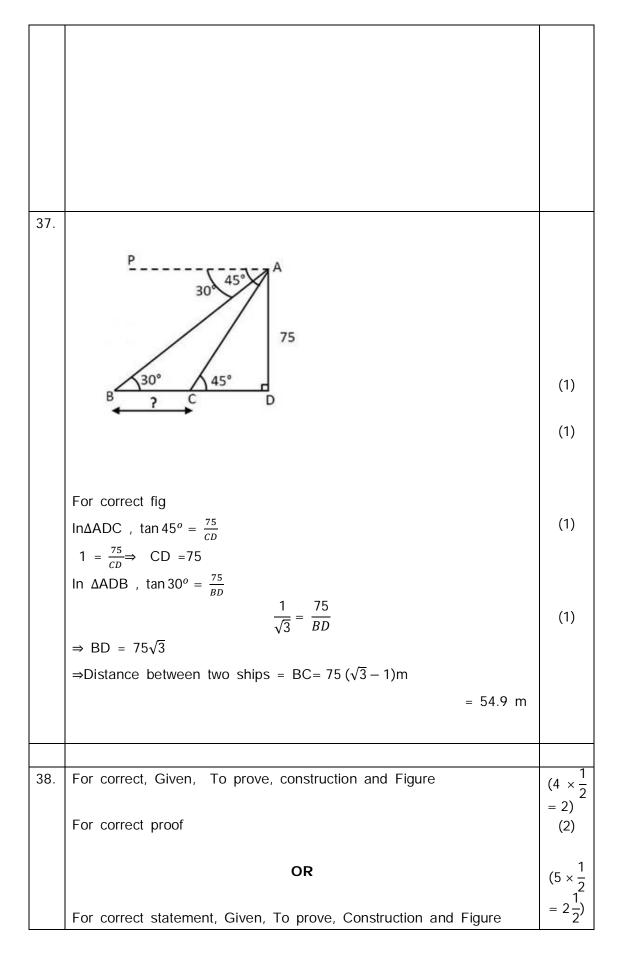
# Duration: 3 hrs.

| 1.  | (b) 42                      | (1) |
|-----|-----------------------------|-----|
| 2.  | (a)2 Mean = 3 Median - Mode | (1) |
| 3.  | (d)70°                      | (1) |
| 4.  | (b) 5 <sup>2</sup> ×13      | (1) |
| 5.  | $(a)^{\frac{1}{26}}$        | (1) |
| 6.  | (d) 4                       | (1) |
| 7.  | (c) 5.010010001             | (1) |
| 8.  | (c) 3                       | (1) |
| 9.  | (b) 5 units                 | (1) |
| 10. | (b) (- 3, 5)                | (1) |
| 11. | (2, 3)                      | (1) |
| 12. | 2 <b>OR</b> 1               | (1) |
| 13. | 1                           | (1) |
| 14. | 0                           | (1) |
| 15. | 4:9                         | (1) |
| 16. | Sin P = $1/\sqrt{2}$        | (1) |

