
27.	Speci�ic	Heat	Capacities	of	Gases

Short	Answer

No, the number of speci�ic heat capacities of gas is in�inite as it depends on the
thermodynamic process followed by the gas.

The speci�ic heat capacity of a substance is de�ined as the amount of heat required
to raise the temperature of one mole of that substance by 1 degree Celsius, or 1
Kelvin. It is denoted by C.

Gases are compressible substances. They have two well-known speci�ic heat
capacities: one at constant pressure(Cp)(isobaric process - constant pressure) and
another at constant volume(Cv)(isochoric process - constant volume). However,
gases can have many speci�ic heat capacities depending on the other
thermodynamic processes they follow, like adiabatic process, isothermal process,
etc.

The speci�ic heat capacity of a substance is de�ined as the amount of heat required
to raise the temperature of one mole of that substance by 1 degree Celsius, or 1
Kelvin. It is denoted by C.

Hence, , … (i)

where

C = speci�ic heat capacity

Q = heat required to raise the temperature by dT

m = molar mass

dT = change in temperature.

For constant temperature, dT = 0. Putting this value in (i), we get

Answer.1

Answer.2



Hence, for a process at a constant temperature, the speci�ic heat capacity is in�inite.

The speci�ic heat capacity of a substance is de�ined as the amount of heat required
to raise the temperature of one mole of that substance by 1 degree Celsius, or 1
Kelvin. It is denoted by C.

Hence, , … (i) where

C = speci�ic heat capacity

Q = heat required to raise the temperature by dT

m = molar mass

dT = change in temperature.

For an adiabatic process, Q = 0. Substituting this value in (i), we get

C = 0.

Hence, for a process at a constant temperature, the speci�ic heat capacity is zero.

p(at constant pressure)
and Cv(at constant volume).

Solids are almost incompressible.

Hence, the values of Cp and Cv are such that Cp > Cv, but they are almost equal
since the dependence on heat capacities is very less in the case of solids.

Since the values of Cp and Cv are not that different, Cp - Cv is much less than R.

Answer.3

Answer.4

Yes, a solid also has two kinds of molar heat capacities, C



P - CV = R … (i)

where

Cp = speci�ic heat constant at constant pressure

Cv = speci�ic heat constant at constant volume

R = universal gas constant

Multiplying by n x dT on both sides of (i), we get

nCPdT - nCvdT = nRdT

which gives

(dQ)P - (dQ)v = nRdT …(ii)

Since (dQ)p = nCpdT and (dQ)v = nCvdT … (iii)

Where

n = number of moles

dT = change in temperature

(dQ)p = change in heat at constant pressure

(dQ)v = change in heat at constant volume

However, for a real gas, the internal energy depends on the temperature as well as
the volume.

Hence, there will be an additional term on the right-hand side of (ii) which will
indicate the change in the internal energy of the gas with volume at constant
pressure. Let this term be u.

Hence, for a real gas, (ii) becomes :

(dQ)p - (dQ)v = nRdT + u … (iv)

Again, dividing on both sides by ndT, we get

 … (v),

which is greater than R.

Answer.5

We know that, for an ideal gas,

C



Here,

Cp = speci�ic heat constant at constant pressure

Cv = speci�ic heat constant at constant volume

R = universal gas constant

n = number of moles

dT = change in temperature

Hence, from (v), we get Cp - Cv > R.

We conclude that for a real gas, Cp - Cv > R.

vdT + dW … (i),

where

dQ = heat supplied

dU = change in internal energy

dW = work done on the gas

n= number of moles

Cv = speci�ic heat capacity at constant volume

dT = change in temperature

For an adiabatic process, dQ(heat supplied) = 0.

An adiabatic process occurs without the transfer of heat or mass of substances
between the thermodynamic system and the surrounding.

For an isothermal process, dT(change in temperature) = 0

An Isothermal process is a change of system, in which the temperature remains
constant ∆T=0.

Putting these values in (i), we get

dW = 0,

which is not possible for either of the processes.

Answer.6

According to the �irst law of thermodynamics,

dQ = dU + dW = nC



dW = 0 only in the case of a process where the volume is constant that is dV = 0,

since dW = PdV,

where P = pressure and dV = change in volume.

Hence, we conclude that a process cannot be both adiabatic and isothermal.

On solving for , we get

 … (ii)

For a graph of P versus V, dP/dV indicates the slope.

Hence, for an isothermal process, the slope of the p-V diagram is given by -P/V.

Now for an adiabatic process, the ideal gas equation is

PVγ= constant … (iii),

where

P = pressure,

V = volume,

γ = ratio of speci�ic heat capacities at constant pressure and constant volume.

Differentiating both sides of (ii), we get

V𝛾dP + 𝛾V𝛾-1PdV = 0 which gives

Answer.7

For an isothermal process, the ideal gas equation is given as

PV = constant … (i),

Where

P = pressure

V = volume.

Differentiating on both sides of (i), we get

PdV + VdP = 0



… (iv)

Hence, for an adiabatic process, the slope of the p-V diagram is given by -𝛾P/V.

Since 𝛾 > 1, we �ind that 𝛾P/V is greater than P/V, which concludes that slope of p-
V diagram of an adiabatic process is steeper than that of an isothermal
process(proved).

in P and vice versa. Hence, an isothermal process is usually a slow process.

On the other hand, an adiabatic process is represented as

PV𝛾 = constant … (ii), where

P = pressure

V = volume

The 𝛾= ratio of speci�ic heat capacities at constant pressure to constant volume.

Now, 𝛾 > 1. Hence, the term V𝛾 will increase exponentially. Hence, to keep the
product constant, a small change in V will cause a large change in P. Hence, an
adiabatic process is usually a fast process.

Answer.8

An isothermal process is represented by the equation

PV = constant … (i),

where

P = pressure

V = volume.

