
6
Electroweak Interactions

We have already discussed some aspects of weak and electromagnetic interactions

when we discussed nuclear stability in Chapter 2 and again when we introduced

the basic properties of leptons in Chapter 3. In this chapter we will consider wider

aspects of the weak interaction and also its unification with electromagnetism to

produce the spectacularly successful electroweak theory.

6.1 Charged and Neutral Currents

Like the strong and electromagnetic interactions, the weak interaction is also

associated with elementary spin-1 bosons, which act as ‘force carriers’ between

quarks and/or leptons. Until 1973 all observed weak interactions were consistent

with the hypothesis that they were mediated by the exchange of the charged bosons

W� only. However, in the 1960s, a theory was developed which unified electro-

magnetic and weak interactions in a way that is often compared with the

unification of electric and magnetic interactions by Maxwell a century earlier.

This new theory made several remarkable predictions, including the existence of

the heavy neutral vector boson Z0 and of weak reactions arising from its exchange.

The latter processes are called neutral current reactions (the word neutral referring

to the charge of the exchanged particle) to distinguish them from the so-called

charged current reactions arising from charged W� boson exchange. In particular,

neutral current reactions of the type �� þ N ! �� þ X were predicted to occur via

the mechanism of Figure 6.1, where N is a nucleon and X is any set of hadrons

allowed by the conservation laws. Although difficult to detect, such reactions were

first observed in a bubble chamber experiment in 1973.

The prediction of the existence and properties of neutral currents, prior to their

discovery, is only one of many remarkable successes of the unified theory of

electromagnetic and weak interactions. Others include the prediction of the

existence of the charmed quark, prior to its discovery in 1974 and the prediction

Nuclear and Particle Physics B. R. Martin
# 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01999-9



of the masses of the W� and Z0 bosons prior to the long-awaited detection of these

particles in 1983. In general, the theory is in agreement with all data on both weak

and electromagnetic interactions, which are now referred to collectively as the

electroweak interaction, in the same way that electric and magnetic interactions

are referred to collectively as electromagnetic interactions. Furthermore, the theory

predicts the existence of a new spin-0 boson, the so-called Higgs boson, which is

associated with the origin of particle masses within the model. This was mentioned

in passing in earlier chapters. Although a detailed discussion of the Higgs boson is

beyond the scope of this book, there is a brief discussion of the role of this very

important particle in Chapter 9.

The new unification only becomes manifest at high energies, and at low energies

weak and electromagnetic interactions can still be clearly separated. This follows

from the general form of the amplitude Equation (1.41):

Fðq2Þ ¼ �g2�h2

jqj2 þ M2
Xc2

; ð6:1Þ

where M2
X is the mass of the exchanged particle and g is the appropriate coupling.

For weak interactions, MX ¼ MW ;Z 	 80 GeV=c2 and for the electromagnetic

interaction MX ¼ M� ¼ 0. Thus, even with gweak 
 gem, the amplitudes for the

two interactions will only become of comparable size for jqj2 
 M2
Xc2, i.e. at high

energies. We therefore start by considering the weak interaction at low energies

and deduce some of its general properties that are valid at all energies. Later we

will consider how unification arises and some of its consequences.

6.2 Symmetries of the Weak Interaction

In this section we will discuss the parity (P) and charge conjugation (C ) operators,

which were introduced in Chapter 1. These are conserved in the strong and

Figure 6.1 Feynman diagram for the weak neutral current reaction �� þ N ! �� þ X
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electromagnetic interactions. The first indication that parity might be violated in

weak interactions came from observations on the pionic decays of K-mesons, i.e.

K ! �� and K ! ���,1 and these led Lee and Yang in 1956 to make a thorough

study of all previous experiments in which parity conservation had been assumed

or apparently proved. They came to the startling conclusion that there was in fact

no firm evidence for parity conservation in weak interactions; and they suggested

experiments where the assumption could be tested.2 This led directly to the classic

demonstration of parity violation from a study of the �-decay of polarized 60Co

nuclei. We shall just describe the principles of this experiment.3

The experiment was done in 1957 by Wu and co-workers, who placed a sample

of 60Co inside a magnetic solenoid and cooled it to a temperature of 0.01 K. At

such temperatures, the interaction of the magnetic moments of the nuclei with the

magnetic field overcomes the tendency to thermal disorder, and the nuclear spins

tend to align parallel to the field direction. The polarized 60Co nuclei produced in

this way decay to an excited state of 60Ni by the �-decay

60Co ! 60Ni� þ e� þ ���e: ð6:2Þ

Parity violation was established by the observation of a ‘forward–backward

decay asymmetry’, i.e. the fact that fewer electrons were emitted in the forward

hemisphere than in the backward hemisphere with respect to the spins of the

decaying nuclei.

We can show that this implies parity violation as follows. The parity transforma-

tion reverses all particle momenta p while leaving their orbital angular momenta

r � p, and by analogy their spin angular momenta, unchanged. Hence in the rest

frame of the decaying nuclei its effect is to reverse the electron velocity while

leaving the nuclear spins unchanged, as shown in Figure 6.2. Parity invariance would

then require that the rates for the two processes Figure 6.2(a) and Figure 6.2(b) were

equal, so that equal numbers of electrons would be emitted in the forward and

backward hemispheres with respect to the nuclear spins, in contradiction to what

was observed. The discovery of parity violation was a watershed in the history of

weak interactions because the effect is large, and an understanding of weak

interactions is impossible if it is neglected.

The charge conjugation operator C changes all particles to antiparticles and as

we will see presently is also not conserved in weak interactions. In examining

these operators, two interconnected themes will emerge. The first is that these

effects have their origin in the spin dependence of weak interactions; the second is

1Two particles, called at that time 	 and 
, were observed to decay via the weak interaction to �� and ���
final states, respectively, which necessarily had different final-state parities. However, the 	 and 
 had
properties, including the near equality of their masses, which strongly suggested that they were in fact the
same particle. Analysis of the ‘	–
 puzzle’ suggested that parity was not conserved in the decays.
2For their work on parity non-conservation, Chen Yang and Tsung-Dao Lee were awarded the 1957 Nobel
Prize in Physics.
3This classic experiment is described in readable detail in Chapter 10 of Tr75.
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that while P-violation and C-violation are large effects, there is a weaker combined

symmetry, called CP-invariance, which is almost exactly conserved. This has its

most striking consequences for the decays of neutral mesons, which are also

discussed below. We start by considering the P and C operators in more detail.

C-violation and P-violation are both conveniently illustrated by considering the

angular distributions of the electrons and positrons emitted in the decays

�� ! e� þ ���e þ �� ð6:3aÞ

and

�þ ! eþ þ �e þ ���� ð6:3bÞ

of polarized muons. In the rest frame of the decaying particle these were found to

be of the form

��� ðcos 
Þ ¼ 1

2
�� 1 � ��

3
cos 


� �
; ð6:4Þ

where 
 is the angle between the muon spin direction and the direction of the

outgoing electron or positron, as shown in Figure 6.3(a). The quantities �� are

called the asymmetry parameters, and �� are the total decay rates, or equivalently

the inverse lifetimes, i.e.

	�1
� 

ðþ1

�1

d cos 
���ðcos 
Þ ¼ ��; ð6:5Þ

as may easily be checked by direct substitution.

Figure 6.2 Effect of a parity transformation on 60Co decay: the thick arrows indicate the
direction of the spin of the 60Co nucleus, while the thin arrows show the direction of the
electron’s momentum
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We consider now the consequences of assuming parity and charge conjugation

for these decays, starting with the latter as it is the simpler. Under charge

conjugation, �� decay converts to �þ decay. C-invariance then implies that the

rates and angular distributions for these decays should be the same, i.e.

�þ ¼ �� ðC-invarianceÞ ð6:6Þ

and

�þ ¼ �� ðC-invarianceÞ: ð6:7Þ

The parity transformation preserves the identity of the particles, but reverses

their momenta while leaving their spins unchanged. Its effect on muon decay is

shown in Figure 6.3, where we see that it changes the angle 
 to �� 
, so that cos 

changes sign. Hence P-invariance implies

��� cos 
ð Þ ¼ ��� � cos 
ð Þ ðP-invarianceÞ: ð6:8Þ

Substituting Equation (6.4), leads to the prediction that the asymmetry parameters

vanish,

�� ¼ 0 ðP-invarianceÞ: ð6:9Þ

Experimentally, the �� lifetimes are equal to a very high level of precision, so

that the prediction for the lifetimes is satisfied; but the measured values of the

µ+

θ

− µ+−

e+

e+

−

−

P π−θ

(a) (b)

Figure 6.3 Effect of a parity transformation on muon decays: the thick arrows indicate the
direction of the muon spin, while the thin arrows indicate the direction of the electron’s
momentum
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asymmetry parameters are

�� ¼ ��þ ¼ 1:00 � 0:04; ð6:10Þ

which shows that both C-invariance and P-invariance are violated. The violation is

said to be ‘maximal’, because the asymmetry parameters are defined to lie in the

range �1 � �� � 1.

