	MANOFACTORING T						
of Questions 35				Time:60 min.			
• •	: Select the correct alterna-	10.	Best accuracy in a hole on				
the given choices.			(A) Drilling(C) Broaching	(B) Reaming(D) Boring			
eel with 0.8% carbon is		11		() U			
Hypo – eutectoid steel Hyper – eutectoid stee		11.	(A) Copper	ning (<i>EDM</i>), tool is made of (B) High speed steel			
Eutectoid steel	1		(C) Cast iron	(D) Plain carbon steel			
Eutectic steel		12.		ning process, the electrolyte			
lite consists of			used is	8 F,,			
88% ferrite and 12% c			(A) Kerosene	(B) Water			
88% cementite and 129			(C) Air	(D) Brine solution			
6.67% carbon and 93.3 4.3% carbon and 95.7%		13.		n an auto collimater can be			
			used for checking	(\mathbf{D}) Alignment			
	1 steels 30°C above upper oaking at that temperature		(A) Parallelism(C) Surface finish	(B) Alignment(D) Circularity			
1	room temperature to form a			-0.008			
lite and ferrite structure	*	14.	The dimension of a shaft	is $\varphi 40^{-0.020}$ Fundamental			
Hardening	(B) Normalizing		deviation and tolerance are				
Tempering	(D) Annealing		(A) - 0.008, 0.012	(B) - 0.020, 0.012			
-	en metal are prevented from		(C) - 0.010, 0.030	(D) $-0.010, 0.030$			
hing the mould cavity b	• • •	15.	e	statements regarding NC			
Strainer Skim bob	(B) Bottom well(D) Choke		machine tools	1 .· .·			
	for producing short length		 They reduce non – productive time They reduce fixturing 				
allic seamless tubes are	for producing short length		 They reduce installing They reduce maintena 				
ect using the codes)			The correct statements are				
Drawing	2: Extrusion		(A) 1 and 2	(B) 1 and 3			
Rolling	4: Spinning		(C) 2 and 3	(D) 1, 2 and 3			
1 and 3	(B) 2 and 3	16.	•	f 25 cm diameter has 50 cm			
1, 3 and 4	(D) 2, 3 and 4		- ·	l riser (B) has 50 cm diam-			
resistance welding			eter and 25 cm height. Ratio of solidification times of riser A is				
Voltage is high and cur			(A) 1.25	(B) 1.5			
Voltage is low and curr	•		(C) 1.625	(D) 1.675			
Both voltage and curre		17.	A down sprue of length 20	00 mm has a diameter of 30			
Both voltage and curre	e		mm at the top end. In the p	pouring cup the liquid metal			
	is the angle made by shear			60 mm from the down sprue			
e with Direction of tool travel			-	quid metal, bottom diameter			
Direction of tool axis			of the down sprue is (A) 18.7 mm	(B) 19.3 mm			
Central plane of work	piece		(C) 20.8 mm	(D) 21.2 mm			
Perpendicular tool axis		18.		t in a single pass rolling mill			
erial used for lathe bed		10.	1	to 3 mm. If roll diameter is			
Mild steel	(B) Tool steel		300 mm, angle of bite and	•			
Cast iron	(D) Cast steel		(A) 3.22°, 11.5 mm	(B) 4.68°, 12.25 mm			
hinability depends on			(C) 4.93°, 12.75 mm	(D) 5.14°, 13.25 mm			
	al properties of work piece	19.		to be punched in a steel sheet			
Cutting force				trength of the material is 400			
Type of chip			N/mm ² . If 2 mm shear is provided on the punch, required to punch the hole is (Assume 40% penetra				

MANUFACTURING TECHNOLOGY TEST 2

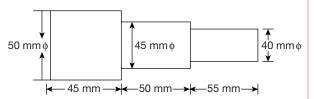
Number o

Directions tive from

- 1. A stee
 - (A) I
 - (B) H
 - (C) E
 - (D) E
- 2. Pearli
 - (A) 8
 - (B) 8
 - (C) 6
 - (D) 4
- 3. Heatin critica and th pearli
 - (A) I
 - (C)]
- 4. Light reachi
 - (A) S
 - (C) S
- 5. Metho metal

(Selec

1:	Drawing	2:	Extrusion
3:	Rolling	4:	Spinning
(A)	1 and 3	(B)	2 and 3
(C)	1, 3 and 4	(D)	2, 3 and 4


- 6. For re
 - (A)
 - (B) V
 - (C) E
 - (D) E
- 7. In met plane
 - (A) I
 - (B) I
 - (C) C
 - (D) P
- 8. Mater
 - (A) N
 - (C) C
- 9. Mach
 - (A) F
 - (B) C
 - (C)]
 - (D) Tool life

- al
- C
- m nof
- 30 al ıe er
- i11 is
- et)() e required to punch the hole is (Assume 40% penetration).