To keep this product constant, a small change in V will only produce a small change

Answer.9

An isothermal process is represented by

PV = constant … (i),

where P = pressure, V = volume.



This gives

P1 V1 = P2 V2 (ii),

Where

P1, V1 = initial values of pressure and volume

P2, V2 = �inal values of pressure and volume.

An adiabatic process is represented by

PV𝛾 = constant… (iii),

where

P = pressure,

V = volume,

𝛾 = ratio of speci�ic heat capacities at constant pressure and constant volume.

From (iii), we get

P1V1
𝛾 = P2V2

𝛾… (iv),

Where P1, V1 = initial values of pressure and volume

P2, V2 = �inal values of pressure and volume.

Dividing (iv) by (ii), we get

V1
𝛾-1 = V2

𝛾-1 … (v)

If the condition given by (v) is satis�ied, then two states of an ideal gas can be
connected by both an isothermal and an adiabatic process.

 = 1.29

Formula	used:

 … (i),

Answer .10

Given:



where

γ = ratio of molar heat capacities at constant pressure to constant volume

f = number of degrees of freedom

(i) becomes :

=> … (ii)

Substituting γ = 1.29 in (ii), we get

f =  = 6.89 which is approximately equal to 7.

Thus, the number of degrees of freedom is approximately equal to 7.

Objective	I

A and for B, let it be CB.

Since the work done by the gas in process A is twice that in B, and the rise in
temperature is the same in both the cases, we get two equations:

Answer.1

Q = nCdT … (i),

where Q = work done by an ideal gas

n = number of moles

C = molar heat capacity

dT = rise in temperature.

For process A, let the value of C be C



2Q = nCAdT … (ii) and

Q = nCBdT … (iii),

Where

Q = work done in process B

n = number of moles of gas

dT = rise in temperature

Dividing (ii) by (iii), we get

=> CA = 2CB

This proves that CA>CB.

For solids which have a small expansion coef�icient, the work done on the solid is
pretty small. Hence, the speci�ic heat at constant pressure and at a constant volume
only slightly different since the work done depends very little on the process.
Hence, Cp is slightly greater than Cv but much less than R as in the case of ideal
gases.

Answer.2



p - Cv = R. This represents an ideal gas. Now, for an ideal gas, we
require very high temperature and very low pressure compared to a real gas

For gas in state B, Cp - Cv = 1.08R, which represents a real gas. Since gas A was
ideal, its pressure must be much lower than that of B and temperature must be
much higher than that of A.

Hence, we require the condition pA < pB and TA > TB. This is given by option (a).

Options (b), (c) and (d) are incorrect because none of those satis�ies the conditions
for an ideal gas.

p - Cv = R.

Here, R is the universal gas constant.

Hence, the correct option is (c).

Option (a) is incorrect since Cp/Cv = ℽ, which differs for monoatomic, diatomic or
polyatomic gases. Here ℽ = ratio of molar heat capacities at constant pressure and
constant volume.

Option (b) is incorrect since CpCv = ℽCv
2, which is not a constant as ℽ varies.

Option (d) is incorrect since Cp + Cv = (ℽ+1)Cv, which is not a constant as ℽ varies.

Answer.3

For gas in state A, C

Answer.4

For an ideal gas, C



pdT… (i),

Where

Q = heat required to raise the temperature

n = number of moles

Cp = speci�ic heat capacity at constant pressure

dT = rise in temperature.

In this �irst case,

Amount of heat required(Q) = 70 cal

Number of moles(n) = 2 mol

Rise in temperature(dT) = (35-30)0C = 50C

Hence, from (i), we get Cp = 7 calmol-1 0C-1

Now, we know, Cp - Cv = R,

Where

Cp = speci�ic heat capacity at constant pressure

Cv = speci�ic heat capacity at constant volume

R = universal gas constant = 1.98 calmol-1 0C-1

Therefore, we get Cv = Cp - R = (7-1.98) cal mol-1 0C-1

= 5.02 cal mol-1 0C-1

Now, in the new case, change in temperature dT = 50C as before. Number of
moles(n) = 2, and Cv = 5.02 calmol-1 0C-1

Answer.5

We know that, Q = nC



Hence, amount of heat required to raise the temperature of the same gas through
the same range

dQ = nCvdT = (2 x 5.02 x 5) cal = 50.2 cal which is approximately equal to 50 cal.

Hence, the correct option is (b).

We consider the process AB to be composed of two processes, AC(at constant
pressure) and CB(at constant volume), such that AB = AC + CB. C is the molar heat
capacity of AB, Cp is the molar heat capacity of AC(constant pressure) and Cv is the
molar heat capacity of CB(constant volume).

From the �irst law of thermodynamics, we know that Q = U + W … (i),

Where Q = heat supplied, U = change in internal energy, W = work done on the
system.

Since the change in internal energy is independent of the path, it will have the same
value for paths AB and ACB.

Hence, UAB = UACB … (ii), where UAB = change in internal energy for path AB, UACB
= change in internal energy for path ACB.

Now, the work done by a process is given by the area under the PV diagram. We can
clearly see that the area under process AB is greater than the sum of areas under
processes AC and CB.

Answer.6

Let us consider the �igure given below :



Hence, WAB > WACB … (iii), where WAB = work done for process following path AB,
WACB = work done for process following path ACB.

Adding (ii) and (iii), we get :

UAB + WAB > UACB + WACB … (iv)

But, from the �irst law of thermodynamics, Q = U + W, where Q = heat supplied, U =
change in internal energy, W = work done on the system.

Hence, we get, QAB > QACB … (v),

We know, QAB = nCdT, QAC = nCpdT, QCB = nCvdT,

where QAB = heat supplied in process AB

QAC = heat supplied in process AC

QCB = heat supplied in process CB

n = number of moles

C = molar heat capacity

Cp = molar heat capacity at constant pressure

Cv = molar heat capacity at constant volume

dT = change in temperature.