In view of these results, a question that arises is: why do the �þ and �� have

the same lifetime if C-invariance is violated? The answer lies in the principle of

CP-conservation, which states that the weak interaction is invariant under the

combined operation CP even though both C and P are separately violated. The CP

operator transforms particles at rest to their corresponding antiparticles at rest, and

CP-invariance requires that these states should have identical properties. Thus, in

particular, the masses of particles and antiparticles are predicted to be the same.

Specifically, if we apply the CP operator to muon decays, the parity operator

changes 
 to �� 
 as before, while the C operator changes particles to anti-

particles. Hence CP-invariance alone implies that the condition obtained from

P-invariance is replaced by the weaker condition

��þ cos 
ð Þ ¼ ��� � cos 
ð Þ: ð6:11Þ

Again, substituting Equation (6.4) into Equation (6.11), gives

�þ ¼ �� ðCP-invarianceÞ; ð6:12Þ

implying equal lifetimes and also

�þ ¼ ��� ðCP-invarianceÞ; ð6:13Þ

in agreement with the experimental results. Thus CP-invariance retains the

symmetry between particles and antiparticles as observed by experiment, at

least for �-decays. In fact CP-invariance has been verified in a wide variety of

experiments involving weak interactions, and it is believed to be exact for purely

leptonic processes (i.e. ones involving only leptons) and a very good approxima-

tion for those involving hadrons. (The only known violations will be discussed in

Section 6.6.1.) Particles and antiparticles have the same masses and lifetimes even

if CP is not conserved.

6.3 Spin Structure of the Weak Interactions

We turn now to the spin structure of the weak interactions, which is closely related

to the symmetry properties discussed above. As this spin structure takes its

simplest form for zero-mass particles, we will discuss the case of neutrinos and

186 CH6 ELECTROWEAK INTERACTIONS



antineutrinos first, assuming that they have zero mass for the purpose of this

discussion.

6.3.1 Neutrinos

In discussing neutrinos, it is convenient to use the so-called helicity states, in

which the spin is quantized along the direction of motion of the particle, rather

than along some arbitrarily chosen ‘z-direction’. For a spin-1
2

particle, the spin

component along the direction of its motion can be either þ 1
2

or � 1
2

(in units of �h),

as illustrated in Figure 6.4, corresponding to positive or negative helicity

respectively. These states are called right-handed or left-handed, respectively,

since the spin direction corresponds to rotational motion in a right-handed or left-

handed sense when viewed along the momentum direction.

We will denote these states by a subscript R or L, so that, for example, �L means

a left-handed neutrino. The remarkable fact about neutrinos and antineutrinos,

which only interact via the weak interaction, is that only left-handed neutrinos �L

and right-handed antineutrinos ���R are observed in nature. This obviously violates

C-invariance, which requires neutrinos and antineutrinos to have identical weak

interactions. It also violates P-invariance, which requires the states �L and �R to

also have identical weak interactions, since the parity operator reverses the

momentum while leaving the spin unchanged and so converts a left-handed

neutrino into a right-handed neutrino. It is, however, compatible with CP-

invariance, since the CP operator converts a left-handed neutrino to a right-handed

antineutrino, as illustrated in Figure 6.5.

The helicity of the neutrino was first measured in an ingenious experiment by

Goldhaber and co-workers in 1958. Again, we will only discuss the principles of

the experiment. They studied electron capture in 152Eu, i.e.

e� þ 152EuðJ ¼ 0Þ ! 152Sm�ðJ ¼ 1Þ þ �e; ð6:14Þ

Figure 6.4 Helicity states of a spin-1
2 particle: the long thin arrows represent the momenta of

the particles and the shorter thick arrows represent their spins
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where the spins of the nuclei are shown in brackets. The excited state of samarium

that is formed decays to the ground state by �-emission

152Sm�ðJ ¼ 1Þ ! 152SmðJ ¼ 0Þ þ � ð6:15Þ

and it is these �-rays which were detected in the experiment. In the first reaction

(Equation (6.14)), the electrons are captured from the K-shell and the initial

state has zero momentum, so that the neutrino and the 152Sm� nucleus recoil in

opposite directions. The experiment selected events in which the photon was

emitted in the direction of motion of the decaying 152Sm� nucleus, so that overall

the observed reaction was

e� þ 152EuðJ ¼ 0Þ ! 152SmðJ ¼ 0Þ þ �e þ �; ð6:16Þ

where the three final-state particles were co-linear, and the neutrino and photon

emerged in opposite directions, as shown in Figure 6.6.

The helicity of the neutrino can then be deduced from the measured helicity of

the photon by applying angular momentum conservation about the event axis to

the overall reaction. In doing this, no orbital angular momentum is involved,

because the initial electron is captured from the atomic K-shell and the final-state

particles all move along the event axis. Hence the spin components of the neutrino

and photon, which can be � 1
2

and �1 respectively, must add to give the spin

component of the initial electron, which can be � 1
2
. This gives two possible spin

configurations, as shown in Figures 6.6(a) and 6.6(b). In each case the photon and

neutrino have the same helicities. In the actual experiment, the polarization of the

photons was determined by studying their absorption in magnetized iron (which

depends on the polarization of the photon) and the results obtained were consistent

with the occurrence of left-handed neutrinos only, corresponding to Figure 6.6(a).

Figure 6.5 Effect of C, P and CP transformations; only the states shown in boxes are observed
in nature
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Later experiments have shown that only right-handed antineutrinos take part in

weak interactions.

6.3.2 Particles with mass: chirality

To see the effect of the spin dependence in weak interactions involving particles

with mass, we will look at the decays of the pion and muon which are, of course,

examples of charged current reactions. The spin dependence is of a special form,

called a V–A interaction. This name is derived from the behaviour under a parity

transformation of the weak interaction analogue of the electromagnetic current.

The letter V denotes a proper vector, which is one whose direction is reversed by a

parity transformation (an example is momentum p). The familiar electric current,

to which photons couple, transforms as a proper vector under parity. Because

parity is not conserved in weak interactions, the corresponding weak current, to

which W�-bosons couple, has in addition to a vector (V) component another

component whose direction is unchanged by a parity transformation. Such a

quantity is called an axial-vector (A) (an example of an axial-vector is orbital

angular momentum L ¼ r � p). Since observables are related to the modulus

squared of amplitudes, either term would lead by itself to parity conservation.

Parity non-conservation is an interference effect between the two components.

Here we shall consider only the most important characteristic of this spin

dependence, which is that the results discussed above for neutrinos, hold for all

fermions in the ultra-relativistic limit. That is, in the limit that their velocities

approach that of light, only left-handed fermions �L, e�L etc. and right-handed

antifermions ���R, eþR etc. are emitted in charged current interactions. These

Figure 6.6 Possible helicities of the photon and neutrinos emitted in the reaction
e� þ 152EuðJ ¼ 0Þ ! 152SmðJ ¼ 0Þ þ �e þ � for those events in which they are emitted in
opposite directions. Experiment selects configuration (a)
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right-handed and left-handed particles are called chiral states and these are the

eigenstates that take part in weak interactions. In general, chiral states are linear

combinations of helicity states,4 with the contributions of the ‘forbidden’ heli-

city states e�R , eþL etc. suppressed by factors which are typically of the order of

ðmc2=EÞ2
, where m is the appropriate fermion mass and E its energy. For massless

neutrinos this is always a good approximation and chiral states and helicity states

are identical. However, for particles with mass, it is only a good approximation for

large energies E. These spin properties can be verified most easily for the electrons

and muons emitted in weak decays, by directly measuring their spins. Here we

shall assume them to hold and use them to understand some interesting features of

pion and muon decays.

We start by considering the pion decay mode

�þ ! ‘þ þ �‘ : ð‘ ¼ e; �Þ ð6:17Þ

In the rest frame of the decaying pion, the charged lepton and the neutrino recoil in

opposite directions, and because the pion has zero spin, their spins must be

opposed to satisfy angular momentum conservation about the decay axis. Since the

neutrino (assumed to be zero mass) is left-handed, it follows that the charged

lepton must also be left-handed, as shown in Figure 6.7, in contradiction to the

expectations for a relativistic antilepton.