|     | 05                                                                                                 |                  |
|-----|----------------------------------------------------------------------------------------------------|------------------|
|     | OR                                                                                                 |                  |
|     | cosec A = 17/15                                                                                    |                  |
| 17. | Area of guadrant $\frac{1}{22}$ , $r^2$ 20 5 (upp - $\frac{22}{2}$ )                               | $(\frac{1}{2})$  |
| 17. | Area of quadrant = $\frac{1}{4} \times \frac{22}{7} \times r^2$ = 38.5 (use $\pi = \frac{22}{7}$ ) | <sup>2</sup>     |
|     | $\Rightarrow$ r = 7cm                                                                              | .1.              |
|     | ∴ diameter = 14 cm                                                                                 | $(\frac{1}{2})$  |
|     | 1                                                                                                  |                  |
| 18. | $\frac{1}{2}$                                                                                      | 1                |
| 19. | $\frac{AD}{BD} = \frac{AE}{EC}$ (By B.P.T.)                                                        | ( <u>1</u> )     |
| 17. | BD EC                                                                                              | $(\frac{1}{2})$  |
|     | $\frac{1.5}{3} = \frac{1}{EC}$                                                                     |                  |
|     | $\therefore EC = 2 cm$                                                                             | $(\frac{1}{2})$  |
| 20  | $A_5 = a_1 + 4d = 0$                                                                               | ( <sup>1</sup> ) |
| 20. | $1^{2} + 4d = 0$                                                                                   | $(\frac{1}{2})$  |
|     | d = - 3                                                                                            | $(\frac{1}{2})$  |
|     |                                                                                                    |                  |
|     | SECTION - B                                                                                        |                  |
| 21. | P (Two Head) = $\frac{1}{4}$                                                                       | (1)              |
|     | · · 4                                                                                              | (1)              |
| 22. | Good bulbs = 25 - 5 = 20                                                                           | (1)              |
|     | P (good bulb) = $\frac{20}{25} = \frac{4}{5}$                                                      | (1)              |
|     | OR                                                                                                 |                  |
|     | Of all those outcomes, the ones for which $a + b = 8$ are:                                         | (1)              |
|     | 2+6, 3+5, 4+4, 5+3, 6+2 or 5 outcomes.                                                             |                  |
|     |                                                                                                    |                  |
|     | P = 5/36                                                                                           | (1)              |
|     |                                                                                                    |                  |

| 23. | A L B                                                                   |     |
|-----|-------------------------------------------------------------------------|-----|
|     | C M D                                                                   | (1) |
|     | $\angle OLA = 90^{\circ}$                                               |     |
|     | $\angle OMD = 90^{\circ}$                                               |     |
|     | $\angle OLA = \angle OMD$<br>Which are alternate angles, hence AB    CD |     |
|     |                                                                         |     |
|     |                                                                         |     |
|     |                                                                         | (1) |
|     |                                                                         |     |
| 24. | LHS = tan 48° tan 23°tan 42°tan 67°                                     | (1) |
|     | =Cot (90°-48°) cot (90°-23°) tan 42° tan 67°                            |     |
|     | =Cot 42° cot 67° tan 42° tan 67°                                        | (1) |
|     | =1                                                                      |     |
|     | OR                                                                      |     |
|     | =Cos 48°cos 42° - Sin 48° Sin 42°                                       | (1) |
|     | =Sin (90° - 48°) sin (90°-42°) - Sin 48° Sin 42°                        |     |
|     | =Sin 42° Sin 48° - Sin 48° Sin 42° = 0                                  | (1) |
| 25. | $r = \frac{7}{2}$                                                       | (1) |
|     | E E                                                                     |     |
|     | Area of Circle= $\frac{\pi r^2}{4} = \frac{77}{2} \text{cm}^2$          |     |
|     |                                                                         | (1) |
| 26. | (i) 3 Students                                                          |     |
| 20. |                                                                         |     |
|     | (ii) $\frac{x^2 + 2x + 1}{x^2 + 2x + 1}$                                | (1) |
|     | (ii) $\frac{x + 2x + 1}{x + 1}$                                         |     |
|     |                                                                         | (1) |
|     | $= \frac{(x+1)^2}{x+1} = x+1$                                           |     |
|     | SECTION - C                                                             | I   |
|     |                                                                         |     |
| L   |                                                                         |     |