Also, QACB = QAC + QCB … (vi), where

QACB = heat supplied in process ACB

QAC = heat supplied in process AC

QCB = heat supplied in process CB

Hence, from (v), we get,

nCdT > nCpdT + nCvdT

Dividing by ndT on both sides :

C > Cp + Cv => C > Cv (option c)



Given : which gives us

pVg = K, where p = pressure, V = volume, and g and K are constants. This represents
an adiabatic process.

In an adiabatic process, Q(heat exchanged) = 0.

Now we know that Q = nCdT,

where n = number of moles, C = speci�ic molar heat capacity and dT = rise in
temperature.

Since Q = 0, we get C = 0.

Hence, the correct option is (d).

1 and V1, and let the �inal values
of pressure and volume be P2 and V2.

Now for an isothermal process, PV = constant .. (i)

This gives us: P1V1 = P2V2.. (ii)

Answer.7

Answer.8

Let the initial values of pressure and volume be P



Since the pressure increases by 0.5%, the new pressure is

Substituting this value in (ii) :

P1V1 = 1.005P1V2

=> .

Hence, the volume decreases by (1-0.995) = 0.005 = 0.5%

Hence, the correct option is (b).

For an adiabatic process, PV𝛾 = constant … (i)

If P1, V1 represents the initial values of pressure and volume and P2, V2 represent
the �inal values of pressure and volume,

P1V1
𝛾 = P2V2

𝛾… (ii)

Now, 𝛾 = 1.4 (given).

It is given that the pressure increases by 0.5%.

Hence, .

Substituting in (ii) :

P1V1
𝛾 = 1.005 X P1V2

𝛾

=> (V1/V2)γ = 1.005 … (iii)

Taking log on both sides of (iii), we get

Answer.9



 … (iv)

Taking inverse log on both sides of (iv), we get

V1/V2 = 100.0014 = 1.003

=> V2 = V1/1.003 = 0.997V1

Hence, the volume decreases by (1-0.997) = 0.003 which is approximately equal to
0.36%.

Hence, the correct option is (a).

Adiabatic process is represented by : PV𝛾 = constant,

where P = pressure

V = volume

ℽ = ratio of speci�ic heat capacities at constant pressure and constant volume

Therefore, we get PA = constant/Vℽ. .. (i)

Isothermal process is given by : PV = constant

Hence, we get PB = constant/V … (ii)

Since ℽ > 1, we get pA < pB. (proved)

Answer.10



Let Ta and Tb be the �inal temperatures of the samples A and B respectively in the
previous question.

A. Ta < Tb

B. Ta = Tb

C. Ta > Tb

D. The relation between Ta and Tb cannot be deduced.

Since sample B undergoes isothermal expansion, its temperature remains constant
= Tb.

For an adiabatic process, since the heat supplied is 0, the internal energy will
change by an amount dU = nCvdT,

where dU = change in internal energy

n = number of moles

Cv = speci�ic heat capacity at constant volume

dT = change in temperature

This change in internal energy will compensate for the constancy in heat.

Sample B is undergoing expansion through an isothermal process; its initial and
�inal temperatures will be the same.

Sample A will expand at the cost of its internal energy.

Therefore, the �inal temperature will be less than the initial temperature,

since dU < 0 => dT < 0.

Tb-Ta<0

Tb>Ta or Ta<Tb

Hence, we get Ta>Tb.

Answer.11



We know that for any given state, the slope of the p-V diagram of an adiabatic
process is -γP/V, while that of an isothermal process is -P/V.

Hence, the slope of an adiabatic process is more.

Now, the area under the curve of a p-V diagram gives the work done.

From this diagram, we can see that that area under the curve of process A(ACDE)
which represents the adiabatic process with greater slope is less than that of the
area under the curve of process B(ABDE), which represents the isotherm.

Hence, we can conclude that ΔWa < ΔWb

We know that the molar heat capacity of any gas depends on the degrees of
freedom of the gas. On increasing the temperature of the gas, we allow more
molecules to vibrate about their equilibrium positions, which in turn increases the
degrees of freedom of the gas. For this reason, the molar heat capacity increases as
the temperature of the gas are increased.

Hence, the correct answer is an option (d).

Objective	II

Answer.12

Answer.13



for any heat to allow to enter or leave the container. Hence, it must be very nearly
an adiabatic process. If the temperature remains constant during this process, then
the process may also be isothermal. Option (a) is incorrect because it must be very
nearly adiabatic but might not be completely depending on how

sudden the process is.

Option (b) is incorrect because if the compression is indeed done suddenly, then
the temperature of the gas does not remain constant, and it may not be isothermal.
It changes with the pressure and the volume of the gas according to the formulae:

i. 

ii. PVᵞ = constant

Where,

P1, V1, T1: initial values of pressure, volume and temperature

P2, V2, T2: �inal values of pressure, volume and temperature

𝛄: adiabatic index, varies from gas to gas

Therefore, the correct answers are option (c) and (d).

Answer.1

Since the gas kept in the container is suddenly compressed, there is very little time



In an isothermal process, the temperature remains constant. The internal energy of
an ideal gas is a state function that depends on temperature. Hence, change in
internal energy is zero and from the �irst law of thermodynamics: ΔU = Q - W,
where ΔU = change in internal energy, Q = amount of heat given and W = work done
by it.

Since ΔU = 0 in this case, we get Q = W.

Options (a) and (b) are incorrect because we actually provide a �inite amount of
heat to the system, and hence work is also not zero.

Option (c) is incorrect because we just showed that Q = W.

Hence, the correct option is option (d).

In an adiabatic process, we assume that there is no heat exchange between the
system and surroundings.