For the case of a positive muon this is unimportant, since it is easy to check

that it recoils non-relativistically and so both chirality states are allowed. However,

if a positron is emitted it recoils relativistically, implying that this mode is

suppressed by a factor that we can estimate from the above to be of the order

of ðme=m�Þ2 	 10�5. Thus the positron decay mode is predicted to be much rarer

than the muonic mode. This is indeed the case, and the measured ratio

�ð�þ ! eþ þ �eÞ
�ð�þ ! �þ þ ��Þ

¼ 1:218 � 0:014ð Þ � 10�4 ð6:18Þ

is in excellent agreement with a full calculation that takes into account both the

above suppression and the difference in the density-of-final states (i.e. the

difference in the Q-values) for the two reactions.

4This is another example where linear combinations of states are the ones of physical interest; compare
neutrino mixing (Section 3.1.3).

π ++ ν

Figure 6.7 Helicities of the charged leptons in pion decays: the short arrows denote spin
vectors and the longer arrows denote momentum vectors
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A second consequence of the chirality argument is that the muons emitted in

pion decays are 100 per cent polarized (see Figure 6.7).5 We have mentioned this

earlier in connection with measuring the muon decay asymmetries. These have

their origins in the spin structure of the interaction, as we shall illustrate for the

highest-energy electrons emitted in the decay of the muon. These have energy

E ¼ m�c2

2
1 þ m2

e

m2
�

 !
� mec2 ð6:19Þ

and correspond to decays in which the neutrino and antineutrino are both emitted

in the direction opposite to the electron. This is illustrated in Figure 6.8 for the two

simplest cases in which the electron is emitted in the muon spin direction

(Figure 6.8(a)) and opposite to it (Figure 6.8(b)).

Since the neutrino and antineutrino have opposite helicities, the muon and

electron must have the same spin component along the event axis in order to

conserve angular momentum, implying the electron helicities shown in Figure 6.8.

When combined with the fact that the relativistic electrons emitted must be left-

handed, this implies that electrons cannot be emitted in the muon spin direction.

We thus see that the spin structure of the interaction automatically gives rise to a

forward–backward asymmetry in polarized muon decays. Of course not all the

electrons have the maximum energy and the actual asymmetry, averaged over all

electron energies, can only be calculated by using the full form of the V–A

5This is in the rest frame of the decaying pion and assumes that the neutrino has zero mass. The degree of
polarization in the laboratory frame is a function of the muon momentum.

Figure 6.8 Muon decays in which electrons of the highest possible energy are emitted: (a) in
the muon spin direction, and (b) opposite to the muon spin direction
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interaction.6 The resulting prediction is in excellent agreement with the measured

values.

Finally, we have seen in earlier chapters that there is increasing evidence

that neutrinos are not strictly massless. How then can we ensure that the

weak interactions only couple to �L and ���R? To understand this we return to

the Dirac equation, which was mentioned in Chapter 1. As was stated there, the

solution of this equation for a massive spin-1
2

particle is in the form of a four-

component spinor, whose components are interpreted as the two possible spin

projections for the particle and its antiparticle of a given energy (see Section 1.2

and Equation (1.4)). However, in the case of a massless fermion the Hamiltonian

of Equation (1.2) consists only of a spin projection term and there is a simpler

solution of the Dirac equation consisting of two independent two-component

wavefunctions. If we assume for definiteness the case of neutrinos (assumed to

be massless), then these would correspond to the pairs ð�L, ���R) and ð�R, ���L).

This observation was first made by Weyl in 1929, but was rejected as unphysical

because under a parity transformation �L ! �R (see Figure 6.5) and hence the

interaction would not be invariant under parity. However, we now know that

parity is not conserved in the weak interactions, so this objection is no longer valid.

A possible solution is therefore to make the neutrino its own antiparticle. In this

case ð�L, ���RÞ are identified as two helicity components of a four-component spinor

and the other two components ð�R, ���LÞ, if they exist, can then be a fermion of a

different mass. This scheme is due to Majorana and is very different to the

structure of a spinor describing a massive spin-1
2

fermion such as an electron. A test

of this idea would be the observation of neutrinoless double �-decay, such as that

given in Equation (3.37), which is only possible if �e  ���e.

6.4 W� and Z0 Bosons

The three intermediate vector bosons mediating weak interactions, the two charged

bosons Wþ and W� and the neutral Z0, were all discovered at CERN in 1983 in the

reactions

�pp þ p ! Wþ þ X�; �pp þ p ! W� þ Xþ; and �pp þ p ! Z0 þ X0; ð6:20Þ

where X� and X0 are arbitrary hadronic states allowed by the conservation laws.

The beams of protons and antiprotons were supplied by a proton–antiproton

collider, which was specifically built for this purpose. At the time it had proton and

antiproton beams with maximum energies of 270 GeV each, giving a total centre-

of-mass energy of 540 GeV. Two independent experiments were mounted (called

6See, for example, Chapter 12 of Ha84.
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UA1 and UA2), both of which were examples of the ‘layered’ detector systems

that were discussed in Chapter 4.7 One of the main problems facing the

experimenters was that for each event in which a W� or Z0 is produced and

decays to leptons, there were more than 107 events in which hadrons alone are

produced and so the extraction of the signal required considerable care.

In contrast to the zero mass photons and gluons, the W� and Z0 bosons are both

very massive particles, with measured masses

MW ¼ 80:6 GeV=c2; MZ ¼ 91:2 GeV=c2; ð6:21Þ

while their lifetimes are about 3 � 10�25 s. Their dominant decays lead to jets of

hadrons, but the leptonic decays

Wþ ! ‘þ þ �‘; W� ! ‘� þ ���‘ ð6:22Þ

and

Z0 ! ‘þ þ ‘�; Z0 ! �‘ þ ���l; ð6:23Þ

where ‘ ¼ e, � or 	 as usual, are also important. The particles are detected as

resonance-like enhancements in plots of the invariant mass of suitable final states

seen in reactions such as Equation (6.20).8

We have seen that an important feature of an exchange interaction is its strength.

As in the case of electromagnetism, Feynman diagrams for weak interactions are

constructed from fundamental three-line vertices. Those for lepton–W� interac-

tions are shown in Figure 6.9.

7Simon van der Meer lead the team that built the accelerator and Carlo Rubbia lead the UA1 experimental
team that subsequently discovered the bosons. They shared the 1984 Nobel Prize in Physics for their work.
8A more detailed description of the UA1 experiment is given in, for example, Section 8.1 of Ma97.

Figure 6.9 The two basic vertices for W�-lepton interactions
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At each vertex a boson is emitted or absorbed; while both fermion lines belong

to the same generation ‘ ¼ e, � or 	 , with one arrow pointing inwards and one

outwards to guarantee conservation of each lepton number Ne, N� and N	 .

Finally, associated with each vertex is a dimensionless parameter with the same

value

W ¼ g2
W=4��hc 	 1=400 ð6:24Þ

at high energies for all three generations (because of lepton universality). This

constant is the weak analogue of the fine structure constant  	 1=137 in

electromagnetic interactions, with gW the weak analogue of the electronic charge

e in appropriate units.

We see from the above that, despite its name, the weak interaction has a similar

intrinsic strength to the electromagnetic interaction. Its apparent weakness in many

low-energy reactions, is solely a consequence of its short range, which arises

because the exchange bosons are heavy. From Equation (6.1) we see that the

scattering amplitude has a denominator that contains the squared mass of the

exchanged particle and so at energies where the de Broglie wavelengths � ¼ h=p

of the particles are large compared with the range of the weak interaction, which is

an excellent approximation for all lepton and hadron decays, the range can be

neglected altogether. In this approximation the weak interaction becomes a point

or zero range interaction, whose effective interaction strength can be shown to be

eff ¼ W
�EE=MWc2
� �2

; �EE � MWc2; ð6:25Þ

where �EE is a typical energy scale for the process in question. (For example in muon

decay it would be the mass of the muon.) Thus we see that the interaction is both weak

and very energy dependent at ‘low energies’, but becomes comparable in strength

with the electromagnetic interaction at energies on the scale of the W-boson mass.

6.5 Weak Interactions of Hadrons

The weak decays of hadrons are understood in terms of basic processes in which

W� bosons are emitted or absorbed by their constituent quarks. In this section we

will consider both decays and scattering processes, starting with the former.