| 27. | $x^2 - 3x - 10 = 0$                                                                                                                                            | (3)                         |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|
|     | $x^2-5x+2x-10 = 0$                                                                                                                                             |                             |  |  |
|     | x(x-5) + 2(x-5)=0                                                                                                                                              |                             |  |  |
|     | (x-5) $(x+2)=0$                                                                                                                                                |                             |  |  |
|     | X = 5, -2                                                                                                                                                      |                             |  |  |
|     |                                                                                                                                                                |                             |  |  |
|     | Sum of the roots = $\frac{-b}{a} = \frac{3}{1}$                                                                                                                |                             |  |  |
|     | which is same as $5 - 2 = 3$                                                                                                                                   |                             |  |  |
|     | product of the roots = $\frac{c}{a}$ = -10                                                                                                                     |                             |  |  |
|     | which is same as $5x(-2) = -10$                                                                                                                                |                             |  |  |
|     | Hence verified                                                                                                                                                 |                             |  |  |
|     |                                                                                                                                                                |                             |  |  |
| 28. | Correct construction of given circle                                                                                                                           | (1)                         |  |  |
|     | Correct construction of two tangents                                                                                                                           | (2)                         |  |  |
|     |                                                                                                                                                                |                             |  |  |
|     | OR                                                                                                                                                             | (1)                         |  |  |
|     | Line of given length                                                                                                                                           | (2)                         |  |  |
|     | Correct position of point which divides the line segment in the given                                                                                          |                             |  |  |
|     | ratio                                                                                                                                                          |                             |  |  |
|     |                                                                                                                                                                |                             |  |  |
| 29. | Area of track = $120 \times 70 + \square (35)^2 - [120 \times 56 + \square (28)^2]$                                                                            | (1)                         |  |  |
| 27. | $= 120 \times 14 + \frac{22}{7} [(35)^2 - (28)^2]$                                                                                                             | (1)                         |  |  |
|     | $= 120 \times 14 + \frac{7}{7} [(33) - (20)]$ $= 1680 + \frac{22}{7} \times 7 \times 63$                                                                       |                             |  |  |
|     | = 1680 + 1386                                                                                                                                                  |                             |  |  |
|     | $= 3066 \text{m}^2$                                                                                                                                            | $\left(1\frac{1}{2}\right)$ |  |  |
|     |                                                                                                                                                                |                             |  |  |
|     | Yes, Meena is wrong.                                                                                                                                           | $(\frac{1}{2})$             |  |  |
| 30. | L.H.S. = $\frac{\cot A - \cos A}{\cot A + \cos A} = \frac{\frac{\cos A}{\sin A} - \cos A}{\frac{\cos A}{\sin A} + \cos A}$                                     | (1)                         |  |  |
|     | $= \frac{\cos A \left(\frac{1}{\sin A} - 1\right)}{\cos A \left(\frac{1}{\sin A} + 1\right)} = \frac{\left(\frac{1}{\sin A} - 1\right)}{\frac{1}{\sin A} + 1}$ |                             |  |  |
|     | $= \frac{\operatorname{cosec} A - 1}{\operatorname{cosec} A + 1} = R.H.S$                                                                                      | (1)                         |  |  |


|     | OR                                                                                                                                                                                                                     |                                           |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|     | L.H.S. = $\frac{\tan A + \sin A}{\tan A - \sin A}$                                                                                                                                                                     | (1)                                       |
|     | $= \frac{\frac{Sin A}{\cos A} + Sin A}{\frac{Sin A}{\cos A} - \cos A} = \frac{Sin A}{Sin A} \frac{[Sec A+1]}{[Sec A-1]}$ $= R.H.S$                                                                                     | $(\frac{1}{2})$<br>$(\frac{1}{2})$<br>(1) |
|     |                                                                                                                                                                                                                        | (1)                                       |
| 31. | Let us assume that 5 - $\sqrt{3}$ is a rational<br>We can find co prime a & b ( b≠ 0)such that<br>5 - $\sqrt{3} = \frac{a}{b}$                                                                                         | $(\frac{1}{2})$                           |
|     | Therefore 5 $-\frac{a}{b} = \sqrt{3}$<br>So we get $\frac{5b-a}{b} = \sqrt{3}$<br>Since a & b are integers, we get $\frac{5b-a}{b}$ is rational, and so $\sqrt{3}$ is rational. But $\sqrt{3}$ is an irrational number | (1)<br>$(\frac{1}{2})$                    |
|     | Which contradicts our statement<br>$\therefore 5 - \sqrt{3}$ is irrational<br><b>OR</b>                                                                                                                                | (1)                                       |
|     | $616 = 32 \times 19 + 8$<br>$\Rightarrow r = 8 \neq 0$<br>$32 = 8 \times 4 + 0$<br>$\Rightarrow r = 0$                                                                                                                 | (2)                                       |
|     | The HCF of 32 and 616 is 8.                                                                                                                                                                                            | (1)                                       |
|     |                                                                                                                                                                                                                        | (1)                                       |
| 32. |                                                                                                                                                                                                                        | (1)                                       |