Manufacturing Technology Test 2 | 3.197

(A)	20.92 kN	(B)	22.62 kN
(C)	24.24 kN	(D)	26.81 kN

- 20. Diameter of a steel wire is reduced from 9 mm to 7 mm by wiredrawing process. If mean flow stress of the material is 400 N/m², the ideal drawing force required is (A) 7.74 kN
 (B) 7.98 kN
 - (C) 8.15 kN (D) 8.36 kN
- 21. A shell of 100 mm diameter and height 120 mm with corner radius 6 mm is to be produced by cup drawing process. The minimum blank diameter required is
 (A) 218.74 mm
 (B) 236.22 mm
 (C) 240.83 mm
 (D) 248.24 mm
- **22.** In arc welding of a butt joint, area of weld cross section is 6 mm² and energy required to melt metal is 12 J/mm³. If power consumed is 2.2 kW, melting efficiency and heat transfer efficiency are 0.6 and 0.7 respectively, welding speed in mm/s is
 - (A) 12.83(B) 14.12(C) 14.92(D) 15.05
- 23.

A stepped shaft is to be turned from a shaft from a shaft of 50 mm ϕ in a lathe. Feed and depth of cut used are 0.3 mm/rev and 2.5 mm respectively. If the cutting speed is 20 m/min, the machining time required is

(A)	3.24 min	(B)	3.63 min
(C)	3.86 min	(D)	4.46 min

24. In a turning operation the cutting tool used has a rake angle of 10°. Coefficient of friction between tool and chip can be taken as 0.6. For minimum cutting force, the value of shear plane angle is

(A)	24.04°	(B)	29.86°
(\mathbf{C})	22 150	(\mathbf{D})	24 5 20

- (C) 32.15° (D) 34.52°
- **25.** In a turning operation tool life of 85 minutes is obtained at a cutting speed of 25 m/min and 10 minutes at a cutting speed of 55 m/min. Cutting speed corresponding to a tool life of 5 minutes will be
 - (A) 71 m/min (B) 75 m/min

(C)	82 m/min	(D)	88 m/min
-----	----------	-----	----------

- **26.** In an orthogonal machining operation, the following data is given
 - rake angle -6° cutting speed -5 m/s
 - width of cut -3 mm
 - chip thickness -1.5 mm
 - uncut chip thickness 1 mm
 - If shoaring takes place under

If shearing takes place under minimum energy conditions, area of the shear plane is

(A) 4.26 mm^2	(B) 4.84 m	m ²
(C) 5.15 mm^2	(D) 5.92 m	m ²

27. In electro chemical machining, material is removed from an iron surface of 25 mm × 25 mm. The data given is,

Inter electrodes gap -0.3 mm Supply voltage -3.5 V Specific resistance of electrolyte -4Ω cm Atomic weight -56Valency -2

- Faradays constant = 96500 C
- Mass material removed in 25 seconds is
- (A) 4.14 gms (B) 4.53 gms (C) 4.96 gms (D) 5.28 gms
- (C) 4.96 gms (D) 5.28 gms
- 28. Lower limit dimension of a $20 f_8$ shaft is [The following data may be used Diameter step of 20 mm is 1 to 30 mm $i = 0.45 (D)^{1/3} + 0.001 D$ Upper deviation of f shaft = $-5.5 D^{0.41}$ IT8 = 25 i]
 - (A) 12.624 mm (B) 14.372 mm
 - (C) 16.826 mm (D) 19.947 mm
- **29.** Size of a hole is $30^{+0.03}_{-0.02}$ mm. A shaft is to be machined to

obtain a clearance fit in the hole such that minimum clearance is 0.01 mm and maximum clearance is 0.08 mm. Tolerance on the shaft will be