6.5.1 Semileptonic decays

A typical semileptonic decay (i.e. one that involves both hadrons and leptons) is

that of the neutron, which at the quark level is

d ! u þ e� þ ���e; ð6:26Þ
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as illustrated in Figure 6.10, where the other two quarks play the role of spectators.

Similarly, in the pion decay process

��ðd�uuÞ ! �� þ ���� ð6:27Þ

the initial quarks annihilate to produce a W boson as shown in Figure 6.11.

However, the weak interactions of quarks are more complicated than those of

leptons, and are best understood in terms of two ideas: lepton–quark symmetry, and

quark mixing.

For simplicity, we will look firstly at the case of just two generations of quarks

and leptons. In this case, lepton–quark symmetry asserts that the first two

generations of quarks

u

d

� 	
and

c

s

� 	
ð6:28Þ

Figure 6.10 Quark diagram for the decay n ! pe����e

Figure 6.11 Quark diagram for the process �� ! �� þ ����
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and the first two generations of leptons

�e

e�

� 	
and

��
��

� 	
ð6:29Þ

have identical weak interactions. That is, one can obtain the basic W� quark

vertices by making the replacements �e ! u ; e� ! d ; �� ! c ; �� ! s in

the basic W� lepton vertices, leaving the coupling constant gW unchanged. The

resulting W� quark vertices are shown in Figure 6.12.

Quark symmetry in the simple form stated above then implies that the

fundamental processes d þ �uu ! W� and s þ �cc ! W� occur with the same

couplings gW as the corresponding leptonic processes, i.e. in Figure (6.12) we

have gcs ¼ gud ¼ gW, while the processes s þ �uu ! W� and d þ �cc ! W� are

forbidden. This works quite well for many reactions, like the pion decay

�� ! �� þ ����, but many decays that are forbidden in this simple scheme are

observed to occur, albeit at a rate which is suppressed relative to the ‘allowed’

decays. An example of this is the kaon decay K� ! �� þ ���� , which requires a

s þ �uu ! W� vertex, which is not present in the above scheme.

All these suppressed decays can be successfully incorporated into the theory by

introducing quark mixing. According to this idea, the d and s quarks participate in

the weak interactions via the linear combinations

d0 ¼ d cos 
C þ s sin 
C ð6:30aÞ

and

s0 ¼ �d sin 
C þ s cos 
C; ð6:30bÞ

Figure 6.12 The W� quark vertices obtained from quark--lepton symmetry, without quark
mixing

196 CH6 ELECTROWEAK INTERACTIONS



where the parameter 
C is called the Cabibbo angle.9 That is, lepton–quark

symmetry is assumed to apply to the doublets

u

d0

� 	
and

c

s0

� 	
: ð6:31Þ

This then generates new vertices previously forbidden. For example, the usW vertex

required for the decay K� ! �� þ ���� arises from the interpretation of the ud0W
vertex shown in Figure 6.13. In a similar way a new cdW vertex is also generated.

Quark mixing enables theory and experiment to be brought into good agreement

by choosing a value 
C 	 13� for the Cabibbo angle. One then finds that the rates

for the previously ‘allowed’ decays occur at rates which are suppressed by a factor

cos2 
C 	 0:95, while the previously ‘forbidden’ decays are now allowed, but with

rates which are suppressed by a factor sin2 
C 	 0:05.

Historically, the most remarkable thing about these ideas is that they were

formulated before the discovery of the charmed quark. In 1971 seven fundamental

fermions were known: the four leptons �e, e�, �� and ��, and the three quarks u, d

and s. This led Glashow, Iliopolous and Maiani to propose the existence of a fourth

quark c to complete the lepton–quark symmetry and to solve problems associated

with neutral currents that we will discuss in Section 6.7. The existence of the

charmed quark was subsequently confirmed in 1974 with the discovery of the first

charmonium states (this is why their discovery was so important – see the

discussion in Section 5.3) and its measured weak couplings are consistent with

the predictions of lepton–quark symmetry and quark mixing.

We now know that there are six leptons

�e

e�

� 	
��
��

� 	
�	
	�

� 	
ð6:32Þ

9This is yet another example of physical states being mixtures of other states.

Figure 6.13 The ud0W vertex and its interpretation in terms of udW and usW vertices
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and six known quarks

u

d

� 	
c

s

� 	
t

b

� 	
: ð6:33Þ

When the third generation is taken into account, the mixing scheme becomes more

complicated, as we must allow for the possibility of mixing between all three

‘lower’ quarks d, s and b instead of just the first two and more parameters are

involved. In general the mixing can be written in the form

d0

s0

b0

0
@

1
A ¼

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

0
@

1
A d

s

b

0
@

1
A; ð6:34Þ

where Vijði ¼ u; c; t ; j ¼ d; s; bÞ the so-called CKM matrix,10 is unitary to ensure

the orthonormality of the new states generated by the transformation. The matrix

elements Vij are all obtainable from various decay processes and values exist for

them, although the smaller off-diagonal terms are not very well measured.11 For

the first two generations, the changes introduced by this more complex mixing are

very small. However, a new feature that emerges is the possibility of CP violation.

We shall see in the Section 6.6.1 that CP violation does actually occur in the

decays of neutral K-mesons and neutral B-mesons and it is of considerable interest

to see if the size of the violation is consistent with the CKM mixing formalism and

the standard model.

6.5.2 Neutrino scattering

Consider the elastic scattering process �e þ e� ! �e þ e� at high energies,

proceeding via the exchange of a W-meson, i.e. a charged current weak interaction.

We know the W-meson couples only to left-handed fermions and from the

discussion of Section 6.3.1 that neutrinos have negative helicity, i.e. they are

polarized along the direction of their motion (which we will take to be the z-axis).

We also know from the work of Section 6.3.2 that in the relativistic limit, the same

is true of electrons. We are therefore led to the centre-of-mass spin/momentum

configurations before the collision shown in Figure 6.14(a). If the interaction

scatters the particles through an angle of 180�, then the centre-of-mass spin/

momentum configurations after the collision are those shown in Figure 6.14(b). In

10The initials stand for Cabibbo, Kobayashi and Maskawa, the last two of whom extended the original
Cabibbo scheme to three generations of quarks.
11A review is given Ei04.
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both cases the total spin component along the z-axis is zero. This result is true for

all angles and the scattering is isotropic.

From this we can calculate the differential cross-section using the formulae of

Chapter 1. We will assume that the squared momentum transfer Q2 is such that

Q2
max � M2

Wc2, so that the matrix element may be written [cf. Equation (6.1)]

f ð�e þ e� ! �e þ e�Þ ¼ �GF; ð6:35Þ

where GF is the Fermi coupling constant of Equation (1.42), i.e.

GF ¼ 4�ð�hcÞ3W

ðMWc2Þ2
ð6:36Þ

and W ¼ g2=4��hc is the equivalent of the fine structure constant for charged

current weak interactions. Hence, using Equation (1.57) and recalling that the

velocities of both the neutrino and electron are equal to c,

d�

d�
ð�ee�Þ ¼ 1

4�2

G2
F

ð�hcÞ4
E2

CM: ð6:37Þ

At high energies E2
CM is given by

E2
CM 	 2mec2E�; ð6:38Þ

where E� is the energy of the neutrino. So finally the total cross-section is

�totð�ee�Þ ¼ 2mec2G2
F

�ð�hcÞ4
E� ð6:39Þ

Figure 6.14 Spin (thick arrows) and momentum (thin arrows) configurations for �ee
� and ���ee

�

interactions: (a) �ee
� before collision; (b) �ee

� after scattering through 180�; (c) ���ee
� before

collision; (d) ���ee
� after scattering through 180�
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and increases linearly with E� .
12