|     |                                                                                                                                                                                                                                                       | (1)<br>(1)       |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
|     | In $\triangle OPA \ and \triangle OPB$<br>$\angle PAO = \angle PBO \ (each 90^{\circ})$<br>OP = OP(common)<br>$OA = OB(radii \ of \ same \ circle \)$<br>$\triangle OPA \cong \triangle OPB \ (by \ RHS \ congruency \ axiom$<br>Hence PA = PB (CPCT) |                  |  |
| 33. | (i) (6,4)                                                                                                                                                                                                                                             | (1)              |  |
|     | (ii) $\sqrt{(6-3)^2 + (1-4)^2} = 3\sqrt{2}$ units                                                                                                                                                                                                     | (1)              |  |
|     | (iii) Sita and Rita                                                                                                                                                                                                                                   | (1)              |  |
|     |                                                                                                                                                                                                                                                       |                  |  |
| 34. | 2x + 3y = 11(1)                                                                                                                                                                                                                                       | (1)              |  |
|     | x-2y = -12(2)                                                                                                                                                                                                                                         |                  |  |
|     | (2) $\Rightarrow x = 2y - 12$ (3)                                                                                                                                                                                                                     |                  |  |
|     |                                                                                                                                                                                                                                                       |                  |  |
|     | Substitute value of x from (3) in (1), we get                                                                                                                                                                                                         |                  |  |
|     | 2(2y-12) + 3y = 11                                                                                                                                                                                                                                    |                  |  |
|     | $\Rightarrow 4y - 24 + 3y = 11$<br>$\Rightarrow 7y = 35$                                                                                                                                                                                              |                  |  |
|     | $\Rightarrow$ y = 5                                                                                                                                                                                                                                   |                  |  |
|     | Substituting value of $y = 5$ in equation (3), we get                                                                                                                                                                                                 |                  |  |
|     |                                                                                                                                                                                                                                                       | (1)              |  |
|     | x = 2(5) - 12 = 10 - 12 = -2                                                                                                                                                                                                                          |                  |  |
|     | Hence $x = -2$ , $y=5$ is the required solution                                                                                                                                                                                                       |                  |  |
|     | Now $5 = -2m + 3$<br>$\Rightarrow 2m = 3-5$                                                                                                                                                                                                           |                  |  |
|     | $\Rightarrow 2m = -2$                                                                                                                                                                                                                                 |                  |  |
|     | m = -1                                                                                                                                                                                                                                                |                  |  |
|     |                                                                                                                                                                                                                                                       |                  |  |
|     |                                                                                                                                                                                                                                                       |                  |  |
|     |                                                                                                                                                                                                                                                       |                  |  |
|     |                                                                                                                                                                                                                                                       | (1)              |  |
|     |                                                                                                                                                                                                                                                       | (1)              |  |
|     | SECTION D                                                                                                                                                                                                                                             |                  |  |
| 35. | <b>SECTION - D</b><br>Let two consecutive positive integers be $x$ and $x + 1$                                                                                                                                                                        | ( <sup>1</sup> ) |  |
| 55. | Let two consecutive positive integers be $\lambda$ and $\lambda + 1$                                                                                                                                                                                  | $(\frac{1}{2})$  |  |

$$\begin{array}{c|c} & \therefore x^{2} + (x+1)^{2} = 365 & (1\frac{1}{c^{2}}) \\ \Rightarrow x^{2} + x - 182 = 0 & (1) \\ & (x+14)(x-13) = 0 \\ & \therefore x = 13 & (1) & (1) \\ \end{array}$$
Hence two consecutive positive integers are 13 and 14 & (1)
  