- (A) 0.01 mm (B) 0.02 mm
- (C) 0.03 mm (D) 0.04 mm
- **30.** For inspecting holes of size $30^{+0.050}_{+0.010}$ mm, GO and NO GO plug gauges are to be designed for the use in a workshop. Gauge tolerance is taken as 10% of hole tolerance, Size of NO GO gauge will be

	+0.015	+0.010
(A)	30+0.010 mm	(B) $30^{+0.005}$ mm

- (C) $30^{+0.065}_{+0.060}$ mm (D) $30^{+0.060}_{+0.055}$ mm
- 31. Match list I with list II and select correct answer

	List – I		List – II
Ρ	Welding of aluminum alloy	1.	Submerged arc welding
Q	Ship building	2.	Electron beam welding
R	Joining HSS drill bit to carbon steel shank	3.	TIG welding
S	Deep penetration and precision welding	4.	Gas welding

(A) P-3, Q-4, R-2, S-1

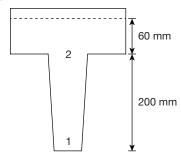
- (B) P-2, Q-3, R-1, S-4
- (C) P-3, Q-1, R-4, S-2
- (D) P-4, Q-1, R-2, S-3

3.198 | Manufacturing Technology Test 2

Common data for linked answer questions 32 and 33:	Statement for linked answer questions 34 and 35:			
In orthogonal machining of a shaft on lathe the following	In an orthogonal turning operation the following conditions			
data is available.	are used. Feed 0.25 mm/rev, depth of cut 3 mm, chip thick-			
Axial feed rate: 0.3 mm/rev	ness ratio 0.6, orthogonal rake angle 6°			
Depth of cut: 0.4 mm	34. If shear strength of the work piece is 240 N/mm ² , shear			
Rake angle: 8°	force is			
Shear plane angle: 25°	(Merchants theory can be used)			
32. Thickness of the chip produced is	(A) 268 N (B) 286 N			
(A) 0.5 mm (B) 0.6 mm	(C) 335 N (D) 392 N			
(C) 0.7 mm (D) 0.8 mm	35. The cutting force is			
33. Using Earnst and Merchant theory, coefficient of fric-	(A) 522 N (B) 565 N			
tion at the chip is	(C) 614 N (D) 636 N			
(A) 0.25 (B) 0.8				
(C) 0.85 (D) 0.9				
	-			
Answe	ER KEYS			

	ANSWER KEYS									
1. C	2. A	3. D	4. C	5. B	6. B	7. A	8. C	9. A	10. D	
11. A	12. D	13. B	14. A	15. D	16. A	17. C	18. B	19. D	20. A	
21. C	22. A	23. B	24. D	25. A	26. C	27. B	28. D	29. B	30. D	
31. C	32. B	33. D	34. C	35. B						

HINTS AND EXPLANATIONS


- 2. Choice (A)
- 3. Choice (D)
- 4. Choice (C)
- 5. Choice (B)
- 6. Choice (B)
- 7. Choice (A)
- 8. Choice (C)
- 9. Choice (A)
- 10. Choice (D)
- 11. Choice (A)
- 12. Choice (D)
- 13. Choice (B)
- 14.

Basic size 40.000 Basic size 40.000 0.020Fundamental deviation = -0.008Tolerance = 0.020 - 0.008 = 0.012. Choice (A) 15. Choice (D)

16. According to Chvorinov's rule, solidification time $\mu \left(\frac{V}{A}\right)^2$

$$\frac{V}{A} = \frac{\frac{\pi}{4}d^2 \times h}{\pi dh + 2 \times \frac{\pi d^2}{4}}$$
$$= \frac{dh}{4h + 2d}$$
For riser A,
$$\frac{V}{A} = \frac{25 \times 50}{4 \times 50 + 2 \times 25} = 5$$
For riser B,
$$\frac{V}{A} = \frac{50 \times 25}{4 \times 25 + 2 \times 50} = 6.25$$
Ratio of solidification times B to A
$$= \frac{6.25}{5} = 1.25.$$

17.

