1.1 Set Theory

1.1.1 Definitions

A set is a well-defined class or collection of objects. By a well defined collection we mean that there exists a rule with the help of which it is possible to tell whether a given object belongs or does not belong to the given collection. The objects in sets may be anything, numbers, people, mountains, rivers etc. The objects constituting the set are called elements or members of the set.

A set is often described in the following two ways.

(1) **Roster method or Listing method :** In this method a set is described by listing elements, separated by commas, within braces {}. The set of vowels of English alphabet may be described as $\{a, e, i, o, u\}$.

The set of even natural numbers can be described as {2, 4, 6.....}. Here the dots stand for 'and so on'.

Wate : \Box The order in which the elements are written in a set makes no difference. Thus $\{a, e, e\}$

i, o, u and $\{e, a, i, o, u\}$ denote the same set. Also the repetition of an element has no effect. For example, $\{1, 2, 3, 2\}$ is the same set as $\{1, 2, 3\}$

(2) **Set-builder method or Rule method :** In this method, a set is described by a characterizing property P(x) of its elements x. In such a case the set is described by $\{x : P(x) \text{ holds}\}$ or $\{x \mid P(x) \text{ holds}\}$, which is read as 'the set of all x such that P(x) holds'. The symbol '|' or ':' is read as 'such that'.

The set *E* of all even natural numbers can be written as

 $E = \{x \mid x \text{ is natural number and } x = 2n \text{ for } n \in N\}$

or
$$E = \{x \mid x \in N, x = 2n, n \in N\}$$

or
$$E = \{x \in N \mid x = 2n, n \in N\}$$

The set $A = \{0, 1, 4, 9, 16,\}$ can be written as $A = \{x^2 | x \in Z\}$

Wate : D Symbols

Symbol	Meaning	
\Rightarrow	Implies	
E	Belongs to	
$A \subset B$	A is a subset of B	
\Leftrightarrow	Implies and is implied by	

∉	Does not belong to	
s.t.	Such that	
\forall	For every	
Э	There exists	
Symbol	Meaning	
iff	If and only if	
&	And	
a b	a is a divisor of b	
Ν	Set of natural numbers	
I or Z	Set of integers	
R	Set of real numbers	
С	Set of complex numbers	
Q	Set of rational numbers	

Example: 1The set of intelligent students in a class is[AMU 1998](a) A null set(b) A singleton set(c) A finite set(d) Not a well defined collection

Solution: (d) Since, intelligency is not defined for students in a class *i.e.*, Not a well defined collection.

1.1.2 Types of Sets

(1) **Null set or Empty set:** The set which contains no element at all is called the null set. This set is sometimes also called the 'empty set' or the 'void set'. It is denoted by the symbol ϕ or {}.

A set which has at least one element is called a non-empty set.

Let $A = \{x : x^2 + 1 = 0 \text{ and } x \text{ is real}\}$

Since there is no real number which satisfies the equation $x^2 + 1 = 0$, therefore the set *A* is empty set.

Wole : \Box If *A* and *B* are any two empty sets, then $x \in A$ iff $x \in B$ is satisfied because there is no element *x* in either *A* or *B* to which the condition may be applied. Thus A = B. Hence, there is only one empty set and we denote it by ϕ . Therefore, article 'the' is used before empty set.

(2) **Singleton set:** A set consisting of a single element is called a singleton set. The set {5} is a singleton set.

(3) **Finite set:** A set is called a finite set if it is either void set or its elements can be listed (counted, labelled) by natural number 1, 2, 3, ... and the process of listing terminates at a certain natural number n (say).

Cardinal number of a finite set: The number n in the above definition is called the cardinal number or order of a finite set A and is denoted by n(A) or O(A).

(4) **Infinite set:** A set whose elements cannot be listed by the natural numbers 1, 2, 3, ..., *n*, for any natural number *n* is called an infinite set.

(5) **Equivalent set:** Two finite sets *A* and *B* are equivalent if their cardinal numbers are same *i.e.* n(A) = n(B).

Example: $A = \{1, 3, 5, 7\}$; $B = \{10, 12, 14, 16\}$ are equivalent sets [:: O(A) = O(B) = 4]

(6)**Equal set:** Two sets *A* and *B* are said to be equal *iff* every element of *A* is an element of *B* and also every element of *B* is an element of *A*. We write "A = B" if the sets *A* and *B* are equal and " $A \neq B$ " if the sets *A* and *B* are not equal. Symbolically, A = B if $x \in A \Leftrightarrow x \in B$.

The statement given in the definition of the equality of two sets is also known as the axiom of extension.

Example: If $A = \{2, 3, 5, 6\}$ and $B = \{6, 5, 3, 2\}$. Then A = B, because each element of A is an element of B and vice-versa.

Wole : D Equal sets are always equivalent but equivalent sets may need not be equal set.

(7) **Universal set :** A set that contains all sets in a given context is called the universal set.

or

A set containing of all possible elements which occur in the discussion is called a universal set and is denoted by *U*.

Thus in any particular discussion, no element can exist out of universal set. It should be noted that universal set is not unique. It may differ in problem to problem.

(8) **Power set :** If *S* is any set, then the family of all the subsets of *S* is called the power set of *S*.

The power set of *S* is denoted by *P*(*S*). Symbolically, *P*(*S*) = { $T : T \subseteq S$ }. Obviously ϕ and *S* are both elements of *P*(*S*).

Example : Let $S = \{a, b, c\}$, then $P(S) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$.

Wate : \Box If $A = \phi$, then P(A) has one element ϕ , $\therefore n[P(A)] = 1$

□ Power set of a given set is always non-empty.

- □ If *A* has *n* elements, then P(A) has 2^n elements.
- $\square \quad P(\phi) = \{\phi\}$

 $P(P(\phi)) = \{\phi, \{\phi\}\} \implies P[P(P(\phi))] = \{\phi, \{\phi\}, \{\{\phi\}\}, \{\phi, \{\phi\}\}\}\}$

Hence $n\{P[P(P(\phi))]\} = 4$.

(9) **Subsets (Set inclusion) :** Let *A* and *B* be two sets. If every element of *A* is an element of *B*, then *A* is called a subset of *B*.

If *A* is subset of *B*, we write $A \subseteq B$, which is read as "*A* is a subset of *B*" or "*A* is contained in *B*".

Thus, $A \subseteq B \Rightarrow a \in A \Rightarrow a \in B$.

Wole : D Every set is a subset of itself.

□ The empty set is a subset of every set.

\Box The total number of subset of a finite set containing *n* elements is 2^n .

Proper and improper subsets: If *A* is a subset of *B* and $A \neq B$, then *A* is a proper subset of *B*. We write this as $A \subset B$.

The null set ϕ is subset of every set and every set is subset of itself, *i.e.*, $\phi \subset A$ and $A \subseteq A$ for every set *A*. They are called improper subsets of *A*. Thus every non-empty set has two improper subsets. It should be noted that ϕ has only one subset ϕ which is improper. Thus *A* has two improper subsets iff it is non-empty.

All other subsets of *A* are called its proper subsets. Thus, if $A \subset B$, $A \neq B$, $A \neq \phi$, then *A* is said to be proper subset of *B*.

Example: Let $A = \{1, 2\}$. Then A has $\phi; \{1\}, \{2\}, \{1, 2\}$ as its subsets out of which ϕ and $\{1, 2\}$ are improper and $\{1\}$ and $\{2\}$ are proper subsets.

Example: 2	2 Which of the following is the empty set [Karnataka CET			[Karnataka CET 1990]	
	(a) $\{x : x \text{ is a real number}\}$	er and $x^2 - 1 = 0$ }	(b) { $x : x$ is a real number and $x^2 + 1 = 0$		
	(c) $\{x : x \text{ is a real number}\}$	er and $x^2 - 9 = 0$ }	(d) { <i>x</i> : <i>x</i> is a real num	ber and $x^2 = x + 2$ }	
Solution: (b)	olution: (b) Since $x^2 + 1 = 0$, gives $x^2 = -1 \implies x = \pm i$				
$\therefore x$ is not real but x is real (given)					
	\therefore No value of x is possib	ole.			
Example: 3	The set $A = \{x : x \in R, x^2 =$	= 16 and $2x = 6$ } equals		[Karnataka CET 1995]	
	(a) <i>\phi</i>	(b) [14, 3, 4]	(c) [3]	(d) [4]	
Solution: (a) $x^2 = 16 \implies x = \pm 4$					
$2x = 6 \implies x = 3$					
	There is no value of $x w$	hich satisfies both the abov	e equations. Thus, $A = \phi$		
Example: 4 Karnataka CET	If a set <i>A</i> has <i>n</i> elements 1992, 2000]	s, then the total number of s	subsets of A is	[Roorkee 1991;	
	(a) <i>n</i>	(b) <i>n</i> ²	(c) 2 ^{<i>n</i>}	(d) 2 <i>n</i>	
Solution: (c)	Number of subsets of A	$=^{n}C_{0} + ^{n}C_{1} + \dots + ^{n}C_{n} = 2^{n}$.			
Example: 5	5 Two finite sets have <i>m</i> and <i>n</i> elements. The total number of subsets of the first set is 56 more the total number of subsets of the second set. The values of <i>m</i> and <i>n</i> are [MNI 1998, 91; UPSEAT 1999, 2000]			e first set is 56 more than [MNR	
	(a) 7, 6	(b) 6, 3	(c) 5, 1	(d) 8, 7	
Solution: (b)	Since $2^m - 2^n = 56 = 8 \times 7 =$	$= 2^3 \times 7 \implies 2^n (2^{m-n} - 1) = 2^3 \times 7$			
	:. $n = 3$ and $2^{m-n} = 8 = 2^3$				
	$\Rightarrow m-n=3 \Rightarrow m-3=3=$	$\Rightarrow m = 6$			

: m = 6, n = 3.

Example: 6 The number of proper subsets of the set {1, 2, 3} is (a) 8 (b) 7 (c) 6 (d) 5 Solution: (c) Number of proper subsets of the set {1, 2, 3} = $2^3 - 2 = 6$. Example: 7 If $X = \{8^n - 7n - 1 : n \in N\}$ and $Y = \{49(n - 1) : n \in N\}$, then (a) $X \subseteq Y$ (b) $Y \subseteq X$ (c) X = Y (d) None of these Solution: (a) Since $8^n - 7n - 1 = (7 + 1)^n - 7n - 1 = 7^n + {}^nC_17^{n-1} + {}^nC_27^{n-2} + + {}^nC_{n-1}7 + {}^nC_n - 7n - 1$

$$= {}^{n}C_{2}7^{2} + {}^{n}C_{3}7^{3} + \dots + {}^{n}C_{n}7^{n} \qquad ({}^{n}C_{0} = {}^{n}C_{n}, {}^{n}C_{1} = {}^{n}C_{n-1} \text{ etc.})$$

= 49[{}^{n}C_{2} + {}^{n}C_{3}(7) + \dots + {}^{n}C_{n}7^{n-2}]

 $\therefore 8^n - 7n - 1$ is a multiple of 49 for $n \ge 2$.

For
$$n=1$$
, $8^n - 7n - 1 = 8 - 7 - 1 = 0$; For $n=2$, $8^n - 7n - 1 = 64 - 14 - 1 = 49$

 $\therefore 8^n - 7n - 1$ is a multiple of 49 for all $n \in N$.

 \therefore X contains elements which are multiples of 49 and clearly Y contains all multiplies of 49.

 $\therefore X \subseteq Y$.

1.1.3 Venn-Euler Diagrams

The combination of rectangles and circles are called *Venn-Euler diagrams* or simply **Venn-diagrams**.

In venn-diagrams the universal set U is represented by points within a rectangle and its subsets are represented by points in closed curves (usually circles) within the rectangle. If a set A is a subset of a set B, then the circle representing A is drawn inside the circle representing B. If A and B are not equal but they have some common

elements, then to represent *A* and *B* we draw two intersecting circles. Two disjoints sets are represented by two non-intersecting circles.