Hence, Q = 0. Also, U = W(when Q = 0), so Q ≠ W holds.

Option (b) is incorrect because due to change in temperature, there is still a change
in internal energy and from the �irst law of thermodynamics, ΔU = W. Hence W ≠ 0.

Option (c) is incorrect because the heat exchange is zero, but the work done in
general is not zero.

Hence, the correct answers are option (a) and (d).

Answer.2

Answer.3



process A.

Now in an isothermal process, under constant temperature, Pressure(P) x
Volume(V) = constant … (i) (according to Boyle’s law)

Differentiating on both sides:

PdV + VdP = 0.

slope =  =  … (ii)

For an adiabatic process,

PVᵞ = constant

Where,

𝛾 is the ratio of speci�ic heat of the gas at constant pressure and constant volume.

Differentiating the above question, we get

VᵞdP + 𝛾V𝛾-1PdV= 0

which is greater than that in case of the isothermal process.

Thus path (A) is for isothermal process while path (B) is for the adiabatic process.

Options (a) and (b) are incorrect since the slopes of the two paths Differ.

Option (d) is incorrect because the slope of path (A) is less than that of path (B).

Hence, the correct answer is option (c).

A. both the processes are isothermal

B. both the processes are adiabatic

C. A is isothermal and B is adiabatic

D. A is adiabatic and B is isothermal

Answer.4

From the graph, we can see that the slope of process B is steeper than that of



vdT.

where n = no. of moles, Cv = speci�ic heat of the gas at constant volume, and dT =
change in temperature.

Cv is different for oxygen(diatomic gas) but same for helium and neon(monoatomic
gases) so dT for oxygen is different.

W for adiabatic process = (P2V2-P1V1)/(1-𝛾)

In all cases, V2 = V1/2.

P1, V1, T1 - initial pressure, volume and temperature

P2, V2, T2 - �inal pressure, volume and temperature

V1, P1 are same for all gases and so is W. Only 𝛾 for oxygen is different compared to
helium and neon since it is a diatomic gas while the rest are monoatomic.

Hence, options (c) and (d) are correct.

vdT.

Where,

n is the number of mole of the ags

Answer.5

Since this is an adiabatic process, Q(heat) = 0.

Hence, dU(change in internal energy) = dW(work done) = nC

Answer.6

Let us use the formula,

Heat supplied to a gas, dQ = nC



Cv is the speci�ic heat of the gas at constant volume T is the temperature

Putting the values in the above formula, we get

dQ = 3.0 cal = (3.0 x 4.2)J = 12.6 J.

dT = 1°C, n = 1.

Therefore, Cv is approximately equal to 12.6 J/mol/°C ~ 1.5R = 3R/2

We know, 

Where Cp = speci�ic heat at constant pressure

R = universal gas constant = 8.314 J/kg/mol

 which holds for monoatomic gases.

Helium and Argon are monoatomic and so options (a) and (b) hold.

According to the law of equipartition of energy, the Kinetic energy associated with
each degree of freedom of a molecule is kT/2,

KE= 

where k is Boltzmann constant,

T is absolute temperature.

f is the number of degrees of freedom

The number of degrees of freedom of a system is the minimum number of
coordinates required to completely describe its position and orientation.

Now argon,

which is a monoatomic gas, can only translate along the x, y and z axes.

Answer.7



Hence, it has 3 degrees of freedom. Now, for a system,

total associated energy is:

Total energy of all the degrees of freedom, 

Where

E = total energy,

f = number of degrees of freedom

k = Boltzmann constant = 1.38 x 10-23m2 kg s-2 K-1

T = absolute temperature (Kelvin)

For argon, f = 3. Therefore,  which is minimum.

Options (b) and (c) are incorrect since they are diatomic and

have more than 3 degrees of freedom(translational and rotational degrees of
freedom of 2 molecules).

Option (d) is incorrect since carbon dioxide is triatomic and has

more than 3 degrees of freedom(translational and rotational degrees of freedom of
3 molecules).

Hence, the correct answer is option (a).

Exercises

v(monoatomic gas) = 3R/2 = 12.471
J/mol/K

R = universal gas constant = 8.314 J/mol/K

Initial velocity(vi) = 50 m/s

Final velocity(vf) = 0

Answer.1

Given:

number of moles, n = 1

Speci�ic heat at constant temperature, C



Molecular weight(m) = 20 g/mol = 0.02 kg/mol

Formula	Used:

i. Change in internal energy(dU) = nCvdT,

Where,

n is the number of the moles of the gas,

Cv is the heat capacity at the constant volume

dT = rise in temperature.

ii. Mechanical energy lost, 

Where,

m is the molecular weight of the gas in kg

vi is the initial velocity,

vf is the �inal velocity,

equating equation (i) and (ii), we get

Putting the values in the above equation, we get

=> dT = rise in temperature ~ 2 K (Answer).

Speci�ic heat at constant volume(Cv) = = 0.172 cal g–1°C–1

Mechanical equivalent of heat = 4.2 J cal–1

Answer.2

Given:

Mass of the gas(m) = 5g

Change in temperature(dT) = 10°C



Formula	used:

Change in internal energy = mCvdT

Where,

m = Mass of the gas

Cv = Speci�ic heat at constant volume

dT = Change in temperature

Also, we know,

Heat(Joule)= Mechanical equivalent of heat× Heat(cal)

Putting the values in the above formula, we get

= (5x10x0.172) cal

= 8.6 cal = (8.6x4.2)J

= 36.12 J (Answer)

Area(A) = 100 cm2 = (100x10-4)m2 (since 1m = 100 cm)

Acceleration due to gravity, g = 10 ms-2

Atmospheric pressure = 100 kPa

Distance through which it moves = 20 cm

Answer.3

Given:

Mass of piston(m) = 50 kg



γ = 1.4

Formula	used:

Therefore, pressure exerted by piston =  = 

= ((50x10)/(100x10-4)) Pa

= 50,000 Pa

Atmospheric pressure = 100 kPa = 1,00,000 Pa.