If we apply the same argument to the scattering of antineutrinos, we are lead to

the configurations shown in Figures 6.14(c) and 6.14(d). The initial state has

Jz ¼ 1, but the final state has Jz ¼ �1. Thus scattering through 180� is forbidden

by angular momentum conservation and the amplitude must contain a factor

ð1 þ cos 
Þ. This is borne out by a full calculation using the V–A formalism which

gives, in the same approximation,

d�

d�
ð���ee�Þ ¼ 1

16�2

G2
F

ð�hcÞ4
E2

CM ð1 þ cos 
Þ2: ð6:40Þ

Integrating over angles gives

�totð���ee�Þ ¼ 1

3
�totð�ee�Þ: ð6:41Þ

Neutrino–electron scattering is not, of course, a very practical reaction to study

experimentally, but these ideas may be taken over to deep inelastic neutrino

scattering from nucleons, where the latter are assumed to be composed of

constituent quarks whose masses may be neglected at high energies. This will

enable us to extend the discussion of Section 5.7 for charged leptons. In this case

the neutrino is assumed to interact with a single quark within the nucleon (this is

again the spectator model) and we must take account of all relevant quarks and

antiquarks. In practice we can neglect interactions with s and �ss quarks as these will

be suppressed by the Cabibbo factor. So, taking into account only the u and d

quarks and their antiparticles, we can generalize Equations (6.39) and (6.41) to

give

�totð�eNÞ ¼ MNc2G2
FEv

�ð�hcÞ4
H þ 1

3
H

� 	
ð6:42aÞ

and

�totð���eNÞ ¼ MNc2G2
FEv

�ð�hcÞ4

1

3
H þ H

� 	
; ð6:42bÞ

for scattering from an isoscalar nucleus, i.e. one with an equal number of neutrons

and protons, where MN is the mass of the nucleon. The quantities H and H are

given by

H 
ð1

0

x½uðxÞ þ dðxÞ�dx and H 
ð1

0

x½�uuðxÞ þ �ddðxÞ�dx; ð6:43Þ

12This behaviour has arisen because of the approximation Equation (6.35). It cannot of course continue
indefinitely. At very high values of Q2 the full form of the propagator would have to be taken into account
and this would introduce an energy dependence in the denominator of Equation (6.39).
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where uðxÞ etc. are the quark densities defined in Section 5.7 and the integral is

over the scaling variable x.

Setting y ¼ H=H, we have from Equations (6.42)

R  �ð���eNÞ
�ð�eNÞ ¼

1 þ 3y

3 þ y
: ð6:44Þ

Some data for R are shown in Figure 6.15 from an experiment using muon–

neutrinos. These show that R is approximately constant, as predicted by

Equation (6.44), and has a value of about 0.51, which implies y 	 0:2, i.e.

antiquarks exist in the nucleon at the level of about 20 per cent. Other experiments

yield similar results in the range 15–20 per cent.

6.6 Neutral Meson Decays

Neutral mesons are of particular interest not only because they enable very

sensitive tests of CP-conservation to be made, but also because the application

of basic quantum mechanics leads to surprising effects that, for example, allow the

symmetry between particles and antiparticles to be tested with extraordinary

precision. In both cases the crucial ingredient is the phenomenon of particle

mixing that we have met before in connection with the mixing of neutrino flavour

Figure 6.15 Neutrino and antineutrino total cross-sections (data from Se97)
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states. Because most work has been done on the neutral kaons, we will mainly

discuss this system as an example. The equivalent formalisms for B- and D-decays

are similar. We start with a discussion of CP violation.

6.6.1 CP violation

We have seen that there are two neutral kaon states

K0ð498Þ ¼ d�ss and K
0ð498Þ ¼ s�dd; ð6:45Þ

which have strangeness S ¼ þ1 and S ¼ �1 respectively. However, because

strangeness is not conserved in weak interactions, these states can be converted

into each other by higher-order weak processes like those shown in Figure 6.16.

This is in marked contrast to most other particle–antiparticle systems, for which

such transitions are forbidden, because the particle and its antiparticle differ by

quantum numbers that are conserved in all known interactions. For example, the

�þ and �� have opposite electric charges, and the neutron and antineutron have

opposite baryon numbers. For neutral kaons, however, there is no conserved

quantum number to distinguish the K0 and K
0

states when weak interactions are

taken into account and the observed physical particles correspond not to the K0

and K0 states themselves, but to linear combinations of them. Similar mixing can

occur between B0 � B0 and D0 � D
0

states. We have met the idea that observed

states can be linear combinations of other states in the CKM mixing scheme for

quarks above and earlier when we discussed neutrino oscillations in the absence of

lepton number conservation in Chapter 3. In the present case it leads to the

phenomena of K0 � K
0

mixing, and strangeness oscillations.

We start by assuming that CP-invariance is exact and that neutral kaons are

eigenstates of the combined CP operator. In this case, using the standard phase

convention, we can define

CjK0; pi ¼ �jK0
; pi; CjK0

;pi ¼ �jK0; pi; ð6:46Þ

where jK0;pi denotes a K0 state with momentum p, etc.. Since kaons have

negative intrinsic parity, we also have for p ¼ 0

PjK0; 0i ¼ �jK0; 0i ; PjK0
; 0i ¼ �jK0

; 0i; ð6:47Þ

Figure 6.16 Example of a process that can convert a K0 state to a �KK0 state
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so that

CPjK0; 0i ¼ jK0
; 0i; CPjK0

; 0i ¼ jK0; 0i: ð6:48Þ

Thus CP eigenstates K0
1;2 are

jK0
1;2; 0i ¼

1ffiffiffi
2

p jK0; 0i � jK0
; j0i

n o
ðCP ¼ �1Þ: ð6:49Þ

If CP is conserved, then K0
1 should decay entirely to states with CP ¼ 1 and K0

2

should decay entirely into states with CP ¼ �1. We examine the consequences of

this for decays leading to pions in the final state.

Consider the state �0�0. Since the kaon has spin-0, by angular momentum

conservation the pion pair must have zero orbital angular momentum in the rest

frame of the decaying particle. Its parity is therefore given by [cf. Equation (1.14)]

P ¼ P2
� �1ð ÞL¼ 1; ð6:50Þ

where P� ¼ �1 is the intrinsic parity of the pion. The C-parity is given by

C ¼ ðC�0Þ2 ¼ 1; ð6:51Þ

where C�0 ¼ 1 is the C-parity of the neutral pion. Combining these results gives

CP ¼ 1. The same result holds for the �þ�� final state.

The argument for three-pion final states �þ���0 and �0�0�0 is more compli-

cated, because there are two orbital angular momenta to consider, If we denote by

L12 the orbital angular momentum of one pair (either �þ�� or �0�0) in their

mutual centre-of-mass frame, and L3 is the orbital angular momentum of the third

pion about the centre-of-mass of the pair in the overall centre-of-mass frame, then

the total orbital angular momentum L  L12 þ L3 ¼ 0, since the decaying particle

has spin-0. This can only be satisfied if L12 ¼ L3. This implies that the parity of the

final state is

P ¼ P3
� �1ð ÞL12 �1ð ÞL3¼ �1: ð6:52Þ

For the �0�0�0 final state, the C-parity is

C ¼ C�0ð Þ3¼ 1 ð6:53Þ

and combining these results gives CP ¼ �1 overall. The same result can be shown

to hold for the �þ���0 final state.

The experimental position is that two neutral kaons are observed, called K0-short

and K0-long, denoted K0
S and K0

L, respectively. They have almost equal masses of

about 499 MeV/c2, but very different lifetimes and decay modes. The K0
S has a
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lifetime of 0:89 � 10�10 s and decays overwhelmingly to two pions; the longer-

lived K0
L has a lifetime of 0:52 � 10�7s with a significant branching ratio to three

pions, but not to two. In view of the CP analysis above, this immediately suggests

the identification

K0
S ¼ K0

1 ; and K0
L ¼ K0

2 : ð6:54Þ

However, in 1964 it was discovered that the K0
L also decayed to two pions13

K0
L ! �þ þ ��; ð6:55Þ

but with a very small branching ratio of the order of 10�3. This result is clear

evidence of CP violation. This was confirmed in later experiments on the decay

K0 ! �0�0.

Because CP is not conserved, the physical states K0
S and K0

L need not correspond

to the CP-eigenstates K0
1 and K0

2 , but can contain small components of states with

the opposite CP, i.e. we may write

jK0
S; 0i ¼

1

ð1 þ j"j2Þ1=2
jK0

1 ; 0i � "jK0
2 ; 0i

� �
ð6:56aÞ

and

jK0
L; 0i ¼

1

ð1 þ j"j2Þ1=2
"jK0

1 ; 0 i þ jK0
2 ; 0 i

� �
; ð6:56bÞ

where e is a small complex parameter. (The factor in front of the brackets is to

normalize the states.) The CP-violating decays can then occur in two different

ways: either (a) the CP-forbidden K0
1 component in the K0

L decays via a CP-

allowed processe, giving a contribution proportional to the probability

j" j2½1 þ j" j2��1 	 j" j2 of finding a K0
1 component in the K0

L; or (b) the CP-

allowed K0
2 component in the K0

L decays via a CP-violating reaction. A detailed

analysis of the data for the �� decay modes14 shows that it is the former

mechanism that dominates, with j"j 	 2:2 � 10�3.