Let 1 and 2 represent sprue bottom and top $d_2 = 30 \text{ mm}$

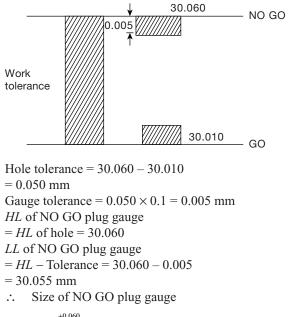
Choice (A)

Liquid head at sprue top $h_2 = 60 \text{ mm}$ **20.** $r_i = \frac{9}{2} = 4.5 \text{ mm}$ Liquid head at sprue bottom $h_1 = 200+60$ = 260 mm $r_f = \frac{7}{2} = 3.5 \text{ mm}$ For smooth flow, $A_1V_1 = A_2V_2$ $\sigma_0 = 400 \text{ N/mm}^2$ $\frac{A_1}{A_2} = \frac{V_2}{V_1}$ $\sigma = 2 \sigma_0 I_n \left(\frac{r_i}{r_c}\right)$ but $V = \sqrt{2gh}$ $= 2 \times 400 \times I_n \left(\frac{4.5}{3.5}\right)$ and $A = \frac{\pi d^2}{\Lambda}$ = 201.05 N/mm² $\therefore \quad \frac{d_1^2}{d_2^2} = \sqrt{\frac{h_2}{h_1}}$ Ideal force = $\sigma \times \pi (r_r)^2$ $= 201.05 \times \pi \times (3.5)^{2}$ = 7737.4 N = 7.74 kN. $\frac{d_1^2}{(30)^2} = \sqrt{\frac{60}{260}}$ Choice (A) **21.** Cup diameter d = 100 mmcorner radius r = 6 mm $d_1 = 20.8$ mm. Choice (C) cup height h = 120 mm $\frac{d}{r} = \frac{100}{6} = 16.67$ **18.** $R = \frac{D}{2} = \frac{300}{2} = 150 \text{ mm}$ when $15 \ge \frac{d}{r} \ge 20$ $h_i = 4 \text{ mm}$ $h_f = 3 \text{ mm}$ $\Delta h = h_i - h_f = 1 \text{ mm}$ blank diameter $D = \sqrt{d^2 + 4dh - 0.5r}$ $\tan \alpha = \sqrt{\frac{\Delta h}{R}}$ $=\sqrt{100^2+4\times100\times120}-0.5\times6$ = 240.83 mm. Choice (C) $=\sqrt{\frac{1}{150}}$ **22.** Power consumed P = 2.2 kW melting efficiency $\eta_m = 0.6$ $\alpha = 0.082$ radian Heat transfer efficiency $\eta_t = 0.7$ $=4.68^{\circ}$ Area of cross section $A = 6 \text{ mm}^2$ Roll contact length Energy required to melt $E = 12 \text{ J/mm}^3$ $L = \sqrt{R\Delta h}$ Power required to melt = $E \times A \times f$ $=\sqrt{150\times 1}$ Where f = feed rate Power applied = $P \times \eta_m \times \eta_t$ = 12.25 mm Choice (B) $E \times A \times f = P \times \eta_m \times n_t$ $12 \times 6 \times f = 2.2 \times 10^3 \times 0.6 \times 0.7$ 19. Force required when shear is provided f = 12.83 mm/s.Choice (A) $=F_{\max} \times \frac{tp}{tp+s}$ **23.** Feed f = 0.3 mm/rev, depth of cut = 2.5 mm. Reducing 45 mm ϕ to 40 mm ϕ Length $L_1 = 50 + 55 = 105 \text{ mm}$ $=\pi d t \tau \times \frac{tp}{tn+s}$ Cutting speed $V = \pi D_1 N_1$ $20 = \pi \times \frac{45}{1000} \times N_1$ where d = hole diameter t = sheet thickness $N_1 = 141.47 \text{ rpm}$ = percentage penetration Time $T_1 = \frac{L_1}{fN}$ s = shear provided $= \pi \times 12 \times 4 \times 400 \times \frac{(4 \times 0.4)}{(4 \times 0.4 + 2)}$ 105 0.3×141.47

= 2.474 min

Choice (D)

= 26808 N


= 26.81 kN.