1.1.4 Operations on Sets

(1) **Union of sets :** Let *A* and *B* be two sets. The union of *A* and *B* is the set of all elements which are in set *A* or in *B*. We denote the union of *A* and *B* by $A \cup B$

which is usually read as "A union B".

symbolically, $A \cup B = \{x : x \in A \text{ or } x \in B\}.$

It should be noted here that we take standard mathematical usage

of "or". When we say that $x \in A$ or $x \in B$ we do not exclude the possibility that x is a member of both A and B.

Vote : \Box If A_1, A_2, \dots, A_n is a finite family of sets, then their union is denoted by $\bigcup_{i=1}^n A_i$ or

$$A_1 \cup A_2 \cup A_3 \dots \cup A_n$$
.

(2) **Intersection of sets :** Let *A* and *B* be two sets. The intersection of *A* and *B* is the set of all those elements that belong to both *A* and *B*.

The intersection of A and B is denoted by $A \cap B$ (read as "A intersecti

Thus, $A \cap B = \{x : x \in A \text{ and } x \in B\}.$

Clearly, $x \in A \cap B \Leftrightarrow x \in A$ and $x \in B$.

In fig. the shaded region represents $A \cap B$. Evidently $A \cap B \subseteq A$, $A \cap B \subseteq B$.

Note:
$$\Box$$
 If $A_1, A_2, A_3, \dots, A_n$ is a finite family of sets, then their intersection is denoted by
$$\bigcap_{i=1}^n A_i \text{ or } A_1 \cap A_2 \cap A_3 \cap \dots \cap A_n.$$

(3) **Disjoint sets :** Two sets *A* and *B* are said to be disjoint, if $A \cap B = \phi$. If $A \cap B \neq \phi$, then *A* and *B* are said to be non-intersecting or non-overlapping sets.

In other words, if A and B have no element in common, then A and B are called disjoint sets.

Example : Sets {1, 2}; {3, 4} are disjoint sets.

(4) **Difference of sets :** Let *A* and *B* be two sets. The difference of *A* and *B* written as A - B, is the set of all those elements of *A* which do not belong to *B*.

Thus, $A - B = \{x : x \in A \text{ and } x \notin B\}$

or
$$A - B = \{x \in A : x \notin B\}$$

Clearly, $x \in A - B \Leftrightarrow x \in A$ and $x \notin B$. In fig. the shaded part represents A - B.

Similarly, the difference B - A is the set of all those elements of B that do not belong to A *i.e.*

$$B - A = \{x \in B : x \notin A\}$$

Example: Consider the sets $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$, then $A - B = \{1, 2\}; B - A = \{4, 5\}$

As another example, R - Q is the set of all irrational numbers.

(5) **Symmetric difference of two sets:** Let *A* and *B* be two sets. The symmetric difference of sets *A* and *B* is the set $(A - B) \cup (B - A)$ and is denoted by $A \Delta B$. Thus, $A \Delta B = (A - B) \cup (B - A) = \{x : x \notin A \cap B\}$

(6) **Complement of a set :** Let *U* be the universal set and let *A* be a set such that $A \subset U$. Then, the complement of *A* with respect to *U* is denoted by *A'* or *A^c* or *C*(*A*) or *U* – *A* and is defined the set of all those elements of *U* which are not in *A*.

Thus,	$A' = \{x \in U : x \notin A\}.$			
Clearly,	$x \in A' \Leftrightarrow x \notin A$			
Example:	Consider $U = \{1, 2,, V\}$,10} and $A = \{1, 3, 5, 7, 9\}$		
Then A' =	= {2, 4, 6, 8, 10}			
Example: 8	Given the sets $A = \{1, 2, 3\}$ CEE 1996]	$B = \{3,4\}, C = \{4, 5, 6\}, $ the	n $A \cup (B \cap C)$ is	[MNR 1988; Kurukshetra
	(a) {3}	(b) {1, 2, 3, 4}	(c) {1, 2, 4, 5}	(d) {1, 2, 3, 4, 5, 6}
Solution: (b)	$B \cap C = \{4\}, \therefore A \cup (B \cap C)$	$f) = \{1, 2, 3, 4\}.$		
Example: 9	If $A \subseteq B$, then $A \cup B$ is e	equal to		
	(a) <i>A</i>	(b) $B \cap A$	(c) B	(d) None of these
Solution: (c)	Since $A \subseteq B \Rightarrow A \cup B = B$			
Example: 10	If A and B are any two s	ets, then $A \cup (A \cap B)$ is equal	to	
	(a) A	(b) B	(c) A^{c}	(d) B^{c}
Solution: (a)	$A \cap B \subseteq A$. Hence $A \cup (A$	$(\cap B) = A$.		
Example: 11	If <i>A</i> and <i>B</i> are two given 1998; Kurukshetra CEE 199	sets, then $A \cap (A \cap B)^c$ is eq 99]	ual to	[AMU
	(a) A	(b) B	(c) <i>\phi</i>	(d) $A \cap B^c$
Solution: (d)	$A \cap (A \cap B)^c = A \cap (A^c \cup B^c)$	$= (A \cap A^c) \cup (A \cap B^c) = \phi \cup (A$	$(A \cap B^c) = A \cap B^c$.	
Example: 12	If $N_a = \{an : n \in N\}$, then A	$N_3 \cap N_4 =$		
	(a) N ₇	(b) N ₁₂	(c) N ₃	(d) N ₄
Solution: (b)	$N_3 \cap N_4 = \{3, 6, 9, 12, 15, \dots, \}$	∩{4,8,12,16,20,}		
	= {12, 24, 36	$\} = N_{12}$		
	Trick: $N_3 \cap N_4 = N_{12}$		[∵ 3, 4 are relatively p	prime numbers]
Example: 13	If $aN = \{ax : x \in N\}$ and bN	$N \cap cN = dN$, where $b, c \in N$	are relatively prime, the	en
	(a) $d = bc$	(b) $c = bd$	(c) $b = cd$	(d) None of these
Solution: (a)	bN = the set of positive i	ntegral multiples of <i>b</i> , <i>cN</i> =	= the set of positive inte	gral multiplies of c.
	$\therefore bN \cap cN$ = the set of po	ositive integral multiples of	$bc = b \subset N$	[$\because b,c$ are prime]
	d = bc.			-
Example: 14	If the sets <i>A</i> and <i>B</i> are de	fined as		
	$A = \{(x, y) : y = \frac{1}{x}, 0 \neq x \in R$	}		
	$B = \{(x, y) : y = -x, x \in R\},\$	then		
	(a) $A \cap B = A$	(b) $A \cap B = B$	(c) $A \cap B = \phi$	(d) None of these
Solution: (c)	Since $y = \frac{1}{x}, y = -x$ meet	when $-x = \frac{1}{x} \Rightarrow x^2 = -1$, w	which does not give any t	real value of <i>x</i>
	Hence $A \cap B = \phi$.			
Example: 15	Let $A = [x : x \in R, x < 1];$	$B = [x : x \in R, x-1 \ge 1]$ and A	$a \cup B = R - D$, then the set	t D is

(a)
$$[x:1 < x \le 2]$$
 (b) $[x:1 \le x < 2]$ (c) $[x:1 \le x \le 2]$ (d) None of these
Solution: (b) $A = [x:x \in R, -1 < x < 1]$
 $B = [x:x \in R: x - 1 \le -1$ or $x - 1 \ge 1] = [x:x \in R: x \le 0 \text{ or } x \ge 2]$
 $\therefore A \cup B = R - D$
Where $D = [x:x \in R, 1 \le x < 2]$
Example: 16 If the sets A and B are defined as
 $A = \{(x,y): y = e^x, x \in R\}$
 $B = \{(x,y): y = x, x \in R\}$, then [UPSEAT 1994, 2002]
(a) $B \subseteq A$ (b) $A \subseteq B$ (c) $A \cap B = \phi$ (d) $A \cup B = A$
Solution: (c) Since, $y = e^x$ and $y = x$ do not meet for any $x \in R$
 $\therefore A \cap B = \phi$.
Example: 17 If $X = \{4^n - 3n - 1: n \in N\}$ and $Y = \{9(n - 1): n \in N\}$, then $X \cup Y$ is equal to [Karnataka CET 1997]
(a) X (b) Y (c) N (d) None of these
Solution: (b) Since, $4^n = 3n - 1 = 3^n + n - 3^n + n - 3^n + n - 3^n + n - 3^n - 1$
 $= {}^n C_2 3^2 + n C_3 3^3 + \dots + n^n C_n 3^n - ({}^n C_0 = {}^n C_n, {}^n C_1 = {}^n C_{n-1} = (\alpha, \beta) + (C_1 + \alpha, \beta) + (C_1 + \alpha) + (C_1$

1.1.5 Some Important Results on Number of Elements in Sets

If *A*, *B* and *C* are finite sets and *U* be the finite universal set, then

$$(1) n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

 $(2)n(A \cup B) = n(A) + n(B) \Leftrightarrow A, B$ are disjoint non-void sets.

$$(3)n(A - B) = n(A) - n(A \cap B) i.e. n(A - B) + n(A \cap B) = n(A)$$

 $(4)n(A \Delta B)$ = Number of elements which belong to exactly one of A or B

$$= n((A - B) \cup (B - A))$$

$$= n (A - B) + n(B - A)$$
 [:: $(A - B)$ and $(B - A)$ are disjoint]

$$= n(A) - n(A \cap B) + n(B) - n(A \cap B) = n(A) + n(B) - 2n(A \cap B)$$

 $(5)n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$

(6) *n* (Number of elements in exactly two of the sets *A*, *B*, *C*) = $n(A \cap B) + n(B \cap C) + n(C \cap A) - 3n(A \cap B \cap C)$

(7)n(Number of elements in exactly one of the sets A, B, C) = n(A) + n(B) + n(C)- $2n(A \cap B) - 2n(B \cap C) - 2n(A \cap C) + 3n(A \cap B \cap C)$

$$(8)n(A' \cup B') = n(A \cap B)' = n(U) - n(A \cap B)$$

(9)n(A' \cap B') = n(A \cap B)' = n(U) - n(A \cap B)

Example: 18 Sets *A* and *B* have 3 and 6 elements respectively. What can be the minimum number of elements in $A \cup B$

[MNR 1987; Karnataka CET 1996]

	(a) 3	(b) 6	(c) 9	(d) 18
Solution: (b)	$n(A \cup B) = n(A) + n(B) -$	$n(A \cap B) = 3 + 6 - n(A \cap B)$		
	Since maximum number	of elements in $A \cap B = 3$		
	\therefore Minimum number of ϵ	elements in $A \cup B = 9 - 3 = 6$.		
Example: 19	If A and B are two sets s	uch that $n(A) = 70$, $n(B) = 60$	and $n(A \cup B) = 110$, then	$n(A \cap B)$ is equal to
	(a) 240	(b) 50	(c) 40	(d) 20
Solution: (d)	$n(A \cup B) = n(A) + n(B) - n(A \cap$	<i>B</i>)		
	\Rightarrow 110 = 70 + 60 - $n(A \cap$	<i>B</i>)		
	$\therefore n(A \cap B) = 130 - 110 = 20$			
Example: 20	Let $n(U) = 700, n(A) = 200, n(A)$	$(B) = 300$ and $n(A \cap B) = 100$, t	then $n(A^c \cap B^c) =$	[Kurukshetra CEE 1999]
	(a) 400	(b) 600	(c) 300	(d) 200
Solution: (c) 300.	$n(A^{c} \cap B^{c}) = n[(A \cup B)^{c}]$	$] = n(U) - n(A \cup B) = n(U) - [$	$[n(A) + n(B) - n(A \cap B)] = 70$	00 - [200 + 300 - 100] =
Example: 21 2002]	If $A = [(x, y): x^2 + y^2 = 25]$	and $B = [(x, y): x^2 + 9y^2 = 144$], then $A \cap B$ contains	[AMU 1996; Pb. CET
	(a) One point	(b) Three points	(c) Two points	(d) Four points
Solution: (d)	A = Set of all values (x, y	$x^2 + y^2 = 25 = 5^2$		2 2
	$B = \frac{x^2}{144} + \frac{y^2}{16} = 1$ i.e., $\frac{x^2}{(12)}$	$\frac{y^2}{2} + \frac{y^2}{(4)^2} = 1$.	$(\bigcirc \in$	$\frac{x}{(12)^2} + \frac{y}{(4)^2} = 1$
	Clearly, $A \cap B$ consists of	of four points.		$-\frac{1}{2}$
Example: 22	In a town of 10,000 fam and 10% families buy ne 2% families buy all the t	n of 10,000 families it was found that 40% family $x^2 + y^2 = 5^2$ families buy newspaper <i>C</i> , 5% families buy <i>A</i> and <i>B</i> , 3% buy <i>B</i> and <i>C</i> and 4% buy <i>A</i> lies buy all the three newspapers, then number of families which buy <i>A</i> only is		
	(a) 3100	(b) 3300	(c) 2900	(d) 1400
Solution: (b)	n(A) = 40% of 10,000 =	4,000		
	n(B) = 20% of 10,000 =	2,000		
	n(C) = 10% of 10,000 =	1,000		
	$n (A \cap B) = 5\%$ of 10,000	$D = 500, n (B \cap C) = 3\%$ of 1	10,000 = 300	
	$n(C \cap A) = 4\%$ of 10,000	$a = 400, n(A \cap B \cap C) = 2\%$	of 10,000 = 200	
	We want to find $n(A \cap B)$	$C^{c} \cap C^{c} = n[A \cap (B \cup C)^{c}]$		
	$= n(A) - n[A \cap (B \cup C)] =$	$= n(A) - n[(A \cap B) \cup (A \cap C)]$	$] = n(A) - [n(A \cap B) + n]$	$(A \cap C) - n(A \cap B \cap C)]$
	= 4000 - 1500 + 400 - 2	300] = 4000 - 700 = 3300.		