This is confirmed in the semileptonic decays

K0 ! �� þ eþ þ �e ð6:57aÞ

13The experiment was led by James Cronin and Val Fitch. They received the 1980 Nobel Prize in Physics for
their discovery.
14See, for example, Ei04.
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and

�KK0 ! �þ þ e� þ ���e: ð6:57bÞ

For example, if we start with a beam of K0 particles, with initially equal amounts

of K0
S and K0

L, then after a time that is large compared with the K0
S lifetime, the K0

S

component will have decayed leaving just the K0
L component, which itself will be

an equal admixture of K0 and �KK
0

components. We would therefore expect to

observe identical numbers of electrons (N�) and positrons (Nþ) from the decays of

Equations (6.57). However, if K0
L is not an eigenstate of CP, then there will be an

asymmetry in these numbers, which will depend on the relative strengths of the K0

and �KK
0

components in K0
L. The asymmetry is given by 2Re ", where " is the CP-

violating parameter defined in Equation (6.56).

Figure 6.17 shows data on the asymmetry ðNþ � N�Þ=ðNþ þ N�Þ as a function

of proper time. After the initial oscillations there is seen to be an asymmetry whose

value is 2Re " 	 3:3 � 10�3, which is consistent with the value of " obtained

from the �� modes. Thus CP-violation in K-decay occurs mainly, though not

entirely, by the mixing of the CP-eigenstates in the physical states rather than by

direct CP-violating decays, both of which are allowed in the CKM mixing scheme.

What do these results mean for the CKM mixing scheme? The CKM matrix is a

3 � 3 matrix and in general contains nine complex elements. However, the unitary

nature of the matrix implies that there are relations between the elements, such as

VudV�
ub þ VcdV�

cb þ VtdV�
tb ¼ 0: ð6:58Þ

Figure 6.17 The charge asymmetry observed for K0 ! ��eþ�e and �KK0 ! �þe����e as a function
of proper time, for a beam that is initially predominantly K0 (adapted from Gj74, copyright
Elsevier, with permission)
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Using these and exploiting the freedom to define the phases of the basic quark

states, the matrix may be parameterized by just four quantities. A number of

different parameterizations are used, but an approximate form that is commonly

used to discuss CP violation is

V ¼
1 � 1

2
�2 � A�3ð�� i�Þ

�� 1 � 1
2
�2 A�2

A�3ð1 � �� i�Þ �A�2 1

0
@

1
Aþ Oð�4Þ; ð6:59Þ

with parameters A; �; � and �. The quantity � ¼ jVusj 	 0:22 plays the role of an

expansion parameter in this approximation and a non-zero value of � would be

indicative of CP violation.

The parameter " in Equations (6.56) is just one CP-violating parameter that may

be measured in various K-decay modes. We will not pursue this further, but note

that by combining the values of the parameters with information on other elements

of the CKM matrix, a value of the CP-violating parameter � may be deduced and

used to predict the size of CP-violating effects in other decays. There are very few

other places where such mixing effects can occur, but in principle they should be

possible in the D0 �DD0 and B0�BB0 systems, which are analogues of the K-mesons, but

with a strange quark replaced by a charmed and bottom quark, respectively.

Mixing in the B0�BB
0

states due to B0�BB
0

oscillations has in fact been observed and

also very recently direct CP violation. The latter was established by comparing the

decay B0 ! Kþ�� with the decay �BB0 ! K��þ. Moreover, the size of the effect is

much stronger than in neutral kaon decays and this is in agreement with the

predictions of the CKM mixing scheme.

There is still much to be done in studying CP violation. For example,

the cleanest measurement of the CP-violating parameter would be from the

decays B0=�BB ! ðJ= ÞK0
S, where J= is the 3S1 ground state of charmonium,

but the present limits on these decays are orders of magnitude from those required

to test the predictions. On the theoretical side, although the CKM mixing model

accounts for all CP-violating data to date, it fails by several orders of magnitude to

account for the observed matter–antimatter asymmetry observed in the universe

(which will be discussed in Chapter 9) and so there is probably a CP-violating

mechanism beyond the standard model awaiting to be discovered.

6.6.2 Flavour oscillations

One interesting consequence of flavour mixing for the K0 – �KK0 system is the

phenomenon of strangeness oscillation, which occurs whenever a neutral kaon is

produced in a strong interaction process. For example, the neutral kaon produced

in the strong interaction

�� þ p ! K0 þ �0

S ¼ 0 0 1 �1
ð6:60Þ
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must necessarily be a K0 state with S ¼ 1, in order to conserve strangeness.

However, if the produced particle is allowed to travel through free space and its

strangeness is measured, one finds that it no longer has a definite strangeness

S ¼ 1, but has components with both S ¼ 1 and S ¼ �1 whose intensities oscillate

with time. These are called strangeness oscillations. The phenomenon is very

similar mathematically to that describing the flavour oscillations of neutrinos we

met in Chapter 3 and enables the mass difference between K0
S and K0

L particles to

be measured with extraordinary precision, as we will now show.

In what follows, we shall measure time in the rest frame of the produced

particle, and define t ¼ 0 as the moment when it is produced. If we ignore the very

small CP violations, the initial state produced in the ��p reaction above is

jK0; pi ¼ 1ffiffiffi
2

p jK0
S ;pi þ jK0

L; pi
� �

: ð6:61Þ

At later times, however, this will become

1ffiffiffi
2

p aSðtÞjK0
S; pi þ aLðtÞjK0

L; pig;
�

ð6:62Þ

where

a tð Þ ¼ e�imt e��t=2 ða ¼ S;LÞ ð6:63Þ

and m and � are the mass and decay rate of the particle concerned. Here the first

exponential factor is the usual oscillating time factor e�iEt associated with any

quantum mechanical stationary state, evaluated in the rest frame of the particle.

The second exponential factor reflects the fact that the particles decay, and it

ensures that the probability

���� 1ffiffiffi
2

p a tð Þ
����
2

¼ 1

2
e��t ða ¼ S;LÞ ð6:64Þ

of finding a K0
S or K0

L decreases exponentially with a mean lifetime 	 ¼ ��1


(a¼ S, L). Because 	S � 	L, for times t such that 	S � t <
	L only the K0
L

component survives, implying equal intensities for the K0 and �KK0 components.

Here we are interested in the intensities of the K0 and �KK0 components at shorter

times, and to deduce these we rewrite the expression

1ffiffiffi
2

p aSðtÞjK0
S; pi þ aLðtÞjK0

L;pi
� �

ð6:65Þ

in the form

A0 tð ÞjK0;pi þ �AA0 tð ÞjK0; pi
� �

; ð6:66Þ

NEUTRAL MESON DECAYS 207



where

A0 tð Þ ¼ 1

2
aS tð Þ þ aL tð Þ½ � and �AA0 tð Þ ¼ 1

2
aS tð Þ � aL tð Þ½ �: ð6:67Þ

The intensities of the two components are then given by

IðK0Þ  jA0 tð Þj2 ¼ 1

4
e��St þ e��Lt þ 2e� �Sþ�Lð Þt=2 cos �mtð Þ
h i

ð6:68aÞ

and

IðK0Þ  j�AA0 tð Þj2 ¼ 1

4
e��St þ e��Lt � 2e� �Sþ�Lð Þt=2 cos �mtð Þ
h i

ð6:68bÞ

where �m  jmS � mLj and we have used Equation (6.63) explicitly to evaluate

the amplitudes.

The variation of the K
0

intensity IðK0Þ with time can be determined experi-

mentally by measuring the rate of production of hyperons (baryons with non-zero

strangeness) in strangeness-conserving strong interactions such as

K
0 þ p ! �þ þ �0

! �0 þ �þ ð6:69Þ

as a function of the distance from the K0 source. The data are then fitted by

Equations (6.68) with �m as a free parameter and the predictions are in good

agreement with the experiments for a mass difference

�m ¼ 3:522 � 0:016ð Þ � 10�12 MeV=c
2: ð6:70Þ

The states K0
S and K0

L are not antiparticles but the K0 and K
0

are, of course, and the

mass difference �m can be shown to arise solely from the possibility of transitions

K $ K
0
, whose magnitude can be calculated from diagrams like that shown in

Figure 6.16. We shall not discuss this further, but merely note that the resulting

agreement between the predicted and measured values confirms the equality

mK0 ¼ m�KK0 to better than one part in 1017. (This should be compared with the

next most precisely tested particle–antiparticle mass relation meþ ¼ me� which

only verified to within an experimental error of the order of one part in 107.) This

equality is a prediction of the so-called CPT theorem, which states that under very

general conditions any relativistic quantum theory will be invariant under the

combined operations of C, P and T.