Therefore, Total pressure(P) = (50,000 + 1,00,000)Pa

=1,50,000Pa

Work done = Pressure x change in volume = P x dV

dV(change in volume) = distance moved by piston x Area

= (20cm x 100cm2)

= 2,000 cm3 = 2,000 x 10-6 m3 = 2 x 10-3 m3

Therefore, Work = (1,50,000 x 2 x 10-3) J = 300 J

Work done, W= P∆V =n R dT

We get,

Now, We calculate Q:

dQ= nCpdt =

Given: γ = 1.4 =  . Also, . Solving these two equations, we get Cp =

7R/2, Cv = 5R/2.

Hence, dQ =  = 1050 J.

Answer.4



Given:

Speci�ic	heat	at	constant	volume	is	Cv	=2.4	cal	g-1oC-1

Speci�ic heat at constant pressure is Cp=3.4 cal g-1oC-1

Molecular mass of hydrogen is 2 g mol-1

Gas constant, R=8.3× 107 gmol

Formula	used:

Where:

m is the molecular weight of hydrogen

Cp is the speci�ic heat at constant pressure

Cv is the speci�ic heat at constant volume

R is the gas constant.

Putting the values in the above equation , we get

The gas constant R= (m X Cp ) - (m X Cv) = 2 × (Cp-Cv)= 2×J

Now, 2× J=R

2× J=8.3 × 107 erg/ mol-oC

Thus, J=4.15 × 107 erg/cal (Answer).

v = speci�ic heat capacity at constant volume,

Answer.5

Given:

n = number of moles = 1,

C



Cp = speci�ic heat capacity at constant pressure

dT = change in temperature = 50K.

γ= Ratio of molar heat capacities = CP/CV = 7/6 => Cv = 6Cp/7.

(a) Formula	used:

Pressure constant: Isobaric process. For an isobaric process,

change in internal energy dU = nCvdT,

Where

n = number of moles,

Cv = speci�ic heat at constant volume,

dT = rise in temperature

Also, Cp-Cv = R.

Cp = speci�ic heat at constant pressure

Cv = speci�ic heat at constant volume

R = universal gas constant = 8.314 J/mol/K

Substituting: Cp - 6Cp/7 = Cp/7 = R => Cp = 7R.

Therefore Cv = Cp - R = 6R = (6 X 8.314)J/mol/K

Therefore,

dU = 1 mol X (6 X 8.314)J/mol/K X 50K = 2494.2 J(Ans)

(b) Volume constant: Isochoric process, dV = 0(change in volume)

First law of thermodynamics gives us: dU = dQ - dW

Where dU = change in internal energy, dQ = change in heat,

dW = work done = Pressure x change in volume = PdV

Since dV = 0, dU = dQ.

Hence, dU = nCvdT since dQ = nCvdT.

Where

n = Number of moles,

Cv = Speci�ic heat at constant volume,



dT =Change in temperature

Putting the values in the above formula, we get

Therefore, dU = 1 mol x (6 x 8.314) J/mol/K x 50K

= 2494.2 J(Ans)

(c) Adiabatic process: dQ(heat change) = 0. Therefore,

dU(change in internal energy) = dW(work done)

Since dQ = dU + dW.

For an adiabatic process, dW = dT/(𝛾-1).

dW = work done, dT = change in temperature

𝛾 = Cp/Cv = 7/6 , Cp = speci�ic heat capacity at constant

pressure, Cv = speci�ic heat capacity at constant volume

Therefore dU = - dW = -  = (8.314X50)/(7/6 - 1)

= 2494.2 J (Ans)

Pressure, p= 1.0 × 105 Pa,

Temperature, T = 300K,

Universal gas constant, R = 8.314 J/kg/mol

V(volume) = 1.0 × 103 cm3 = 0.001 m3

Formula	used:

1. Ideal gas equation: PV = nRT.

Where,

P = pressure,

Answer .6

Given:



V = volume,

n = number of moles,

R = universal gas constant = 8.314 J/kg/mol,

T = absolute temperature

2. Number of moles n = PV/RT = 100000x0.001/(8.314*300) = 0.04 mol

3. First law of thermodynamics: dQ = dU + dW = dU + PdV,

Where,

dQ = heat supplied,

dU = change in internal energy,

dW = PdV = work done, where P = pressure, dV = change in volume.

Since volume is constant, dV = 0 => dW = 0.

Hence, dQ = dU.

Heat(dQ) = 2 cal = nCvdT = 0.04 mol x Cv x 1K ,

Where n = number of moles, Cv = speci�ic heat at constant volume, dT = rise in
temperature.

=> Cv = 50 cal/mol/K. = (50 x 4.2 × 107)erg/cal x cal/mol/K = 2.1 x 109 erg/mol/K
= 210 J/mol/K,

Since heat(J) = mechanical equivalent of heat x heat(cal) = 4.2 x heat(cal), and

1 J = 107 erg

We know, Cp = (Cv+R),

Where Cp = speci�ic heat at constant pressure, Cv = speci�ic heat at constant
volume, R = universal gas constant = 8.314 J/kg/mol

Therefore, Cp = (210+8.314) J/mol/K = 218.314 J/mol/K.

Therefore, heat required to raise the temperature by 1°C at constant pressure =
nCpdT,

Where n = number of moles, Cp = speci�ic heat at constant pressure, dT = rise in
temperature.

Hence, substituting, heat = (0.04 x 218.314 x 1) J = 8.737 J = (8.737/4.2) cal = 2.08
cal (since 1 J = 4.2 cal)(Ans)



(a) Pressure(P) = 2.0 × 105 Pa, dV(change in volume) = (200-100) cm3 = 10-4m3,
since 1 m3 = 106 cm3

Heat(dQ) = 50 J.