Example: 23	In a city 20 percent of the population travels by car, 50 percent travels by bus and 10 percent travels by both car and bus. Then persons travelling by car or bus is			
	(a) 80 percent	(b) 40 percent	(c) 60 percent	(d) 70 percent
Solution: (c)	n(C) = 20, n(B) = 50, n(C)	$C \cap B$) = 10		
	Now, $n(C \cup B) = n(C) +$	$n(B) - n(C \cap B) = 20 + 50 -$	10 = 60.	
	Hence, required number	r of persons = 60%.		
Example: 24	Suppose $A_1, A_2, A_3,, A_4$	A_{30} are thirty sets each have	ing 5 elements and B_1, B_2	B_2 ,, B_n are n sets each
	with 3 elements. Let $\begin{bmatrix} 3\\ 1\\ i \end{bmatrix}$	$\int_{-1}^{0} A_i = \bigcup_{j=1}^{n} B_j = S$ and each elements	ments of S belongs to	exactly 10 of the $A_i^{\prime s}$ and
	exactly 9 of the B_{js} . The	en <i>n</i> is equal to		
	(a) 15	(b) 3	(c) 45	(d) None of these
Solution: (c)	$O(S) = O\left(\bigcup_{i=1}^{30} A_i\right) = \frac{1}{10}(5 \times 3)$	30) = 15		
	Since, element in the un	ion S belongs to 10 of A_{i} 's		
	Also, $O(S) = O\left(\bigcup_{j=1}^{n} B_{j}\right) = \frac{3}{2}$	$\frac{n}{2} = \frac{n}{3}$, $\therefore \frac{n}{3} = 15 \Longrightarrow n = 45$.		
Example: 25	In a class of 55 student 24 in Physics, 19 in Che Physics and Chemistry a one subject is	is, the number of students s mistry, 12 in Mathematics a and 4 in all the three subject	tudying different subject and Physics, 9 in Mather s. The number of studer [UPSEAT 1990]	cts are 23 in Mathematics, matics and Chemistry, 7 in nts who have taken exactly
	(a) 6	(b) 9	(c) 7	(d) All of these
Solution: (d)	n(M) = 23, n(P) = 24, n(P)	(C)= 19		
	$n(M \cap P) = 12, n(M \cap C)$	= 9, $n(P \cap C)$ = 7		
	$n(M \cap P \cap C) = 4$			
	We have to find $n(M \cap R)$	$P' \cap C'), n(P \cap M' \cap C'), n$ ($\mathcal{C} \cap M \ ' \cap P \ ')$	
	Now $n (M \cap P' \cap C') = n$	$[M \cap (P \cup C)']$		
	$= n(M) - n(M \cap (P \cup C))$	$= n(M) - n[(M \cap P) \cup (M \cap C)]$		
	$= n(M) - n(M \cap P) - n(M$	$(M \cap C) + n(M \cap P \cap C) = 23 - 3$	12 - 9 + 4 = 27 - 21 = 6	
	$n(P \cap M' \cap C') = n[P \cap (A)]$	$M \cup C)']$		
	$= n(P) - n[P \cap (M \cup C)] =$	$= n(P) - n[(P \cap M) \cup (P \cap C)] =$	$n(P) - n(P \cap M) - n(P \cap M)$	$C) + n(P \cap M \cap C)$
	= 24 - 12 - 7 + 4 = 9			
	$n(C \cap M' \cap P') = n(C) - n$	$n(C \cap P) - n(C \cap M) + n(C \cap P)$	$P \cap M$) = 19 - 7 - 9 + 4 =	23 - 16 = 7
	Hence (d) is the correct	answer.		

1.1.6 Laws of Algebra of Sets

(1) Idempotent laws :	For any	set A,	we have
-----------------------	---------	--------	---------

(i) $A \cup A = A$ (ii) $A \cap A = A$

(2) **Identity laws :** For any set *A*, we have

(i) $A \cup \phi = A$ (ii) $A \cap U = A$

i.e. ϕ and U are identity elements for union and intersection respectively.

(3) **Commutative laws :** For any two sets A and B, we have

- (i) $A \cup B = B \cup A$ (ii) $A \cap B = B \cap A$ (iii) $A \Delta B = B \Delta A$
- *i.e.* union, intersection and symmetric difference of two sets are commutative.
- (iv) $A B \neq B A$ (iv) $A \times B \neq B \times A$

i.e., difference and cartesian product of two sets are not commutative

(4) **Associative laws :** If *A*, *B* and *C* are any three sets, then

(i) $(A \cup B) \cup C = A \cup (B \cup C)$ (ii) $A \cap (B \cap C) = (A \cap B) \cap C$ (iii) $(A \Delta B) \Delta C = A \Delta (B \Delta C)$

i.e., union, intersection and symmetric difference of two sets are associative.

(iv) $(A - B) - C \neq A - (B - C)$ (v) $(A \times B) \times C \neq A \times (B \times C)$

i.e., difference and cartesian product of two sets are not associative.

(5) **Distributive law :** If *A*, *B* and *C* are any three sets, then

(i) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

i.e. union and intersection are distributive over intersection and union respectively.

(iii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$ (iv) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ (v) $A \times (B - C) = (A \times B) - (A \times C)$

(6) **De-Morgan's law :** If A and B are any two sets, then

(i) $(A \cup B)' = A' \cap B'$ (ii) $(A \cap B)' = A' \cup B'$

(iii) $A - (B \cup C) = (A - B) \cap (A - C)$ (iv) $A - (B \cap C) = (A - B) \cup (A - C)$

Wole : **D** Theorem 1: If *A* and *B* are any two sets, then

(i) $A - B = A \cap B'$ (ii) $B - A = B \cap A'$ $A - B = A \Leftrightarrow A \cap B = \phi$ (iv) $(A - B) \cup B = A \cup B$ (iii) $(\mathbf{v})(A-B) \cap B = \phi$ (vi) $A \subset B \Leftrightarrow B' \subset A'$ (viii) $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$ **Theorem 2 :** If *A*, *B* and *C* are any three sets, then (i) $A - (B \cap C) = (A - B) \cup (A - C)$ (ii) $A - (B \cup C) = (A - B) \cap (A - C)$ (iii) $A \cap (B - C) = (A \cap B) - (A \cap C)$ (iv) $A \cap (B \land C) = (A \cap B) \land (A \cap C)$ **Example: 26** If A, B and C are any three sets, then $A \times (B \cap C)$ is equal to (a) $(A \times B) \cup (A \times C)$ (b) $(A \times B) \cap (A \times C)$ (c) $(A \cup B) \times (A \cup C)$ (d) $(A \cap B) \times (A \cap C)$ **Solution:** (b) $A \times (B \cap C) = (A \times B) \cap (A \times C)$. It is distributive law. **Example: 27** If *A*, *B* and *C* are any three sets, then $A \times (B \cup C)$ is equal to (a) $(A \times B) \cup (A \times C)$ (b) $(A \cup B) \times (A \cup C)$ (c) $(A \times B) \cap (A \times C)$ (d) None of these **Solution:** (a) It is distributive law.

Example: 28 If A, B and C are any three sets, then $A - (B \cup C)$ is equal to

(a) $(A - B) \cup (A - C)$ (b) $(A - B) \cap (A - C)$ (c) $(A - B) \cup C$ (d) $(A - B) \cap C$

Solution: (b) It is De' Morgan law.

Example: 29 If A = [x : x is a multiple of 3] and B = [x : x is a multiple of 5], then A - B is $(\overline{A} \text{ means complement of } A)$ [AMU 1998]

(a)
$$\overline{A} \cap B$$
 (b) $A \cap \overline{B}$ (c) $\overline{A} \cap \overline{B}$ (d) $\overline{A \cap B}$

Solution: (b) $A - B = A \cap B^c = A \cap \overline{B}$.

Example: 30 If *A*, *B* and *C* are non-empty sets, then $(A - B) \cup (B - A)$ equals [AMU 1992, 1998; DCE 1998]

(a)
$$(A \cup B) - B$$
 (b) $A - (A \cap B)$

(c) $(A \cup B) - (A \cap B)$ (d) $(A \cap B) \cup (A \cup B)$

Solution: (c) $(A - B) \cup (B - A) = (A \cup B) - (A \cap B).$

1.1.7 Cartesian Product of Sets

Cartesian product of sets : Let *A* and *B* be any two non-empty sets. The set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$ is called the cartesian product of the sets *A* and *B* and is denoted by $A \times B$.

Thus, $A \times B = [(a, b) : a \in A \text{ and } b \in B]$

If $A = \phi$ or $B = \phi$, then we define $A \times B = \phi$.

Example : Let $A = \{a, b, c\}$ and $B = \{p, q\}$.

Then $A \times B = \{(a, p), (a, q), (b, p), (b, q), (c, p), (c, q)\}$

Also $B \times A = \{(p, a), (p, b), (p, c), (q, a), (q, b), (q, c)\}$

Important theorems on cartesian product of sets :

Theorem 1 : For any three sets *A*, *B*, *C*

(i) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ (ii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$

Theorem 2 : For any three sets *A*, *B*, *C*

 $A \times (B - C) = (A \times B) - (A \times C)$

Theorem 3 : If *A* and *B* are any two non-empty sets, then

 $A\times B=B\times A \Leftrightarrow A=B$

Theorem 4 : If $A \subseteq B$, then $A \times A \subseteq (A \times B) \cap (B \times A)$

Theorem 5 : If $A \subseteq B$, then $A \times C \subseteq B \times C$ for any set *C*.

Theorem 6 : If $A \subseteq B$ and $C \subseteq D$, then $A \times C \subseteq B \times D$

Theorem 7 : For any sets *A*, *B*, *C*, *D*

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$$

Theorem 8 : For any three sets *A*, *B*, *C*

(i)
$$A \times (B' \cup C')' = (A \times B) \cap (A \times C)$$
 (ii) $A \times (B' \cap C')' = (A \times B) \cup (A \times C)$

Theorem 9 : Let *A* and *B* two non-empty sets having *n* elements in common, then $A \times B$ and $B \times A$ have n^2 elements in common.