36. Let common difference be d
$$\begin{array}{c} \Rightarrow \frac{14}{2} [2(10) + (n-1)d] = 1050 & (2) \\ \Rightarrow d = 10 & (2) \\ \Rightarrow d = 10 & (2) \\ = 10 + 19 & (10) = 200 & (2) \\ \end{array}$$

$$\begin{array}{c} OR & & \\ a=5 \\ a_{n} = 45 & \\ a_{n} = 45 & \\ S_{n} = 400 & \\ \end{array}$$

$$\begin{array}{c} = \frac{\pi}{2} (5+45) = 400 \\ 50n = 800 & \\ n = 16 & (2) \\ also a_{n} = 45 & \\ 5+15d = 45 & \\ 15d-40 & \\ d=8/3 & (2) \end{array}$$



|     |                                                                                           |                   |            |  | $(1\frac{1}{2})$                    |
|-----|-------------------------------------------------------------------------------------------|-------------------|------------|--|-------------------------------------|
|     | For correct proof                                                                         |                   |            |  |                                     |
|     |                                                                                           |                   |            |  |                                     |
|     |                                                                                           |                   |            |  |                                     |
|     |                                                                                           |                   |            |  |                                     |
|     |                                                                                           |                   |            |  |                                     |
| 39. | A.T. Q.                                                                                   |                   |            |  | (2)                                 |
|     | $\pi r^2 \times 1800 = \pi \times \frac{1}{2} \times \frac{1}{2} \times 8$                |                   |            |  |                                     |
|     | $\Rightarrow r^{2} = \frac{1}{900}$ $\Rightarrow r = \frac{1}{30}$                        |                   |            |  | $(1\frac{1}{2})$                    |
|     | $\Rightarrow 1 = \frac{1}{30}$<br>$\therefore \text{ Thickness of wire} = \frac{1}{15}cm$ |                   |            |  | $(1\frac{1}{2})$<br>$(\frac{1}{2})$ |
|     | OR                                                                                        |                   |            |  |                                     |
|     |                                                                                           |                   |            |  |                                     |
|     | $\frac{4}{3}\pi r^{3} = \pi R^{2} h$ $\frac{4}{3}(4.2)^{3} = (6)^{2} h$                   |                   |            |  |                                     |
|     | $\frac{1}{3}(4.2)^3 = (6)^2 h$<br>$\Rightarrow h = \frac{2744}{100}$                      |                   |            |  | (2)                                 |
|     |                                                                                           |                   |            |  | $(1\frac{1}{2})$                    |
|     | $\therefore h = 2 \cdot 744 \ cm$                                                         |                   |            |  | $(\frac{1}{2})$                     |
| 40. |                                                                                           |                   |            |  |                                     |
| 101 | Daily                                                                                     | Number of workers | Cumulative |  |                                     |
|     | Income                                                                                    |                   | Frequency  |  |                                     |
|     | 400-420                                                                                   | 12                | 12         |  |                                     |
|     | 420-440                                                                                   | 14                | 26         |  |                                     |
|     | 440-460                                                                                   | 8                 | 34         |  |                                     |

|                                                    | 460-480 | 6  | 40 |     |     |
|----------------------------------------------------|---------|----|----|-----|-----|
|                                                    |         |    |    |     |     |
|                                                    | 480-500 | 10 | 50 |     |     |
|                                                    |         |    |    |     |     |
|                                                    |         |    |    |     | (2) |
| Correct Table                                      |         |    |    |     |     |
| Drawing an ogive with co-ordinates                 |         |    |    | (2) |     |
| (420,12), (440,26), (460, 34), (480,40), (500, 50) |         |    |    |     |     |