Formula	used:

Now we know, dQ = dU(change in internal energy) + dW(work)=

dU + PdV (�irst law of thermodynamics),

Where P = pressure, dV = change in volume.

=> dU = dQ - PdV = (50 - (2.0 × 105 x 10-4)) J = 30 J (Ans)

(b) For constant pressure, from equation of state PV/T = constant,

Where P = pressure, V = volume, T = temperature.

Hence we get: = , where

V1(initial volume) = 100 cm3, V2(�inal volume) = 200 cm3, T1 = 300K

=> .

Therefore, PdV = nRdT (for more than one mole),

Where P = pressure, dV = change in volume, n = number of moles, R = universal gas
constant = 8.314 J/kg/mol, dT = change in temperature.

=> 2.0 × 105 x 10-4 = n x 8.314 x 300 (since T2-T1 = dT = 300K)

Therefore, n = 20/(R x 300) = 0.008 mol (Ans).

(c) dQ(heat) = 50 = nCpdT (at constant pressure),

Answer.7

Given:



Where n = number of moles, Cp = speci�ic heat at constant pressure, dT = rise in
temperature.

=> 50 = 0.008 x Cp x 300

=> Cp = 20.83 J/mol/K. (Ans)

(d) At constant volume, dU(change in internal energy) = dQ(heat) = nCvdT (since
work done dW = PdV = 0, where P = pressure, dV = change in volume), from �irst
law of thermodynamics.

n= number of moles, Cv = speci�ic heat capacity at constant volume, dT = change in
temperature.

=> 30 = 0.008 x Cv x 300

=> Cv = 12.5 J/mol/K. (Ans)

=> .

We can write U = nCvdT and Q = nCdT, where n = no of moles, Cv = speci�ic heat
capacity at constant volume(when dQ = dU), C = molar heat capacity and dT =
change in temperature.

Therefore,  => C = 2Cv.

For a monoatomic ideal gas, we know that Cv = (3R/2) J/kg/mol,

Where R = universal gas constant = 8.314 J/kg/mol

Therefore, C = 2*(3R/2) = 3R J/kg/mol. (Ans)

Answer.8

Given: Amount of heat added(dQ) = Q

Amount of work done(dW) = Q/2.

Formula used:

dQ(heat) = dU(internal energy) + dW(work done).

Here, heat = Q and Work = Q/2(given)



P = pressure, V2

T = temperature.

From (i), multiplying by dV on both sides:

PdV = kVdV.

Integrating from V = V1 to V2, we get

= with lower limit V1 and upper limit V2

= 

Now, we know, PV = nRT - equation of state,

Answer.9

Given:

P = kV …

Where,

P = pressure,

V = volume,

k = constant.

Formula used:

Equation of state of ideal gas:

PV = nRT = constant … (ii)

Where,

n is the number of moles of the gas,

R is the gas constant,

T is the temperature,



Where P = pressure, V = volume, n = number of moles, R = universal gas constant, T
= temperature

Hence we can write, V1 = nRT1/P1. Since P1 = kV1, this becomes:

kV1
2 = nRT1. Similarly, KV2

2 = nRT2,

P1, V1, T1 - Pressure, volume, temperature of �irst gas

P2, V2, T2 - Pressure, volume, temperature of second gas

Therefore, subsituting, the above equation becomes:

=  =  … (iii)

Now,  => (since P = kV) … (iv)

But Q = U + ഽPdV (�irst law of thermodynamics), where Q = heat, U = change in
internal energy, W = total work done = ഽPdV

=> nCdT = nCvdT + (nR/2)dT

(since Q = nCdT and U = nCvdT)

=> C = Cv + nR/2 (proved),

Where

n = number of moles,

C = speci�ic heat capacity,

Cv = speci�ic heat capacity at constant volume,

R = universal gas constant,

dT = rise in temperature.

p = aVb

p = pressure, V = volume, a and b are constants.

Answer.10

Given:



Formula	used:

We know, Q = U + ഽpdV from �irst law of thermodynamics,

where Q = change in heat, U = change in internal energy and ഽpdV = W = total work
done, p = pressure, V = volume.

Since Q = nCdT, and U = nCvdT, we get

… (ii), n = no. of moles, C = speci�ic

heat capacity, and Cv = speci�ic heat capacity at constant volume,

dT = change in temperature,

Since speci�ic heat capacity is 0(given),

…(iii)

(after integration of  from V1 to V2)

Now, from equation of state, PV = nRT,

Where

P = pressure,

V = volume,

n = number of moles,

R = universal gas constant,

T = temperature.

Substituting p = aVb from (i):

aVb+1 = nRT

=>  … (iv)

Substituting (iv) in (iii),

 (Since (T2 - T1) = dT)



=> 

=> b = -𝛾 (Ans)

constant volume, the molar heat capacity C is represented by Cv and R is the
universal gas constant.

Now,

For the �irst ideal gas,

Where Cp1 and CV1 is the molar heat capacity at constant pressure and constant
volume

Similarly, for the second ideal gas

Where Cp2 and CV2 is the molar heat capacity at constant pressure and constant
volume

Given,

i.e

dU1=nCV1dT

Answer.11

We know Cp/Cv=γ, R=Cp-Cv,

where the molar heat capacity C, at constant pressure, is represented by Cp, at



dU2=2nCV2Dt

When gas is mixed,

Also,

From (1) and (2)

P1 = 2.5 R, CV1= 1.5R for helium

CP2 = 3.5 R, CV2= 2.5 R for hydrogen

n1=n2=1

We know dU =nCvdT

Where dU is the change in internal energy, n is the number of moles, Cv is the
molar heat capacity at constant volume and dT is the change in temperature.