Example: 31 If $A = \{0, 1\}$, and $B = \{1, 0\}$, then $A \times B$ is equal to					
	(a) {0, 1, 1, 0} {(0,1),(0,0),(1,1),(1,0)}	(b) {(0, 1), (1, 0)}	(c) {0, 0}	(d)	
Solution: (d)	By the definition of cart	esian product of sets			
	Clearly, $A \times B = \{(0, 1), $	$(0, 0), (1, 1), (1, 0)\}.$			
Example: 32	If $A = \{2, 4, 5\}, B = \{7, 8, 9\}$	}, then $n(A \times B)$ is equal to			
	(a) 6	(b) 9	(c) 3	(d) o	
Solution: (b)	$A \times B = \{(2, 7), (2, 8), ($	2, 9), (4, 7), (4, 8), (4, 9),	(5, 7), (5, 8), (5, 9)}		
	$n(A\times B)=n(A)\ .\ n(B)=$	3 × 3 = 9.			
Example: 33	If the set <i>A</i> has <i>p</i> element	nts, <i>B</i> has <i>q</i> elements, ther	n the number of element	s in $A \times B$ is	
	(a) $p+q$	(b) $p + q + 1$	(c) <i>pq</i>	(d) p^2	
Solution: (c)	$n(A \times B) = pq$.				
Example: 34	If $A = \{a, b\}, B = \{c, d\}, C =$	$\{d, e\}$, then $\{(a, c), (a, d), (a, e)\}$	$(b,c),(b,d),(b,e)\}$ is equal	to [AMU 1999; Him. CET	
2002]					
	(a) $A \cap (B \cup C)$	(b) $A \cup (B \cap C)$	(c) $A \times (B \cup C)$	(d) $A \times (B \cap C)$	
Solution: (c)	$B \cup C = \{c, d\} \cup (d, e\} =$	$\{c, d, e\}$			
	$\therefore A \times (B \cup C) = \{a, b\} \times$	$\{c, d, e\} = \{(a, c), (a, d), $	(a, e), (b, c), (b, d), (b, e	2)}.	
Example: 35	If $A = \{x : x^2 - 5x + 6 = 0\}$	$B = \{2, 4\}, C = \{4, 5\}, \text{ then } A$	$\times (B \cap C)$ is	[Kerala (Engg.) 2002]	
	(a) {(2, 4), (3, 4)}	(b) {(4, 2), (4, 3)}	(c) {(2, 4), (3, 4), (4	$\{4,4\}$ (d){(2,2), (3,3), (4,4), (5,5)	
Solution: (a)	Clearly, $A = \{2, 3\}, B = \{2, 4\}, C = \{4, 5\}$				
	$B \cap C = \{4\}$				
	$\therefore A \times (B \cap C) = \{(2, 4)\}$), (3, 4)}.			
Example: 36	If P, Q and R are subset	s of a set A, then $R imes (P^c \cup$	$Q^{c})^{c} =$		
	(a) $(R \times P) \cap (R \times Q)$	(b) $(R \times Q) \cap (R \times P)$	(c) $(R \times P) \cup (R \times Q)$	(d) None of these	
Solution: (a, b	b) $R \times (P^c \cup Q^c)^c = R \times [(P^c)^c d$	$\cap (Q^c)^c] = R \times (P \cap Q) = (R \times P)$	$(R \times Q) = (R \times Q) \cap (R \times P)$?)	

			Definitio	ns, Types of Sets and Subset 🛛
		Ba	asic Level	
1.	In rule method the null s	et is represented by		[Karnataka CET 1998]
	(a) {}	(b) <i>\phi</i>	(c) $\{x : x = x\}$	(d) $\{x : x \neq x\}$
2.	$A = \{x : x \neq x\}$ represents			[Kurukshetra CEE 1998]
	(a) {0}	(b) {}	(C) {1}	(d) $\{x\}$
3.	If $A = \{\phi, \{\phi\}\}$, then the po	ower set of A is		
	(a) <i>A</i>	(b) $\{\phi, \{\phi\}, A\}$	(c) $\{\phi, \{\phi\}, (\{\phi\}\}, A\}$	(d) None of these
4.	If $Q = \begin{cases} x : x = \frac{1}{y}, \text{ where } y \in N \end{cases}$	$V \bigg\}$, then		
	(a) $0 \in Q$	(b) $1 \in Q$	(c) $2 \in Q$	(d) $\frac{2}{3} \in Q$
5۰	Which set is the subset o	f all given sets		
	(a) {1, 2, 3, 4,}	(b) {1}	(c) {0}	(d) {}
6.	Let $S = \{0, 1, 5, 4, 7\}$. Then t	he total number of sub	sets of S is	
	(a) 64	(b) 32	(c) 40	(d) 20
7.	The number of non-empt [Karnataka CET 1997; AMU	y subsets of the set {1, [1998]	2, 3, 4} is	
	(a) 15	(b) 14	(c) 16	(d) 17
8.	If $A = \{1, 2, 3, 4, 5\}$, then the	e number of proper sub	sets of A is	
	(a) 120	(b) 30	(c) 31	(d) 32
				Operations on Sets
		B	asic Level	
9.	Let $A = \{1, 2, 3, 4\}, B = \{2, 3, 4\}$	$\{,5,6\}$, then $A \cap B$ is equ	al to	
	(a) {2, 3, 4}	(b) {1, 2, 3}	(c) {5, 6}	(d) {1}
10.	The smallest set A such t	hat $A \cup \{1, 2\} = \{1, 2, 3\}$, 5, 9} is	
	(a) {2, 3, 5}	(b) {3, 5, 9}	(c) {1, 2, 5, 9}	(d) None of these
11.	If $A \cap B = B$, then			[JMIEE 2000]
	(a) $A \subset B$	(b) $B \subset A$	(c) $A = \phi$	(d) $B = \phi$
12.	For two sets $A \cup B = A$ iff	f		
	(a) $B \subseteq A$	(b) $A \subseteq B$	(c) $A \neq B$	(d) $A = B$
13.	If A and B are two sets, t	hen $A \cup B = A \cap B$ iff		
	(a) $A \subseteq B$	(b) $B \subseteq A$	(c) $A = B$	(d) None of these
14.	Let A and B be two sets.	Then		

	(a) $A \cup B \subseteq A \cap B$	(b) $A \cap B \subset A \cup B$	(c) $A \cap B = A \cup B$	(d) None of these		
15.	Let $A = \{(x, y) : y = e^x, x \in R\}$?}, $B = \{(x, y) : y = e^{-x}, x \in R\}$. T	hen			
	(a) $A \cap B = \phi$	(b) $A \cap B \neq \phi$	(c) $A \cup B = R^2$	(d) None of these		
16.	If $A = \{2, 3, 4, 8, 10\}, E$	$B = \{3, 4, 5, 10, 12\}, C = \{4, 5\}$	(A ∩ B) ∪ (A ∩ B)	$A \cap C$) is equal to		
	(a) {3, 4, 10}	(b) {2, 8, 10}	(c) {4, 5, 6}	(d) {3, 5, 14}		
17.	If A and B are any two s	ets, then $A \cap (A \cup B)$ is equa	ll to			
	(a) <i>A</i>	(b) <i>B</i>	(c) A^{c}	(d) B^c		
18.	If A, B, C be three sets s	uch that $A \cup B = A \cup C$ and A	$A \cap B = A \cap C$, then	[Roorkee 1991]		
	(a) $A = B$	(b) $B = C$	(c) $A = C$	(d) $A = B = C$		
19.	Let $A = \{a, b, c\}, B = \{b, c\}$	$\{c, d\}, C = \{a, b, d, e\}, \text{ then } A$	$A \cap (B \cup C)$ is			
	(a) { <i>a, b, c</i> }	(b) $\{b, c, d\}$	(c) $\{a, b, d, e\}$	(d) $\{e\}$		
20.	If $A = \{2, 3, 4, 8, 10\}, B$	$= \{3, 4, 5, 10, 12\}, C = \{4, 5\}$	6, 12, 14} then $(A \cup B) \cap (A \cup B)$	$A \cup C$) is equal to		
	(a) {2, 3, 4, 5, 8, 10, 12}	(b) $\{2, 4, 8, 10, 12\}$	(c) {3, 8, 10, 12}	(d) {2, 8, 10}		
21.	If A and B are sets, then	$A \cap (B - A)$ is				
	(a) <i>φ</i>	(b) <i>A</i>	(c) <i>B</i>	(d) None of these		
22.	Two sets A, B are disjoir	nt iff				
	(a) $A \cup B = \phi$	(b) $A \cap B \neq \phi$	(c) $A \cap B = \phi$	(d) $A-B=A$		
23.	Let A and B be two non-empty subsets of a set X such that A is not a subset of B, then					
	(a) A is always a subset	(a) A is always a subset of the complement of B		et of A		
	(c) A and B are always of	lisjoint	(d)	A and the complement of B		
	are always non-disjoint	1.4				
24.	If $A \subseteq B$, then $A \cap B$ is e	equal to				
	(a) <i>A</i>	(b) <i>B</i>	(c) A^{c}	(d) B^c		
25.	If A and B are two sets,	then $A \cap (A \cup B)'$ is equal to				
	(a) <i>A</i>	(b) <i>B</i>	(c) φ	(d) None of these		
26.	Let $\cup = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	10}, $A = \{1, 2, 5\}, B = \{6, 7\}$, the	n $A \cap B'$ is			
	(a) <i>B'</i>	(b) <i>A</i>	(c) <i>A</i> ′	(d) <i>B</i>		
27.	If A is any set, then					
	(a) $A \cup A' = \phi$	(b) $A \cup A' = \cup$	(c) $A \cap A' = \cup$	(d) None of these		
28.	If $N_a = [an : n \in N]$, then $N \in N$	$N_6 \cap N_8 =$				
	(a) N ₆	(b) N_8	(c) N_{24}	(d) N_{44}		
29.	If $aN = \{ax : x \in N\}$, then	the set $3N \cap 7N$ is				
5	(a) 21 N	(b) 10 N	$(c) \land N$	(d) None of these		
30.	The shaded region in the	e given figure is				
J						
	A					
		Δ				
	c	В				
	(a) $A \cap (B \cup C)$	(b) $A \cup (B \cap C)$	(c) $A \cap (B - C)$	(d) $A - (B \cup C)$		
31.	If $A = [x : f(x) = 0]$ and $B =$	$[x:g(x)=0]$, then $A \cap B$ will	be			
	(a) $[f(x)]^2 + [g(x)]^2 = 0$	(b) $\frac{f(x)}{x}$	(c) $\frac{g(x)}{x}$	(d) None of these		
	$(\mathbf{w}) \left[j \left(\mathbf{x} \right) \right] + \left[g \left(\mathbf{x} \right) \right] = 0$	g(x)	f(x)	(a) none of these		

32. If A and B are two sets then $(A - B) \cup (B - A) \cup (A \cap B)$ is equal to						
	(a) $A \cup B$	(b) $A \cap B$	(c) A	(d) <i>B</i> ′		
33.	Let A and B be two sets then $(A \cup B)' \cup (A' \cap B)$ is equal to					
	(a) <i>A</i> '	(b) <i>A</i>	(c) <i>B</i> ′	(d) None of these		
34.	Let U be the universal set and $A \cup B \cup C = U$. Then $\{(A - B) \cup (B - C) \cup (C - A)\}'$ is equal to					
	(a) $A \cup B \cup C$	(b) $A \cup (B \cap C)$	(c) $A \cap B \cap C$	(d) $A \cap (B \cup C)$		