6.7 Neutral Currents and the Unified Theory

Neutral current reactions are those that involve the emission, absorption or

exchange of Z0 bosons. The unified electroweak theory predicted the existence
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of such reactions before their discovery in 1973. This theory15 was proposed

mainly in order to solve problems associated with Feynman diagrams in which

more than one W boson was exchanged, like that shown in Figure 6.18, which

contributes to the reaction eþ�� ! eþ��.

Such contributions are expected to be small because they are higher order in the

weak interaction and this appears to be confirmed by experimental data, which are

in good agreement with theoretical predictions that neglect them entirely. (For

example, in the experimentally accessible reaction eþ þ e� ! �þ þ ��.) How-

ever, when these higher-order contributions are explicitly calculated, they are

found to be proportional to divergent integrals, i.e. they are infinite. In the unified

theory, this problem is solved when diagrams involving the exchange of Z0 bosons

and photons are taken into account. These also give infinite contributions, but

when all the diagrams of a given order are added together the divergences

cancel (!), giving a well-defined and finite contribution overall.16 This cancellation

is not accidental, but is a consequence of a fundamental symmetry relating the

weak and electromagnetic interactions. Here we will simply comment on some

phenomenological consequences of the theory.

15The formulation of the theory is in terms of four massless vector bosons arranged as multiplets of ‘weak
isospin’ and ‘weak hypercharge’. Specifically, three states are a weak isospin triplet and the fourth is a weak
isospin singlet. The fact that they all have zero masses ensures that gauge invariance is satisfied. These fields
then interact with additional scalar fields associated with new postulated particles called Higgs bosons, which
we have mentioned elsewhere. This process, known as ‘spontaneous symmetry breaking’ generates the
observed masses of the W, Z and � bosons, while still preserving gauge invariance. (For further details see,
for example, Section 8.4 of Pe00.) The originators of this theory, Sheldon Glasow, Abdus Salam and Steven
Weinberg, shared the 1979 Nobel Prize in Physics for their contributions to formulating the electroweak
theory and the prediction of weak neutral currents.
16The first people to demonstrate that this occurred were Gerardus ‘t Hooft and Martinus Veltman. They
shared the 1999 Nobel Prize in Physics for this discovery.

Figure 6.18 Higher order contribution to the reaction eþ�� ! eþ�� from the exchange of
two W-bosons
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The first is that to ensure the cancellation, the theory requires a relation between

the weak and electromagnetic couplings, called the unification condition. This is

e

2
ffiffiffi
2

p
"

1=2
0

¼ gw sin 
W ¼ gz cos 
W; ð6:71Þ

where the weak mixing angle 
W (also called the Weinberg angle after one of the

authors of the theory) is given by

cos 
W  MW=MZ ð0 < 
 < �=2Þ ð6:72Þ

and gz is a coupling constant which characterizes the strength of the neutral current

vertices. The unification condition relates the strengths of the various interactions

to the W and Z masses, and historically was used to predict the latter from the

former before the W� and Z0 bosons were discovered.

Secondly, just as all the charged current interactions of leptons can be under-

stood in terms of the basic W�-lepton vertices, in the same way all known neutral

current interactions can be accounted for in terms of basic Z0-lepton vertices

shown in Figures 6.19(a) and 16.19(b). The corresponding quark vertices can be

obtained from the lepton vertices by using lepton–quark symmetry and quark

mixing, in the same way that W�-quark vertices are obtained from the W�-lepton

vertices. Thus, making the replacements

�e ! u; �� ! c; e� ! d0; �� ! s0 ð6:73Þ

in the lepton vertices

�e�eZ0; ����Z0; e�e�Z0; ����Z0; ð6:74Þ

Figure 6.19 Z0 and � couplings to leptons and quarks in the unified electroweak theory, where
‘ ¼ e; � and 	 and a denotes a quark
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leads to the quark vertices

uuZ0; ccZ0; d0d0Z0; s0s0Z0: ð6:75Þ

Finally, we interpret the latter two of these using Equations (6.30). Thus, for

example,

d0d0Z0 ¼ ðd cos 
C þ s sin 
CÞ ðd cos 
C þ s sin 
CÞZ0

¼ ddZ0 cos2 
C þ ssZ0 sin2 
C þ ðdsZ0 þ sdZ0Þ sin 
C cos 
C ð6:76Þ

When all the terms in Expression (6.75) are evaluated, ones obtains a set of

vertices equivalent to

uuZ0; ccZ0; ddZ0; ssZ0; ð6:77Þ

which are shown in Figure 6.19(c).

One important difference from charged current reactions that follows from

Figure 6.19 is that neutral current interactions conserve individual quark numbers.

Thus, for example, strangeness-changing weak neutral current reactions are

forbidden. An example is the decay K0 ! �þ�� and indeed this is not seen

experimentally, although nothing else forbids it.

It follows from the above that in any process in which a photon is exchanged, a

Z0 boson can be exchanged as well. At energies that are small compared with the

Z0 mass, the Z0-exchange contributions can be neglected compared to the

corresponding photon exchange contributions, and these reactions can be regarded

as purely electromagnetic to a high degree of accuracy. However, at very high

energy and momentum transfers, Z0-exchange contributions become comparable

with those of photon exchange and we are therefore dealing with genuinely

electroweak processes which involve both weak and electromagnetic interactions

to a comparable degree.

These points are clearly illustrated by the cross-section for the muon pair

production reaction eþ þ e� ! �þ þ ��. If we assume that the energy is large

enough for the lepton masses to be neglected, then the centre-of-mass energy E is

the only quantity in the system that has dimensions. Because a cross-section has

the dimensions of area, on dimensional grounds the electromagnetic cross-section

for one-photon exchange is of the form �� 	 2ð�hcÞ2=E2. For Z0-exchange with

E � MZc2, a similar argument gives for the weak interaction cross-section

�Z 	 2
ZE2ð�hcÞ2=ðMZc2Þ4

. (The factor in the denominator comes from the propa-

gator of the Z0-boson.) Thus the one-photon exchange diagram dominates at low

energies, and the cross-section falls as E�2. This is in agreement with the observed

behaviour shown in Figure 6.20 and justifies our neglect of the Z0-exchange

contribution at low energies. However, the relative importance of the Z0-exchange

contribution increases rapidly with energy and at beam energies of about 35 GeV it
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begins to make a significant contribution to the total cross-section. At still higher

energies, the cross-section is dominated by a very large peak at an energy

corresponding to the Z0 mass, as illustrated in Figure 6.20. At this energy the

low-energy approximation is irrelevant and Figure 6.20 corresponds to

the formation of physical Z0 bosons in the process eþ þ e� ! Z0 followed

by the subsequent decay Z0 ! �þ þ �� to give the final-state muons. Finally,

beyond the peak we once again regain the electroweak regime where both

contributions are comparable.

If the exchange of a Z0 boson always accompanies the exchange of a photon,

then there will also in principle be parity-violating effects in reactions that at first

sight we would expect to be purely electromagnetic. Their observation would be

further unambiguous evidence for electroweak unification. This was first tested in

1978 by scattering polarized electrons from a deuterium target and measuring the

parity-violating asymmetry

APV  �R � �L

�R þ �L

; ð6:78Þ

where �Rð�LÞ is the cross-section for incident right (left)-handed electrons. To

produce polarized electrons is a complicated multistage process that starts with

linearly polarized photons from a laser source that are then converted to states with

circular polarization. Finally these are used to pump a GaAs crystal (photocathode)

to produce the require electrons. Polarizations of about 80 per cent are obtained by

this means. The asymmetry is very small and in this experiment APV is predicted to

be only a few parts per million. Nevertheless, a non-zero value was definitely

established. Moreover, APV was also measured as a function of the fractional

energy loss of the initial electron. This is a function of the weak mixing angle and a

Figure 6.20 Total cross-section for the reaction eþe� ! �þ��
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value was found in agreement with other determinations, e.g. from deep inelastic

neutrino scattering. A later experiment confirmed the effect in polarized electron–

proton scattering.

A very recent experiment (2004) has measured APV for e�e� scattering. This

was done using electrons of about 50 GeV primary energy from the SLAC linear

accelerator in Stanford, USA, and scattering them from a liquid hydrogen target.