For the mixture,

Answer .12

Given,

C



Also,

 where P, V and T are the pressure, volume and absolute temperature; n
is the number of moles of gas; R is the ideal gas constant.

Here temperature at a,

Here temperature at b,

Here temperature at c,

Here temperature at d,

Answer.13

Given, n=1/2, γ =5/3, R=25/3 J/Kmol

a) By ideal gas equation,



b) Here ab is an isobaric process where heat supplied dQ can be expressed as

Here bc is an isochoric process where heat supplied dQ is

c) Heat liberated in cd, isobaric process dQ is

Heat liberated in da, isochoric process dQ is

Let (P1, V1, T1), (P2, V2, T2), (P3, V3, T3) denote the pressure, volume and
temperature at a, b and c respectively.

Answer.14



(a)For the process ab volume is constant

I.e. by ideal gas equation,

, temperature at b

For the process bc, pressure is constant.

By ideal gas equation,

temperature at c

(b)Here process ab is isochoric i.e. Wab=0

For process bc, P=200 kPa, change in volume is 50 cm3 from b to c

(c) From the �irst law of thermodynamics,

Where dQ is the amount of heat supplied

As ab is isochoric process dW=0

Here bc is an isobaric process where heat supplied dQ by �irst law of

Thermodynamics is



(d) dQ = dU + W

Now

Answer.15

Here,

m1 = Mass of gas present = 3 g, θ1 = 20°C, θ2 = 100°C

m2 = Mass of steam condensed = 0.095 g, L = 540 Cal/g = 540 × 4.2 J/g

In Joly’s differential steam calorimeter,

Answer.16

Here γ= 1.5, V1=4, V2=3.Let P1 and P2 be the initial and �inal pressure



(a)Since it is an adiabatic process, So PVγ = const.

I.e.

(b)Also for an adiabatic process, TVγ -1=constant

I.e.

Here given, P1 = 2.5 × 105 Pa, V1 = 100 cc, T1 = 300 K, V2=50 cc

(a)Since it is an adiabatic process, So PVγ = const.

I.e.

(b) Also for an adiabatic process, TVγ -1=constant

I.e.

(c) Work done by the gas in the process

Answer.17



Given, P1 = 100 KPa = 105 Pa, V1 = 400 cm3 , T1 = 300 K,

CP/CV = 1.5

(a)Suddenly compressed to V2 = 100 cm3 I.e. it is an adiabatic process

∴ PVγ = const.

Answer.18

Given γ = 1.4,

Initial pressure, P1=2 atm

Final pressure, P2=1 atm

Initial Temperature, T1=20°C=293 K

Here bursting of tire is an adiabatic process,

Answer.19



I.e.

Also,

(b) Even though the container is slowly compressed the walls are adiabatic so heat
transferred is 0.

Thus the values remain same

i.e. P2 = 800 KPa, T2 = 600 K.

P/CV = γ

Let P1=P0 be the Initial Pressure, V1=V0 be the Initial Volume

(a)Since the volume is slowly compressed, temperature remains constant I.e.
Isothermal compression. Let P2 and V2=V0/2 be the pressure and volume after
slow compression

∴ 

When volume is suddenly compressed, it is an adiabatic process .Let P3 and V3 be
the pressure and volume after sudden compression .i.e.

PVγ = const.

Answer.20

Given C



I.e.

Substituting value of P2=2P0

(b) Since the volume is suddenly compressed, I.e. it is an adiabatic process Let P2
and V2=V0/2 be the pressure and volume after sudden compression, then

PVγ = const.

I.e.

Substituting value of P1=P0

Now, since the volume is slowly compressed, temperature remains constant I.e.
Isothermal compression. Let P3 and V3=V0/4 be the pressure and volume after
slow compression.

∴ 

P/CV = γ, initial pressure P1=P0 and initial volume V1= V0

a) Since the gas is isothermally taken to pressure P2=P0/2

∴ 

Answer.21

Given C



Let P3=P0/4 and V3 be the pressure and volume after adiabatic compression.

Then,

PVγ = const.

I.e.

Substituting value of V2=2V0

(b)Here P1=P0, P2=P0/2 and the process is adiabatic. Let V1=V0 be the initial
volume and V2 be the volume after process.

Then,

PVγ = const.

I.e.

I.e. 

Let P3= P0/4 and V3 be the pressure and volume after isothermal process Then,



Given P1 = 150 KPa = 150 × 103 Pa, V1 = 150 cm3 ,V2=50 cm3, T1 = 300 K

(a)By ideal gas equation,

 where P, V and T are the pressure, volume and absolute temperature; n
is the number of moles of gas; R is the ideal gas constant

I.e.

(b)We know Cp/Cv=γ R=Cp-Cv,

where the molar heat capacity C, at constant pressure, is represented by Cp, at
constant volume, the molar heat capacity C is represented by Cv

Now,

(c) Since the process is adiabatic,

PVγ = const.

I.e.

Also, as the process is adiabatic,

Answer.22



(d) From the �irst law of thermodynamics,

, where dQ is the amount of heat supplied which is zero in an
adiabatic process.

i.e.

, where n is the number of moles, Cv is the molar heat capacity at
constant volume and dT is the change in temperature

(e)Change in internal energy, dU is

, where n is the number of moles, Cv is the molar heat capacity at
constant volume and dT is the change in temperature.

A, VB, VC be the volume of three gases and TA, TB, TCbe the temperature of A,
B, C gas

Given, TA=TB=TC, VA=VB=VC

Here A is undergoing an isothermal process, where V1= VA, V2=2VA

Let P1  and P2  be the initial and �inal pressures,

Then,

Here B is adiabatic,

Answer .23

Let V



PVγ = const, where V1= VB, V2=2VB

Let P1  and P2  be the initial and �inal pressures,

I.e.