Number of Elements in Sets

Basic Level If n(A) = 3, n(B) = 6 and $A \subseteq B$. Then the number of elements in $A \cup B$ is equal to 35. (a) 3 (b) 9 (c) 6 (d) None of these 36. If n(A) = 3 and n(B) = 6 and $A \subset B$. Then the number of elements in $A \cap B$ is equal to (b) 9 (d) None of these (a) 3 (c) 6 Let A and B be two sets such that $n(A) = 0.16, n(B) = 0.14, n(A \cup B) = 0.25$. Then $n(A \cap B)$ is equal to 37. (d) None of these (a) 0.3(b) 0.5 (c) 0.05 If *A* and *B* are disjoint, then $n(A \cup B)$ is equal to 38. (a) n(A)(b) n(B)(c) n(A) + n(B)(d) n(A).n(B)If *A* and *B* are not disjoint sets, then $n(A \cup B)$ is equal to [Kerala (Engg.) 2001] 39. (a) n(A) + n(B)(b) $n(A) + n(B) - n(A \cap B)$ (c) $n(A) + n(B) + n(A \cap B)$ (d) n(A)n(B) (e) n(A)-n(B)In a battle 70% of the combatants lost one eye, 80% an ear, 75% an arm, 85% a leg, x% lost all the four limbs. 40. The minimum value of *x* is (a) 10 (b) 12 (d) None of these (c) 15 Advance Level In a certain town 25% families own a phone and 15% own a car, 65% families own neither a phone nor a car. 41. 2000 families own both a car and a phone. Consider the following statements in this regard: 1. 10% families own both a car and a phone 2. 35% families own either a car or a phone 3. 40,000 families live in the town Which of the above statements are correct ? (a) 1 and 2 (b) 1 and 3 (c) 2 and 3 (d) 1, 2 and 3 Out of 800 boys in a school, 224 played cricket, 240 played hockey and 336 played basketball. Of the total, 64 42. played both basketball and hockey; 80 played cricket and basketball and 40 played cricket and hockey; 24 played all the three games. The number of boys who did not play any game is (d) 160 (a) 128 (b) 216 (c) 240 A survey shows that 63% of the Americans like cheese whereas 76% like apples. If x% of the Americans like both 43. cheese and apples, then (a) x = 39(b) x = 63(c) $39 \le x \le 63$ (d) None of these 20 teachers of a school either teach mathematics or physics. 12 of them teach mathematics while 4 teach both 44. the subjects. Then the number of teachers teaching physics only is (a) 12 (b) 8 (c) 16 (d) None of these

45.	Of the members of three athletic teams in a school 21 are in the cricket team, 26 are in the hockey team and 29 are in the football team. Among them, 14 play hockey and cricket, 15 play hockey and football, and 12 pla football and cricket. Eight play all the three games. The total number of members in the three athletic teams is					
	(a) 43	(b) 76	(c) 49	(d) None of these		
46.	In a class of 100 studer Then the numbe [DCE 1993; ISM Dhanbad :	nts, 55 students have passed er of students w 1994]	in Mathematics and 67 stu ho have passed	idents have passed in Physics. in Physics only is		
	(a) 22	(b) 33	(c) 10	(d) 45		
47.	In a college of 300 stude no. of newspaper is	ents, every student reads 5 ne	ewspaper and every newspa	per is read by 60 students. The		
	(a) At least 30	(b) At most 20	(c) Exactly 25	(d) None of these		
				Laws of Algebra of Sets		
		Basic	Level			
48.	If A and B are two sets,	then $A \times B = B \times A$ iff				
	(a) $A \subseteq B$	(b) $B \subseteq A$	(c) $A = B$	(d) None of these		
49.	If A, B be any two sets, t	then $(A \cup B)'$ is equal to				
	(a) $A' \cup B'$	(b) $A' \cap B'$	(c) $A \cap B$	(d) $A \cup B$		
50.	If A and B be any two se	ts, then $(A \cap B)'$ is equal to				
	(a) $A' \cap B'$	(b) $A' \cup B'$	(c) $A \cap B$	(d) $A \cup B$		
51.	Let <i>A</i> and <i>B</i> be subsets of	of a set X. Then				
	(a) $A-B=A\cup B$	(b) $A-B=A \cap B$	(c) $A-B=A^c \cap B$	(d) $A-B=A\cap B^c$		
52.	Let A and B be two sets	in the universal set. Then $A-$	B equals			
	(a) $A \cap B^c$	(b) $A^c \cap B$	(c) $A \cap B$	(d) None of these		
53.	If A, B and C are any three sets, then $A - (B \cap C)$ is equal to					
	(a) $(A - B) \cup (A - C)$	(b) $(A - B) \cap (A - C)$	(c) $(A-B)\cup C$	(d) $(A - B) \cap C$		
54.	If <i>A</i> , <i>B</i> , <i>C</i> are three sets,	then $A \cap (B \cup C)$ is equal to				
	(a) $(A \cup B) \cap (A \cup C)$	(b) $(A \cap B) \cup (A \cap C)$	(c) $(A \cup B) \cup (A \cup C)$	(d) None of these		
				Cartesian Product of Sets		
		Basic	: Level			
55.	If $A = \{1, 2, 4\}, B = \{2, 4\}$	$\{1, 5\}, C = \{2, 5\}, \text{then } (A - B) \times$	(<i>B</i> – <i>C</i>) is			
	(a) {(1, 2), (1, 5), (2, 5)}	<pre>b) {(1, 4)}</pre>	(c) (1, 4)	(d) None of these		
56.	If (1, 3), (2, 5) and (3, 3) remaining elements of A	If (1, 3), (2, 5) and (3, 3) are three elements of $A \times B$ and the total number of elements in $A \times B$ is 6, then the remaining elements of $A \times B$ are				
	(a) (1, 5); (2, 3); (3, 5)	(b) (5, 1); (3, 2); (5, 3)	(c) (1, 5); (2, 3); (5, 3)	(d) None of these		
57.	Let $A = \{1, 2, 3, 4, 5\}; B$	$= \{2, 3, 6, 7\}$. Then the numb	er of elements in ($A \times B$) \cap	$(B \times A)$ is		
-	(a) 18	(b) 6	(c) 4	(d) 0		
58.	$A = \{1, 2, 3\}$ and $B = \{3,$	8}, then $(A \cup B) \times (A \cap B)$ is				

(a) {(3, 1), (3, 2), (3, 3), (3, 8)}(b) {(1, 3), (2, 3), (3, 3), (8, 3)}(c) {(1, 2), (2, 2), (3, 3), (8, 8)} (b) {(3, 3), (3,

(a) $\{(3, 2), (3, 3), (3, 5)\}$ (b) $\{(3, 2), (3, 5), (3, 6)\}$ (c) $\{(3, 2), (3, 5)\}$ (d) None of these

	Assignment (Advance & Basic Level)																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
d	b	с	b	d	b	a	с	a	b	b	a	с	b	b	a	a	b	a	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
a	с	d	a	с	b	b	с	a	d	a	a	a	с	с	a	с	с	b	a
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	
с	d	с	b	a	d	с	с	b	b	d	a	a	b	b	a	с	b	с	

1.2 Relations

В

1.2.1 Definition

Let *A* and *B* be two non-empty sets, then every subset of $A \times B$ defines a relation from *A* to *B* and every relation from *A* to *B* is a subset of $A \times B$.

Let $R \subseteq A \times B$ and $(a, b) \in R$. Then we say that *a* is related to *b* by the relation *R* and write it as a R b. If $(a,b) \in R$, we write it as a R b.

Example: Let $A = \{1, 2, 5, 8, 9\}$, $B = \{1, 3\}$ we set a relation from A to B as: $a \ R \ b$ iff $a \le b$; $a \in A, b \in B$. Then $R = \{(1, 1)\}, (1, 3), (2, 3)\} \subset A \times B$

(1) **Total number of relations :** Let *A* and *B* be two non-empty finite sets consisting of *m* and *n* elements respectively. Then $A \times B$ consists of *mn* ordered pairs. So, total number of subset of $A \times B$ is 2^{mn} . Since each subset of $A \times B$ defines relation from *A* to *B*, so total number of relations from *A* to *B* is 2^{mn} . Among these 2^{mn} relations the void relation ϕ and the universal relation $A \times B$ are trivial relations from *A* to *B*.

(2) **Domain and range of a relation :** Let *R* be a relation from a set *A* to a set *B*. Then the set of all first components or coordinates of the ordered pairs belonging to *R* is called the domain of *R*, while the set of all second components or coordinates of the ordered pairs in *R* is called the range of *R*.

Thus, Dom $(R) = \{a : (a, b) \in R\}$ and Range $(R) = \{b : (a, b) \in R\}$.

It is evident from the definition that the domain of a relation from *A* to *B* is a subset of *A* and its range is a subset of *B*.

(3) **Relation on a set :** Let *A* be a non-void set. Then, a relation from *A* to itself *i.e.* a subset of $A \times A$ is called a relation on set *A*.

(a p p) mb - total and have a faith at a slation of the total back and have the state of the sta

Example: 1	Let $A = \{1, 2, 3\}$. The total number of distinct relations that can be defined over A is							
	(a) 2 ⁹	, ((b) 6	(c) 8	(d) None of these			
Solution: (a)	$n(A \times A) = n(A).n(A) = 3^2 = 9$							
	So, the	e total number of su	bsets of $A \times A$ is 2^9 and a s	subset of $A \times A$ is a relat	ion over the set A.			
Example: 2	Let $X = \{1, 2, 3, 4, 5\}$ and $Y = \{1, 3, 5, 7, 9\}$. Which of the following is/are relations from X to Y							
	(a) <i>R</i> ₁	$y = \{(x, y) y = 2 + x, x \in \mathbb{Z}$	$X, y \in Y$	(b) $R_2 = \{(1,1), (2,1), (3,3), (3,$	(4,3),(5,5)}			
	(c) R ₃	$_{3} = \{(1,1), (1,3)(3,5), (3,7)\}$,(5,7)}	(d) $R_4 = \{(1,3), (2,5), (2,4), \dots, (2,5), (2,4), \dots, (2,5), (2,4), \dots, (2,5), \dots, (2,5)$	(7,9)}			
Solution: (a,b,	,c) R ₄	$_{4}$ is not a relation fr	om X to Y, because (7, 9) \in	R_4 but (7, 9) $\notin X \times Y$.				
Example: 3 is	Given	two finite sets <i>A</i> and	d B such that $n(A) = 2$, $n(A)$	B) = 3. Then total numb	er of relations from A to			

20 Set Theory and Relations	5
-----------------------------	---

	(a) 4	(b) 8	(c) 64	(d) None of these
Solution: (c)	Here $n(A \times B) = 2$	× 3 = 6		
	Since every subs number of subse	et of $A \times B$ defines a relat ts of $A \times B = 2^6 = 64$, which	tion from <i>A</i> to <i>B,</i> number of is given in (c).	f relation from <i>A</i> to <i>B</i> is equal to
Example: 4	The relation R de	fined on the set of natura	al numbers as {(a, b) : a dif	fers from <i>b</i> by 3}, is given by
	(a) {(1, 4, (2, 5),	(3, 6),} (b)	{(4, 1), (5, 2), (6	$(c){(1, 3), (2, 6), (3, 9), (2, 6), (3, 9), $
Solution: (b)	$R = \{(a,b) : a,b \in N\}$	$\{a-b=3\} = \{((n+3), n) : n \in \{(n+3), n\} : n \in \{(n+3), n\}$	N = {(4, 1), (5, 2), (6, 3)}	

1.2.2 Inverse Relation

Let *A*, *B* be two sets and let *R* be a relation from a set *A* to a set *B*. Then the inverse of *R*, denoted by R^{-1} , is a relation from *B* to *A* and is defined by $R^{-1} = \{(b, a) : (a, b) \in R\}$

Clearly $(a, b) \in R \Leftrightarrow (b, a) \in R^{-1}$. Also, Dom (R) = Range (R^{-1}) and Range (R) = Dom (R^{-1})

Example : Let $A = \{a, b, c\}, B = \{1, 2, 3\}$ and $R = \{(a, 1), (a, 3), (b, 3), (c, 3)\}.$

Then, (i) $R^{-1} = \{(1, a), (3, a), (3, b), (3, c)\}$

(ii) Dom (R) = {a, b, c} = Range (R^{-1})

(iii) Range $(R) = \{1, 3\} = \text{Dom } (R^{-1})$

 Example: 5
 Let $A = \{1, 2, 3\}, B = \{1, 3, 5\}. A$ relation $R: A \rightarrow B$ is defined by $R = \{(1, 3), (1, 5), (2, 1)\}.$ Then R^{-1} is defined by

 (a) $\{(1,2), (3,1), (1,3), (1,5)\}$ (b)
 $\{(1, 2), (3, 1), (2, 1)\}$ (c) $\{(1, 2), (5, 1), (3, 1)\}$ (d)

 Solution: (c)
 $(x, y) \in R \Leftrightarrow (y, x) \in R^{-1}, \therefore R^{-1} = \{(3,1), (5,1), (1,2)\}.$

 Example: 6
 The relation R is defined on the set of natural numbers as $\{(a, b) : a = 2b\}.$ Then R^{-1} is given by

 (a) $\{(2, 1), (4, 2), (6, 3), \dots\}$ (b)
 $\{(1, 2), (2, 4), (3, 6), \dots\}$ (c) R^{-1} is not defined (d)

 Solution: (b)
 $R = \{(2, 1), (4, 2), (6, 3), \dots\}$ So, $R^{-1} = \{(1, 2), (2, 4), (3, 6), \dots\}.$

1.2.3 Types of Relations

(1) **Reflexive relation :** A relation *R* on a set *A* is said to be reflexive if every element of *A* is related to itself.