The experiment was able to distinguish final-state electrons scattered from the

atomic electrons from those scattered from protons. Taking account of all sources

of error, the measured value was APV ¼ ð�175 � 40Þ � 10�9 (note the exponent –

parts per billion) and the experiment also yielded a value of sin2 
W consistent with

other determinations. These remarkable experiments provide unambiguous evi-

dence for parity violation in ‘electromagnetic’ processes at the level predicted by

theory and hence for the electroweak unification as specified in the standard

model.17

It should also in principle be possible to detect parity violating effects in atomic

physics, where the electromagnetic interactions of the electrons dominate. For

example, measurements have been made of the slight change in the polarization

angle of light passing through a vapour of metallic atoms. In this case the rotation

angle is extremely small (
10�7 rad), but very sensitive experiments can measure

the effect to an accuracy of 
1 per cent. However, to predict the size of the effects

requires a detailed knowledge of the atomic theory of the atom and in all cases to

date the uncertainties on the predictions are such that a null effect cannot be ruled

out. Thus at present, atomic physics does not compete with particle physics

experiments in detecting parity-violating effects and measuring sin2 
W, although

this could change in the future.

Problems

6.1 Define charged and neutral current reactions in weak interactions and give an

example of each in symbol form. How do they differ in respect of conservation of

the strangeness quantum number? Why does observation of the process

���� þ e� ! ���� þ e� constitute unambiguous evidence for weak neutral currents,

whereas the observation of ���e þ e� ! ���e þ e� does not?

6.2 The reaction eþe� ! �þ�� is studied using colliding beams each of energy 7 GeV

and at these energies the reaction is predominantly electromagnetic. Draw its lowest

order Feynman diagram. The differential cross-section is given by

d�

d�

� 	
¼ 2�h2c2

4E2
CM

1 þ cos2 

� �

;

17Incidentally, all these experiments are of the fixed-target type, showing that this type of experiment still has
a lot to offer.
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where ECM is the total centre-of-mass energy and 
 is the scattering angle with

respect to the beam direction. Calculate the total cross-section in nanobarns at this

energy.

The weak interaction also contributes to this process. Draw the corresponding

lowest-order Feynman diagram. The weak interaction adds an additional term to the

differential cross-section of the form

d�

d�

� 	
¼ 2�h2c2

4E2
CM

Cwk cos 
:

The constant Cwk may be determined experimentally by measuring the ‘forward–

backward’ asymmetry, defined by

AFB ¼ �F � �B

�F þ �B

;

where �Fð�BÞ is the total cross-section for scattering in the forward (backward)

hemisphere, i.e. 0 � cos 
 � 1 ð�1 � cos 
 � 0Þ. Derive a relation between Cwk

and AFB.

6.3 Draw a Feynman diagram at the quark level for the decay � ! p þ ��. If nature

were to double the weak coupling constant and decrease the mass of the W boson by

a factor of four, what would be the effect on the decay rate �ð� ! p þ ��Þ?

6.4 Neglecting the electron mass, the energy spectrum for the electrons emitted in muon

decay is give by

d!

dEe

¼ 2G2
Fðm�c2Þ2

E2
e

ð2�Þ3ð�hcÞ6
1 � 4Ee

3m�c2

� 	
:

What is the most probable energy for the electron? Draw a diagram showing the

orientation of the momenta of the three outgoing particles and their helicities for the

case when Ee 	 m�c2=2. Show also the helicity of the muon. Integrate the energy

spectrum to obtain an expression for the total decay width of the muon. Hence

calculate the muon lifetime in seconds ðGF=ð�hcÞ3 ¼ 1:166 � 10�5 GeV�2Þ:

6.5 Use lepton universality and lepton–quark symmetry to estimate the branching ratios

for (a) the decays b ! c þ e� þ ���e (where the b and c quarks are bound in hadrons)

and (b) 	� ! e� þ ���e þ �	 . Ignore final states that are Cabibbo-suppressed relative

to the lepton modes.

6.6 The couplings of the Z0 to right-handed (R) and left-handed (L) fermions are given by

gRðf Þ ¼ �qf sin2 
W; gLðf Þ ¼ �1=2 � qf sin2 
W;

where qf is the electric charge of the fermion f in units of e and 
W is the weak

mixing angle. The positive sign in gL is used for neutrinos and the q ¼ u; c; t
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quarks; the negative sign is used for charged leptons and the q ¼ d; s; b quarks. If

the partial width for Z0 ! f�ff is given by

�f ¼
GFM3

Zc6

3�
ffiffiffi
2

p
ð�hcÞ3

g2
Rðf Þ þ g2

Lðf Þ
� �

;

calculate the partial widths to neutrinos �� and to q�qq pairs �q and explain the

relation of �q to the partial width to hadrons �hadron.

The widths to hadrons and to charged leptons are measured to be

�had ¼ ð1738 � 12Þ MeV and �lep ¼ ð250 � 2ÞMeV, and the total width to all

final states is measured to be �tot ¼ ð2490 � 7Þ MeV. Use these experimental results

and your calculated value for the decay width to neutrinos to show that there are

only three generations of neutrinos with masses M� < MZ=2.

6.7 Explain, with the aid of Feynman diagrams, why the decay D0 ! K� þ �þ can

occur as a charged-current weak interaction at lowest order, but the decay

Dþ ! K0 þ �þ cannot.

6.8 Why is the decay rate of the charged pion much smaller than that of the neutral pion?

Draw Feynman diagrams to illustrate your answer.

6.9 Draw the lowest-order Feynman diagrams for the decays �� ! �� þ ��� and

K� ! �� þ ����. Use lepton–quark symmetry and the Cabibbo hypothesis with the

Cabibbo angle 
C ¼ 12� to estimate the ratio

R  RateðK� ! �� þ ����Þ
Rateð�� ! �� þ ����Þ

;

ignoring all kinematic and spin effects. Comment on your result.

6.10 Estimate the ratio of decay rates

R  �ð�� ! n þ e� þ ���eÞ
�ð�� ! �þ e� þ ���eÞ

and explain why the decay �ð�þ ! n þ eþ þ �eÞ has never been seen.

6.11 One way of looking for the Higgs boson H is in the reaction eþe� ! Z0H. If this

reaction is studied at a centre-of-mass energy of 500 GeV in a collider operating for

107 s per year and the cross-section at this energy is 60 fb, what instantaneous

luminosity (in units of cm�2 s�1) would be needed to collect 2000 events in one year

if the detection efficiency is 10 per cent. For a Higgs boson with mass

MH < 120 GeV, the branching ratio for H ! b�bb is predicted to be 85 per cent.

Why will looking for b quarks help distinguish eþe� ! Z0H from the background

reaction eþe� ! Z0Z0?

6.12 Hadronic strangeness-changing weak decays approximately obey the so-called

‘�I ¼ 1
2

rule’, i.e. the total isospin changes by 1
2

in the decay. By assuming a
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fictitious strangeness zero I ¼ 1
2

particle S0 in the initial state, find the prediction of

this rule for the ratio

R  �ð�� ! �þ ��Þ
�ð�0 ! �þ �0Þ :

Assume that the state j�0; S0i is an equal mixture of states with I ¼ 0 and I ¼ 1.

6.13 The charged-current differential cross-sections for � and ��� scattering from a spin-1
2

target are given by generalizations of Equations (6.37) and (6.40) and may be written

d�CCð�Þ
dy

¼ 1

�

G2Hs

ð�hcÞ4
;

d�CCð���Þ
dy

¼ d�CCð�Þ
dy

ð1 � yÞ2;

where s ¼ E2
CM, y ¼ 1

2
ð1 � cos 
Þ and H is the integral of the quark density for the

target (cf. Equation (6.43)). The corresponding cross-sections for neutral current

scattering are

d�NCð�Þ
dy

¼ d�CCð�Þ
dy

½g2
L þ g2

Rð1 � yÞ2�;

d�NCð���Þ
dy

¼ d�CCð�Þ
dy

½g2
Lð1 � yÞ2 þ g2

R�;

where the right- and left-hand couplings to u and d quarks are given by

gLðuÞ ¼
1

2
� 2

3
sin2 
W; gRðuÞ ¼ � 2

3
sin2 
W;

gLðdÞ ¼ � 1

2
þ 1

3
sin2 
W; gRðdÞ ¼

1

3
sin2 
W:

Derive expressions for the ratios �NCð�Þ=�CCð�Þ and �NCð���Þ=�CCð���Þ in the case of

an isoscalar target consisting of valence u and d quarks only.
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