3.200 | Manufacturing Technology Test 2

Reducing 45 mm
$$\phi$$
 to 40 mm ϕ
 $L_{z} = 55 mm$
 $20 - \pi \times \frac{40}{1000} \times N_{z}$
 $N_{z} = 159.15 rpm$
 $r_{z} = \frac{L}{M_{z}}$
 $= \frac{55}{0.3 \times 159.15}$
 $= 1.152 min$
Total time $T, + T_{z}$
 $= 2.474 + 1.152$
 $= 3.63 min$. Choice (B)
24. Coefficient of friction
 $\mu = \tan \beta$
where $\beta = friction$ angle
 \therefore $\tan \beta = 0.6$
 $a = 35.52^{\circ}$
Area of shear plane $= \frac{f_{W}}{\sin \phi}$
 $= \frac{1.83}{3.562^{\circ}}$
 $= 5.15 mm^{2}$. Choice (C)
27. Material removed in time 1
where $Z = \frac{F}{F}$
 $= 20.67 \cos 6$
 $= \frac{1.067 \cos 6}{1 - 0.67 \sin 6}$
 $= -3.55 mm^{2}$. Choice (C)
28. Let F be cutting speed and T be the tool life As per
 $\frac{F}{F_{T}} = \frac{1}{2}$
 $\frac{F}{R}$
 $\frac{F}{R} = \frac{M}{M}$
 $\frac{K}{T_{1}} = \frac{f_{1}}{T_{1}}$
 $\frac{K}{T_{1}} = \frac{K}{T_{1}}$
 $\frac{K}{T_{1}}$

 $= 25 \times 1.3074$ = 33 microns = 0.033 mmUpper deviation of shaft = $-5.5 D^{0.41}$ $= -5.5 \times (23.7379)^{0.41}$ = -20 microns = -0.02 mm*HL* of shaft = 20 - 0.02LL of shaft = HL – Tolerance = 20 - 0.02 - 0.033= 19.947 mm. Choice (D) **29.** *HL* of hole = 30.03 mmHL of hole = 30 - 0.02= 29.98 mmMinimum clearance = LL of hole – HL of shaft $\therefore 0.01 = 29.98 - HL$ of shaft HL of shaft = 29.98 - 0.01 = 29.97 mmMaximum clearance = HL of hole – LL of shaft $\therefore 0.08 = 30.03 - LL$ of shaft LL of shaft = 29.95 mm Tolerance on shaft = HL - LL= 29.97 - 29.95= 0.02 mm.Choice (B)

30. Tolerance on workshop gauges are arranged to fall inside the work tolerance.

 $= 30^{+0.060}$ mm. Choice (D)

31. Choice (C)

32. Depth of cut = 0.4 mmFeed $(t_1) = 0.3 \text{ mm/rev}$ Rake angle $\alpha = 8^{\circ}$ Shear plane angle $\phi = 28^{\circ}$ Chip thickness ratio $r = \frac{t_1}{t_2} = \frac{\sin \varphi}{\cos(\varphi - a)}$ sin 28 $\cos(28 - 8)$ = 0.4996i.e., $\frac{0.3}{t_2} = 0.4996$ $t_2 = 0.6$ mm. Choice (B) 33. Using Earnst and Merchant's theory $2\phi + \beta - \alpha = 90^{\circ}$ where β = friction angle $\therefore 2 \times 28 + \beta - 8 = 90^{\circ}$ $\beta = 42^{\circ}$ Coefficient of friction $\mu = \tan \beta$ = 0.9.Choice (D) **34.** Feed f = 0.25 mm/rev Depth of cut d = 3 mmChip thickness ratio r = 0.6Rake angle $\alpha = 6^{\circ}$ $\operatorname{Tan} \phi = \frac{r \cos a}{1 - r \sin a}$ $0.6 \times \cos 6$ $1 - 0.6 \sin 6$ = 0.63664 $\phi = 32.48^{\circ}$ Shear force $F_s = \frac{\tau df}{\sin \varphi}$ $240 \times 3 \times 0.25$ sin 32.48 = 335 N. Choice (C) 35. Applying Merchant's rule, $2\phi + \beta - \alpha = 90^{\circ}$ $2 \times 32.48 + \beta - 6 = 90^{\circ}$ $\beta = 31^{\circ}$ Cutting force $F_c = \frac{F_s \cos(\beta - a)}{\cos(\varphi + \beta - a)}$ $=\frac{335\cos(31-6)}{\cos(32.48+31-6)}$ = 564.76 N or 565 N. Choice (B)