Thus, *R* is reflexive \Leftrightarrow (*a*, *a*) \in *R* for all *a* \in *A*.

A relation *R* on a set *A* is not reflexive if there exists an element $a \in A$ such that $(a, a) \notin R$.

Example: Let $A = \{1, 2, 3\}$ and $R = \{(1, 1); (1, 3)\}$

Then *R* is not reflexive since $3 \in A$ but (3, 3) $\notin R$

Wole : \Box The identity relation on a non-void set *A* is always reflexive relation on *A*. However, a reflexive relation on *A* is not necessarily the identity relation on *A*.

□ The universal relation on a non-void set *A* is reflexive.

(2) Symmetric relation : A relation R on a set A is said to be a symmetric relation iff

 $(a, b) \in R \Rightarrow (b, a) \in R$ for all $a, b \in A$

i.e.

 $aRb \Rightarrow bRa$ for all $a, b \in A$.

it should be noted that *R* is symmetric iff $R^{-1} = R$

Wole : **D** The identity and the universal relations on a non-void set are symmetric relations.

□ A relation *R* on a set *A* is not a symmetric relation if there are at least two elements $a, b \in A$ such that $(a, b) \in R$ but $(b, a) \notin R$.

 \Box A reflexive relation on a set *A* is not necessarily symmetric.

(3)**Anti-symmetric relation :** Let *A* be any set. A relation *R* on set *A* is said to be an antisymmetric relation *iff* $(a, b) \in R$ and $(b, a) \in R \Rightarrow a = b$ for all $a, b \in A$.

Thus, if $a \neq b$ then a may be related to *b* or *b* may be related to *a*, but never both.

Example: Let *N* be the set of natural numbers. A relation $R \subseteq N \times N$ is defined by xRy iff *x* divides y(i.e., x/y).

Then x R y, $y R x \Rightarrow x$ divides y, y divides $x \Rightarrow x = y$

Note : \Box The identity relation on a set *A* is an anti-symmetric relation.

- □ The universal relation on a set *A* containing at least two elements is not antisymmetric, because if $a \neq b$ are in *A*, then *a* is related to *b* and *b* is related to *a* under the universal relation will imply that a = b but $a \neq b$.
- □ The set {(*a*, *a*): *a* ∈ *A*} = *D* is called the diagonal line of *A* × *A*. Then "the relation *R* in *A* is antisymmetric iff $R \cap R^{-1} \subseteq D$ ".

(4) **Transitive relation :** Let *A* be any set. A relation *R* on set *A* is said to be a transitive relation *iff*

 $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$ for all $a, b, c \in A$ *i.e.*, aRb and $bRc \Rightarrow aRc$ for all $a, b, c \in A$.

In other words, if *a* is related to *b*, *b* is related to *c*, then *a* is related to *c*.

Transitivity fails only when there exists *a*, *b*, *c* such that *a R b*, *b R c* but *a R c*.

Example: Consider the set $A = \{1, 2, 3\}$ and the relations

 $R_1 = \{(1, 2), (1, 3)\}; R_2 = \{(1, 2)\}; R_3 = \{(1, 1)\}; R_4 = \{(1, 2), (2, 1), (1, 1)\}$

Then R_1 , R_2 , R_3 are transitive while R_4 is not transitive since in R_4 , $(2, 1) \in R_4$; $(1, 2) \in R_4$ but $(2, 2) \notin R_4$.

Wole : **D** The identity and the universal relations on a non-void sets are transitive.

 \Box The relation 'is congruent to' on the set *T* of all triangles in a plane is a transitive relation.

(5) **Identity relation :** Let *A* be a set. Then the relation $I_A = \{(a, a) : a \in A\}$ on *A* is called the identity relation on *A*.

22 Set Theory and Relations

In other words, a relation I_A on A is called the identity relation if every element of A is related to itself only. Every identity relation will be reflexive, symmetric and transitive.

Example: On the set = $\{1, 2, 3\}$, $R = \{(1, 1), (2, 2), (3, 3)\}$ is the identity relation on A.

Vote : It is interesting to note that every identity relation is reflexive but every reflexive relation need not be an identity relation.

Also, identity relation is reflexive, symmetric and transitive.

- (6) **Equivalence relation :** A relation *R* on a set *A* is said to be an equivalence relation on *A*
- iff
 - (i) It is reflexive *i.e.* $(a, a) \in R$ for all $a \in A$

(ii) It is symmetric *i.e.* $(a, b) \in R \Rightarrow (b, a) \in R$, for all $a, b \in A$

- (iii) It is transitive *i.e.* $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$ for all $a, b, c \in A$.
- **Wole : Congruence modulo (m) :** Let *m* be an arbitrary but fixed integer. Two integers *a* and *b* are said to be congruence modulo *m* if a-b is divisible by *m* and we write $a \equiv b \pmod{m}$.

Thus $a \equiv b \pmod{m} \Leftrightarrow a - b$ is divisible by *m*. For example, $18 \equiv 3 \pmod{5}$ because 18 - 3 = 15 which is divisible by 5. Similarly, $3 \equiv 13 \pmod{2}$ because 3 - 13 = -10 which is divisible by 2. But $25 \neq 2 \pmod{4}$ because 4 is not a divisor of 25 - 3 = 22.

The relation "Congruence modulo m" is an equivalence relation.

Important Tips

 ${}^{\mathscr{F}}$ If R and S are two equivalence relations on a set A , then $R \cap S$ is also an equivalence relation on A.

The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.

The inverse of an equivalence relation is an equivalence relation.

1.2.4 Equivalence Classes of an Equivalence Relation

Let *R* be equivalence relation in $A \neq \phi$. Let $a \in A$. Then the equivalence class of *a*, denoted by [a] or $\{\overline{a}\}$ is defined as the set of all those points of *A* which are related to *a* under the relation *R*. Thus $[a] = \{x \in A : x R a\}$.

It is easy to see that

(1) $b \in [a] \Rightarrow a \in [b]$ (2) $b \in [a] \Rightarrow [a] = [b]$ (3) Two equivalence classes are either disjoint or identical.

As an example we consider a very important equivalence relation $x \equiv y \pmod{n}$ iff *n* divides (x - y), n is a fixed positive integer. Consider n = 5. Then

 $[0] = \{x : x \equiv 0 \pmod{5}\} = \{5p : p \in Z\} = \{0, \pm 5, \pm 10, \pm 15, \dots\}$

$[1] = \{x : x \equiv 1 \pmod{5}\} = \{x : x - 1 = 5k, k \in Z\} = \{5k + 1 : k \in Z\} = \{1, 6, 11, \dots, -4, -9, \dots\}.$							
One can easily see that there are only 5 distinct equivalence classes viz. [0], [1], [2], [3] and							
[4], when <i>n</i>	= 5.						
Example: 7	Given the relation $R = \{(1, 2), (2, 3)\}$ on the set $A = \{1, 2, 3\}$, the minimum number of ordered pairs which when added to R make it an equivalence relation is						
	(a) 5	(b) 6	(c) 7	(d) 8			
Solution: (c)	<i>R</i> is reflexive if it contai	ns (1, 1), (2, 2), (3, 3)					
	$\therefore (1,2) \in R, (2,3) \in R$						
	\therefore <i>R</i> is symmetric if (2, 1)	.), (3, 2) $\in R$. Now, $R = \{(1, 1)\}$	1), (2, 2), (3, 3), (2, 1), (3, 2), (2,	3),(1,2)}			
	<i>R</i> will be transitive if (3 (3, 3) (2, 1) (3,2) (1, 3)	, 1); (1, 3) ∈ <i>R</i> . Thus, <i>R</i> bec (3, 1). Hence, the total num	omes an equivalence rela ber of ordered pairs is 7	ation by adding (1, 1) (2, 2)			
Example: 8	The relation $R = \{(1, 1),$	(2, 2), (3, 3), (1, 2), (2, 3),	$(1, 3)$ on set $A = \{1, 2, 3\}$	} is			
	(a) Reflexive but not syn	nmetric	(b)	Reflexive but not			
transitive							
	(c) Symmetric and Tran nor transitive	sitive		(d) Neither symmetric			
Solution: (a)	Since (1, 1); (2, 2); (3, symmetric. It can be eas	3) $\in R$ therefore R is reflection reflection and the reflection of the reflection	exive. (1, 2) $\in R$ but (2, e.	1) \notin <i>R</i> , therefore <i>R</i> is not			
Example: 9	Let <i>R</i> be the relation on	the set <i>R</i> of all real numbe	rs defined by $a R b$ iff a	$-b \leq 1$. Then <i>R</i> is			
	(a) Reflexive and Symm	etric (b)	Symmetric only	(c) Transitive only (d)			
Solution: (a)	$ a-a = 0 < 1 \therefore a R a \forall a \in K$	2					
	\therefore <i>R</i> is reflexive, Again	$\mathbf{n} \ \mathbf{a} \ \mathbf{R} \ \mathbf{b} \Rightarrow \ a - b \le 1 \Rightarrow b - a \le$	$1 \Rightarrow bRa$				
	\therefore <i>R</i> is symmetric, Agai	n $1R\frac{1}{2}$ and $\frac{1}{2}R1$ but $\frac{1}{2} \neq 1$					
	\therefore <i>R</i> is not anti-symmetr	ic					
	Further, $1 R 2$ and $2 R 3$	but 1 R 3					
	[:: 1-3 =2>1]						
	\therefore <i>R</i> is not transitive.						
Example: 10 [UPSEAT 1994, 9	The relation "less than" 98; AMU 1999]	in the set of natural number	ers is				
	(a) Only symmetric	(b) Only transitive	(c) Only reflexive	(d) Equivalence relation			
Solution: (b)	Since $x < y, y < z \Rightarrow x < z \neq$	$x, y, z \in N$					
	$\therefore x R y, y R z \Rightarrow x R z$, \therefore symmetric.	Relation is transitive ,	$\therefore x < y$ does not give	$y < x$, \therefore Relation is not			
	Since $x < x$ does not hole	d, hence relation is not refl	exive.				
Example: 11	With reference to a univ	ersal set, the inclusion of a	a subset in another, is rel	ation, which is			
	(a) Symmetric only	(b) Equivalence relation	(c) Reflexive only	(d) None of these			

Set Theory and Relations

Solution: (d)) Since $A \subseteq A$: relation ' \subseteq ' is reflexive.								
	Since $A \subseteq B$, $B \subseteq C \Rightarrow A$	$\subseteq C$							
	\therefore relation ' \subseteq ' is transi	tive.							
	But $A \subseteq B$, $\not\Rightarrow B \subseteq A$, \therefore	Relation is not symmetric	2.						
Example: 12	Let $A = \{2, 4, 6, 8\}$. A rela	tion R on A is defined by	$R = \{(2,4), (4,2), (4,6), (6,4)\}.$	Then R is					
	(a) Anti-symmetric	(b) Reflexive	(c) Symmetric	(d) Transitiv	e				
Solution: (c)	Given $A = \{2, 4, 6, 8\}$								
	$R = \{(2, 4)(4, 2) \ ($	4, 6) (6, 4)}							
	$(a, b) \in R \Rightarrow (b, a) \in R$	and also $R^{-1} = R$. Hence R	is symmetric.						
Example: 13	Let $P = \{(x, y) x^2 + y^2 = 1,$	$x, y \in R$ }. Then <i>P</i> is							
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) Anti-sym	metric				
Solution: (b)	Obviously, the relat	ion is not reflexive	and transitive but it	is symmetr	ic, because				
$x^2 + y^2 = 1 \Longrightarrow y^2 -$	$+x^{2}=1$.								
Example: 14 Then <i>R</i> is	Let <i>R</i> be a relation on	the set N of natural numb	pers defined by $nRm \Leftrightarrow n$	is a factor of <i>n</i>	ı (i.e., n m).				
	(a) Reflexive and symm symmetric	netric	(b)	Transitive	and				
	(c) Equivalence		(d) Reflexive, transit	ive but not sym	metric				
Solution: (d)	Since $n \mid n$ for all $n \in N$, therefore <i>R</i> is reflexive.	Since $2/ 6$ but $6 2$, there	fore <i>R</i> is not sy	mmetric.				
	Let <i>n R m</i> and <i>m R p</i> \Rightarrow	$n m$ and $m p \Rightarrow n p \Rightarrow nRp$	o. So R is transitive.						
Example: 15 pairs in <i>R</i> is	Let <i>R</i> be an equivalen	ce relation on a finite set	A having <i>n</i> elements. T	hen the numbe	r of ordered				
	(a) Less than <i>n</i>	(b) Greater than or equ	al to n (c)	Less than or	equal to <i>n</i> (d)				
Solution: (b) ordered pairs.	Since <i>R</i> is an equivalent	nce relation on set A, ther	refore (a, a) $\in R$ for all a	$\in A$. Hence, R h	as at least n				
Example: 16	Let <i>N</i> denote the set of $ad(b+c) = bc(a+d)$, then	all natural numbers and <i>l</i> <i>R</i> is	R be the relation on $N \times N$	defined by (a,	b) R (c, d) if Roorkee 1995]				
	(a) Symmetric only relation	(b) Reflexive only	(c) Transitive only	(d) An	equivalence				
Solution: (d)	For (a, b) , $(c, d) \in N \times R$	V							
	$(a,b)R(c,d) \Longrightarrow ad(b+c) = bc$	(a+d)							
	Reflexive: Since $ab(b + b)$	$a) = ba(a+b) \forall ab \in N$,							
	\therefore (<i>a</i> , <i>b</i>) <i>R</i> (<i>a</i> , <i>b</i>), \therefore <i>R</i> is ref	lexive.							
	Symmetric: For (a,b),(c,	$(d) \in N \times N$, let $(a,b)R(c,d)$							
	$\therefore ad(b+c) = bc(a+d) \implies bc(a+d) = ad(b+c) \implies cb(d+a) = da(c+b) \implies (c,d)R(a,b)$								
	\therefore <i>R</i> is symmetric								
	Transitive: For $(a,b), (c,d), (e,f) \in N \times N$, Let $(a,b)R(c,d), (c,d)R(e,f)$								
	$\therefore ad(b+c) = bc(a+d), cf(a+d)$	(d+e) = de(c+f)							

	$\Rightarrow adb + adc = bca + bcd$	(i) and cf	$d^{2} + cfe = dec + def$	(ii)
	(i) \times ef + (ii) \times ab gives	, adbef + adcef + cfdab + cfeab	= bcaef + bcdef + decab +	- defab
	$\Rightarrow adcf(b+e) = bcde(a+f)$	$\Rightarrow af(b+e) = be(a+f) \Rightarrow$	$(a,b)R(e,f)$. \therefore R is t	ransitive. Hence <i>R</i> is an
	equivalence relation.			
Example: 17	For real numbers x and	<i>y</i> , we write $x Ry \Leftrightarrow x - y + c$	$\sqrt{2}$ is an irrational num	ber. Then the relation R is
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these
Solution: (a)	For any $x \in R$, we have $x \in R$	$x - x + \sqrt{2} = \sqrt{2}$ an irrational	number.	
	\Rightarrow <i>xRx</i> for all <i>x</i> . So, <i>R</i> is	reflexive.		
	R is not symmetric, bec	cause $\sqrt{2}RY$ but $1R\sqrt{2}$, R	is not transitive also	because $\sqrt{2} R \cancel{1}$ and $1R2\sqrt{2}$
	but $\sqrt{2} R 2 \sqrt{2}$.			
Example: 18	Let <i>X</i> be a family of sets	and R be a relation on X d	efined by 'A is disjoint	from B'. Then R is
-	(a) Reflexive	(b) Symmetric	(c) Anti-symmetric	(d) Transitive
Solution: (b)	Clearly, the relation is s	ymmetric but it is neither 1	eflexive nor transitive.	
Example: 19	Let <i>R</i> and <i>S</i> be two non-v	void relations on a set A. W	hich of the following s	tatements is false
	(a) <i>R</i> and <i>S</i> are transitiv	$e \Rightarrow R \cup S$ is transitive	(b) R and S are trans	sitive $\Rightarrow R \cap S$ is transitive
	(c) <i>R</i> and <i>S</i> are symmetric	$\operatorname{ric} \Rightarrow R \cup S$ is symmetric	(d) R and S are refle	xive \Rightarrow $R \cap S$ is reflexive
Solution: (a)	Let $A = \{1, 2, 3\}$ and $R = \{0, 1, 2, 3\}$	$\{1, 1\}, (1, 2)\}, S = \{(2, 2) (2)\}$, 3)} be transitive relat	ions on A.
	Then $R \cup S = \{(1, 1); (1, 2)\}$	2); (2, 2); (2, 3)}		
	Obviously, $R \cup S$ is not the	ransitive. Since $(1, 2) \in R$	$\cup S$ and $(2,3) \in R \cup S$ but	t(1,3) $\notin R \cup S$.
Example: 20	The solution set of $8x = 6$	$6 \pmod{14}, x \in \mathbb{Z}$, are		
	(a) [8]∪[6]	(b) [8] U [14]	(c) [6]∪[13]	(d) [8]∪[6]∪[13]
Solution: (c)	$8x - 6 = 14 P(P \in Z) \implies x =$	$=\frac{1}{8}[14P+6], x \in \mathbb{Z}$		
	$\Rightarrow x = \frac{1}{4}(7P+3) \Rightarrow x =$	6, 13, 20, 27, 34, 41, 48,		
	\therefore Solution set = {6, 20,	34, 48,} \cup \{13, 27, 41,	} = [6] \cup [13].	
	Where [6], [13] are equi	valence classes of 6 and 13	respectively.	

1.2.5 Composition of Relations

Let *R* and *S* be two relations from sets *A* to *B* and *B* to *C* respectively. Then we can define a relation *SoR* from *A* to *C* such that $(a, c) \in SoR \Leftrightarrow \exists b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$.

This relation is called the composition of *R* and *S*.

For example, if $A = \{1, 2, 3\}$, $B = \{a, b, c, d\}$, $C = \{p, q, r, s\}$ be three sets such that $R = \{(1, a), (2, c), (1, c), (2, d)\}$ is a relation from *A* to *B* and $S = \{(a, s), (b, q), (c, r)\}$ is a relation from *B* to *C*. Then *SoR* is a relation from *A* to *C* given by *SoR* = $\{(1, s), (2, r), (1, r)\}$

In this case *RoS* does not exist.

26 Set Theory and Relations

In general $RoS \neq SoR$. Also $(SoR)^{-1} = R^{-1}oS^{-1}$. **Example: 21** If *R* is a relation from a set *A* to a set *B* and *S* is a relation from *B* to a set *C*, then the relation *SoR* (a) Is from A to C (b) Is from C to A (c) Does not exist (d) None of these **Solution:** (a) It is obvious. **Example: 22** If $R \subset A \times B$ and $S \subset B \times C$ be two relations, then $(SoR)^{-1} =$ (b) $R^{-1}oS^{-1}$ (a) $S^{-1}oR^{-1}$ (c) *SoR* (d) *RoS* **Solution:** (b) It is obvious. **Example: 23** If R be a relation < from $A = \{1, 2, 3, 4\}$ to $B = \{1, 3, 5\}$ *i.e.*, $(a, b) \in R \Leftrightarrow a < b$, then RoR^{-1} is (a) $\{(1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5)\}$ (b) $\{(3, 1), (5, 1), (3, 2), (5, 2), (5, 3), (5, 4)\}$ (c) $\{(3, 3), (3, 5), (5, 3), (5, 5)\}$ (d) $\{(3, 3), (3, 4), (4, 5)\}$ **Solution:** (c) We have, $R = \{(1, 3); (1, 5); (2, 3); (2, 5); (3, 5); (4, 5)\}$ $R^{-1} = \{(3, 1), (5, 1), (3, 2), (5, 2); (5, 3); (5, 4)\}$ Hence $RoR^{-1} = \{(3, 3); (3, 5); (5, 3); (5, 5)\}$ **Example: 24** Let a relation R be defined by $R = \{(4, 5); (1, 4); (4, 6); (7, 6); (3, 7)\}$ then $R^{-1} \circ R$ is (a) $\{(1, 1), (4, 4), (4, 7), (7, 4), (7, 7), (3, 3)\}$ (b) $\{(1, 1), (4, 4), (7, 7), (3, 3)\}$ (c) $\{(1, 5), (1, 6), (3, 6)\}$ (d) None of these **Solution:** (a) We first find R^{-1} , we have $R^{-1} = \{(5,4); (4,1); (6,4); (6,7); (7,3)\}$ we now obtain the elements of $R^{-1}oR$ we first pick the element of R and then of R^{-1} . Since $(4,5) \in R$ and $(5,4) \in R^{-1}$, we have $(4,4) \in R^{-1}oR$ Similarly, $(1,4) \in R, (4,1) \in R^{-1} \Longrightarrow (1,1) \in R^{-1} oR$ $(4,6) \in R, (6,4) \in R^{-1} \Rightarrow (4,4) \in R^{-1} oR,$ $(4,6) \in R, (6,7) \in R^{-1} \Rightarrow (4,7) \in R^{-1} oR$

$$(7,6) \in R, (6,4) \in R^{-1} \Rightarrow (7,4) \in R^{-1} oR,$$
 $(7,6) \in R, (6,7) \in R^{-1} \Rightarrow (7,7) \in R^{-1} oR$

 $(3,7) \in R, (7,3) \in R^{-1} \Longrightarrow (3,3) \in R^{-1}oR$

Hence $R^{-1}oR = \{(1, 1); (4, 4); (4, 7); (7, 4), (7, 7); (3, 3)\}.$

1.2.6 Axiomatic Definitions of the Set of Natural Numbers (Peano's Axioms)

The set *N* of natural numbers ($N = \{1, 2, 3, 4.....\}$) is a set satisfying the following axioms (known as peano's axioms)

(1) N is not empty.

(2) There exist an injective (one-one) map $S: N \to N$ given by $S(n) = n^+$, where n^+ is the immediate successor of n in N i.e., $n + 1 = n^+$.

(3) The successor mapping *S* is not surjective (onto).

(4) If $M \subseteq N$ such that,

(i) M contains an element which is not the successor of any element in N, and

(ii) $m \in M \Rightarrow m^+ \in M$, then M = N

This is called the axiom of induction. We denote the unique element which is not the successor of any element is 1. Also, we get $1^+ = 2, 2^+ = 3$.

Note : Addition in *N* is defined as,

$$n+1 = n^+$$
$$n+m^+ = (n+m)^+$$

 \Box Multiplication in *N* is defined by,

$$n \cdot 1 = n$$
$$n \cdot m^+ = n \cdot m + n$$

				Relations
		Basi	c Level	
1.	A relation from <i>P</i> to <i>Q</i> i	s		[AMU 1998]
	(a) A universal set of P	$\times Q(b) P \times Q$	(c) An equivalent set of	$P \times Q$ (d) A subset of $P \times Q$
2.	Let <i>R</i> be a relation from	a set A to set B, then		
	(a) $R = A \cup B$	(b) $R = A \cap B$	(c) $R \subseteq A \times B$	(d) $R \subseteq B \times A$
3.	Let <i>A</i> = { <i>a</i> , <i>b</i> , <i>c</i> } and <i>B</i> =	{1, 2}. Consider a relation <i>R</i>	defined from set A to set B.	Then <i>R</i> is equal to set[Kurukshetra
	(a) <i>A</i>	(b) <i>B</i>	(c) $A \times B$	(d) $B \times A$
4.	Let $n(A) = n$. Then the n	number of all relations on A is	3	
	(a) 2 ^{<i>n</i>}	(b) $2^{(n)!}$	(c) 2^{n^2}	(d) None of these
5.	If <i>R</i> is a relation from a relations from <i>A</i> to <i>B</i> is	a finite set A having m eleme	nts to a finite set <i>B</i> having a	n elements, then the number of
	(a) 2^{mn}	(b) $2^{mn} - 1$	(c) 2mn	(d) <i>m</i> ^{<i>n</i>}
6.	Let <i>R</i> be a reflexive rela	tion on a finite set A having	n-elements, and let there be	m ordered pairs in R. Then
	(a) $m \ge n$	(b) $m \leq n$	(c) $m=n$	(d) None of these
7.	The relation <i>R</i> defined of	on the set $A = \{1, 2, 3, 4, 5\}$ by	$y R = \{(x, y) : x^2 - y^2 < 16\}$ is	s given by
	(a) {(1, 1), (2, 1), (3, 1),	(4, 1), (2, 3)	(b) {(2, 2), (3, 2), (4, 2)), (2, 4)}
	(c) $\{(3, 3), (3, 4), (5, 4)\}$	(4, 3), (3, 1)	(d) None of these	
8.	A relation <i>R</i> is defined fi	rom {2, 3, 4, 5} to {3, 6, 7, 10}	by; $xRy \Leftrightarrow x$ is relatively pr	ime to y. Then domain of R is
	(a) {2, 3, 5}	(b) {3, 5}	(c) {2, 3, 4}	(d) {2, 3, 4, 5}
9.	Let R be a relation on N	defined by $x + 2y = 8$. The do	main of R is	
	(a) {2, 4, 8}	(b) {2, 4, 6, 8}	(c) {2, 4, 6}	(d) {1, 2, 3, 4}
10.	If $R = \{(x, y) x, y \in Z, x^2 + y\}$	$v^2 \leq 4$ } is a relation in Z, then	domain of <i>R</i> is	
	(a) {0, 1, 2}	(b) {0, -1, -2}	(c) $\{-2, -1, 0, 1, 2\}$	(d) None of these
11.	If $A = \{1, 2, 3\}$, $B = \{1, 4\}$	4, 6, 9} and <i>R</i> is a relation fr	om A to B defined by 'x is gr	eater than y . The range of R is
	(a) {1, 4, 6, 9}	(b) {4, 6, 9}	(c) {1}	(d) None of these
12.	<i>R</i> is a relation from {11,	12, 13} to {8, 10, 12} defined	by $y = x - 3$. Then R^{-1} is	
	(a) {(8, 11), (10, 13)}	(b) {(11, 18), (13, 10)}	(c) {(10, 13), (8, 11)}	(d) None of these

13.	Let $A = \{1, 2, 3\}, B = \{1, 3, $	5}. If relation <i>R</i> from <i>A</i> to <i>B</i> is	s giv	en by $R = \{(1, 3), (2, 5),$	(3, 3)}. The	n R^{-1} is	
	(a) {(3, 3), (3, 1), (5, 2)}	(b) {(1, 3), (2, 5), (3, 3)}	(c)	$\{(1, 3), (5, 2)\}$	(d) None o	f these	
14.	Let <i>R</i> be a reflexive relation	on on a set A and I be the ident	tity ı	relation on A. Then			
	(a) $R \subset I$	(b) $I \subset R$	(c)	R = I	(d) None o	f these	
15.	Let $A = \{1, 2, 3, 4\}$ and R b Then R is	be a relation in A given by R =	= {(1	, 1), (2, 2), (3, 3), (4, 4)	, (1, 2), (2,	1), (3, 1), (1,	3)}.
	(a) Reflexive	(b) Symmetric	(c)	Transitive	(d) An equ	ivalence rela	ation
16.	An integer m is said to be	related to another integer <i>n</i> if	m is	s a multiple of <i>n</i> . Then t	he relation i	S	
	(a) Reflexive and symmetry transitive	ric (b) (d) Equivalence relation	Ref	lexive and transitive	(c) Symme	etric	and
17.	The relation <i>R</i> defined in <i>N</i>	N as $aRb \Leftrightarrow b$ is divisible by a is	is				
	(a) Reflexive but not symm	netric	(b)	Symmetric but not tran	nsitive		(c)
18.	Let <i>R</i> be a relation on a set	t A such that $R = R^{-1}$, then R i	is				
	(a) Reflexive	(b) Symmetric	(c)	Transitive	(d) None o	f these	
19.	Let $R = \{(a, a)\}$ be a relation	on on a set A. Then R is					
	(a) Symmetric		(b)	Antisymmetric			
	(c) Symmetric and antisyn anti-symmetric	nmetric		(d)	Neither	symmetric	nor
20.	The relation "is subset of"	on the power set $P(A)$ of a set	tA i	S			
	(a) Symmetric	(b) Anti-symmetric	(c)	Equivalency relation	(d) None o	f these	
21.	The relation <i>R</i> defined on a	a set <i>A</i> is antisymmetric if (<i>a</i> ,	$b) \in I$	$R \Rightarrow (b,a) \in R$ for			
	(a) Every $(a, b) \in \mathbb{R}$	(b) No $(a,b) \in R$	(c)	No $(a,b), a \neq b, \in R$	(d) None o	f these	
22.	In the set $A = \{1, 2, 3, 4, 5\}$	}, a relation <i>R</i> is defined by <i>R</i>	= {(;	$(x, y) \mid x, y \in A \text{ and } x < y$	}. Then R is		
	(a) Reflexive	(b) Symmetric	(c)	Transitive	(d) None o	f these	
23.	Let <i>A</i> be the non-void set of	of the children in a family. The	e rela	ation 'x is a brother of y	' on A is		
	(a) Reflexive	(b) Symmetric	(c)	Transitive	(d) None o	f these	
24.	Let $A = \{1, 2, 3, 4\}$ and let	$R = \{(2, 2), (3, 3), (4, 4), (1, 2)\}$)} be	a relation on A. Then R	is		
	(a) Reflexive	(b) Symmetric	(c)	Transitive	(d) None o	f these	
25.	The void relation on a set .	A is					
	(a) Reflexive	(b) Symmetric and transitive	e(c)	Reflexive and symmetr	ric (d)Refl	exive and tr	ansitive
26.	Let R_1 be a relation define	ed by $R_1 = \{(a,b) a \ge b, a, b \in R\}$.	Then	R_1 is			
	(a) An equivalence relatio not symmetric	n on R		(b)	Reflexive,	transitive	but
	(c) Symmetric, Transitive	but not reflexive	(d)	Neither transitive not	reflexive bu	t symmetric	
27.	Let $A = \{p, q, r\}$. Which of	the following is an equivalence	ce re	lation on A			
	(a) $R_1 = \{(p, q), (q, r), (p, q)\}$	r), (p, p)}	(b)	$R_2 = \{(r, q), (r, p), (r, p$	r), (q, q)}		
	(c) $R_3 = \{(p, p), (q, q), (r, q)\}$	$r), (p, q)\}$	(d)	None of these			
28.	Which one of the following	g relations on <i>R</i> is an equivale	ence	relation			
	(a) $aR_1b \Leftrightarrow a \neq b $	(b) $aR_2b \Leftrightarrow a \ge b$	(c)	$aR_3b \Leftrightarrow a \text{ divides } b$	(d) $aR_4b \Leftrightarrow$	a < b	

29. If *R* is an equivalence relation on a set *A*, then R^{-1} is

30	Set Theory and Relatio	ns						
	(a) Reflexive only	(b) Symmetric but not tran	sitive (c)	Equivalence (d)				
30.	R is a relation over the	set of real numbers and it is giv	ven by $nm \ge 0$. Then R is					
	(a) Symmetric and tran	sitive (b)	Reflexive and symmetric	(c) A partial order relation(
31.	In order that a relation	R defined on a non-empty set A	is an equivalence relation,	it is sufficient, if <i>R</i>				
	(a) Is reflextive		(b) Is symmetric					
	(c) Is transitive		(d) Possesses all the abov	e three properties				
32.	The relation "congruence	ce modulo <i>m</i> " is						
	(a) Reflexive only	(b) Transitive only	(c) Symmetric only	(d) An equivalence relation				
33.	Solution set of $x \equiv 3$ (m	od 7), $x \in Z$, is given by						
	(a) {3}	(b) $\{7p-3: p \in Z\}$	(c) $\{7p+3: p \in Z\}$	(d) None of these				
34.	Let <i>R</i> and <i>S</i> be two equivalence relations on a set <i>A</i> . Then							
	(a) $R \cup S$ is an equivale	nce relation on A	(b) $R \cap S$ is an equivalence	e relation on A				
	(c) $R-S$ is an equivale	nce relation on A	(d) None of these					
35.	Let <i>R</i> and <i>S</i> be two relat	ions on a set A. Then						
	(a) R and S are transiti	ve, then $R \cup S$ is also transitive	(b) R and S are transitive	, then $R \cap S$ is also transitive				
	(c) <i>R</i> and <i>S</i> are reflexiv symmetric	e, then $R \cap S$ is also reflexive	(d) R and S are symm	netric then $R \cup S$ is also				
36.	Let $R = \{(1, 3), (2, 2), (3,$	$\{3, 2\}$ and $S = \{(2, 1), (3, 2), (2, 3)\}$	3)} be two relations on set A	$A = \{1, 2, 3\}$. Then $RoS =$				
	(a) {(1, 3), (2, 2), (3, 2)	, (2, 1), (2, 3)}	(b) {(3, 2), (1, 3)}					
	(c) {(2, 3), (3, 2), (2, 2)	}	(d) {(2, 3), (3, 2)}					
37.	In problem 36, $RoS^{-1} =$							
	(a) {(2, 2), (3, 2) (2, 3)}	(b) {(1, 2), (2, 2), (3, 2)}	(c) {(1, 2), (2, 2)}	(d) {(1, 2), (2, 2), (3, 2),				

Advance Level

38.	Let R be a relation on the set N be defined by $\{(x, y) \mid x, y \in N, 2x + y = 41\}$. Then R is						
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these			
39.	Let <i>L</i> denote the set of all s	straight lines in a plane. Let a	relation R be defined by αR	$R\beta \Leftrightarrow \alpha \perp \beta, \alpha, \beta \in L$. Then <i>R</i> is			
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these			
40.	Let <i>T</i> be the set of all the $a \approx b, a, b \in T$. Then <i>R</i> is	riangles in the Euclidean pla	ane, and let a relation R	be defined on <i>T</i> by <i>aRb</i> iff			
	(a) Reflexive but not trans	sitive(b)	Transitive but not symmet	ric (c) Equivalence			
41.	Two points <i>P</i> and <i>Q</i> in a pla	ane are related if $OP = OQ$, where $OP = OQ$, where $OQ = OQ$, $OQ = OQ$	nere O is a fixed point. This	relation is			
	(a) Partial order relation	(b) Equivalence relation	(c) Reflexive but not symm	metric (d)			
42.	Let <i>r</i> be a relation over the	e set $N \times N$ and it is defined by	$a(a,b)r(c,d) \Longrightarrow a+d=b+c$. The	en r is			
	(a) Reflexive only	(b) Symmetric only	(c) Transitive only	(d) An equivalence relation			
43.	Let <i>L</i> be the set of all straig relation <i>R</i> iff l_1 is parallel	ght lines in the Euclidean plan to l_2 . Then the relation <i>R</i> is	ne. Two lines l_1 and l_2 are s	said to be related by the			
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) Equivalence			

Set Theory and Relations **31**

44.	• Let <i>n</i> be a fixed positive integer. Define a relation <i>R</i> on the set <i>Z</i> of integers by, $aRb \Leftrightarrow n a-b $. Then <i>R</i> is							
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) Equivalence				

Answer Sheet

()	Answer Sheet (Advance & Basic Level)																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
d	с	с	с	a	a	d	d	с	с	с	a	a	b	a,b	b	a	b	с	b
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	3 6	37	38	39	40
с	с	b,c	с	b	b	d	а	с	d	d	d	С	b	b,c,d	с	b	d	b	С
41	42	43	44																
b	d	a,b	a,b																
		,с, d	,с, d																