Here C is isobaric ,the pressure remains constant and equal to 

Now, as the �inal pressures are equal for all the gases

, ratio of the initial pressures

Let P1 = Initial Pressure, V1 = Initial Volume, P2 = Final Pressure, V2 = Final
Volume

Here A is expanded isothermally,

I.e. the work done,

Also, B is expanded adiabatically, i.e.

Given WA=WB

i.e.

Answer.24



In an adiabatic process,

PVγ = const,

I.e.

Substituting in (1)

We know, PV= nRT by ideal gas equation

i.e.

, the required relation



Given γ = 1.5 T=300 K, initial volume V1=1 L, Final volume V2=1/2 L. Let P1 and P2
be the initial and �inal pressures

(a)Here the process is adiabatic since volume is changed suddenly,

i.e.

(b)P1=100 KPa =105 Pa ,P2=21.5(105) KPa

Work done in adiabatic process,

(c) Here dQ=0, as it an adiabatic process

By �irst law of thermodynamics,

i.e. 

(d)For an adiabatic process, let TI and T2 be initial and �inal temperature

TVγ -1=constant

I.e.

(e)Here the pressure is kept constant, i.e. isobaric

Answer.25



Work done in an isobaric process ,

Here,

Work done,

(f)Here the process is isothermal.

Work done,

(g)Work done in the cycle,

It is now slid to a position where it divides tube in the ratio 1:3.

The initial volume of the two aides are equal let’s say V/2,

Where, the total volume of the tube is V.

Now say the, left part of tube has V/4 volume and the right side has 3V/4 volume
so that the ratio between them is 1:3.

In adiabatic process,  (K = non zero constant)

Where P is the pressure of the gas and V is the volume and  = 

Answer.26

Given:

The walls of the cylindrical tube and the separator are made with

adiabatic material. The separator can be slid in the tube by

external mechanism.

An ideal gas of  is injected in the two aides of at equal pressure.



For ideal gas, 

Where P is the pressure, V is the volume, T is the temperature of the gas and R is
the gas constant and n is the number of moles of the gas.

Putting this in the adiabatic process condition we get,

 (K’ is a non-zero constant)

Therefore, 

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

Again for the other part of the tube,

⇒ 

⇒ 

⇒ 

⇒ 

As initially the gases were at the same pressure and volume, the temperatures
would be the same as well.

Therefore, 

Therefore, , 

Therefore the ratio of the �inal temperatures will be 



The volume of the vessel is

The temperature of the gas is 300K

(a) For Ideal gasses,

 where P,V and T are the pressure, volume and temperature of the gas, n
is the number of moles, and R is the gas constant.

⇒ 

Therefore, number of moles = 0.008

(b) The speci�ic heat of the gas at constant volume is CV = 12.5 J K–1 mol–1

Therefore, 

Where n is the number of moles, T is the rise in temperature, Q is the heat given.

Therefore, at constant volume, if we supply 5J and 10J heat to the vessels, the rise
of temperature will be  and 

So the change in pressure in the vessels will be governed by

Answer.27

Given:

Gasses in both the vessels are at pressure of 75cm of mercury.

Therefore, 



So for the �irst vessel, Change in pressure

For the second vessel 

Therefore, the difference of pressure of the two vessels is

Which is equivalent to  of mercury.

Therefore, the height of the mercury in the manometer tube is 12.5cm

mol–1) and the other contains some amount of hydrogen (γ= 1.4, M = 2g mol–1)

The gasses are given the same amount of heat.

The temperature rises through the same amount.

0.1g of helium = 0.1/4 mole = 0.025mole

Let there be n moles of hydrogen in the other vessel.

 =  and  so, 

Answer.28

Given:

Two vessels with adiabatic walls, one contains 0.1g of helium (γ = 1.67, M = 4 g



As the vessels are of constant volume there will be no work done by the gasses.
The heat supplied will totally be used to increase internal energy.

Therefore,  where Q is the heat supplied, n is the number of moles, Cv is
the speci�ic heat capacity of gas at constant volume, T is the change in temperature.

For helium, 

For hydrogen,  we assume for both cases the rise of
temperature is T.

As per question,

⇒ 

⇒ n = 0.015

Again, Molar mass of hydrogen = 2g mol–1

Therefore, 0.015 mole of hydrogen  hydrogen

Thus, there is 0.03g of hydrogen in the vessel.

0 are connected by a narrow tube which can
be closed by a valve.

Vessels contain an ideal gas ( ) at atmospheric pressure p0 and atmospheric

temperature T0.

Answer.29

Given:

Two vessels A and B of equal volume V



The walls of the vessel A are diathermic and those of B are adiabatic.

The pistons are slowly pulled out to increase the volumes of the vessels to double
the original value.

(a) As the pistons are moved slowly to increase the volume, the expansion of gas in
the diathermic vessel will be an isothermic process thus the temperature will be
�ixed at T0. P,V and T represent the pressure, volume and temperature of the gasses
and subscripts 1 and 2 denote initial and �inal state respectively.

Thus,

⇒ 

⇒ 

For the adiabatic vessel,

⇒ 

⇒ 

Again for ideal gasses, 

⇒ 

⇒ 

Thus the temperature and pressure in the diathermic vessel will T0 and P0/2 and
in the adiabatic vessel,  and .

(b) When the valve is open, the temperature will remain T0 throughout. Thus, there
will be no change in temperature in the diathermic vessel so there will be change
in pressure as well. For the gas in the diathermic vessel,

 and for the adiabatic vessel 

Therefore 

Again, 

Thus, 



Thus the �inal temperature, when the valve is open will be T0 and the �inal pressure
will be .

0 is divided in two parts by a frictionless
adiabatic separator.

An ideal gas at pressure p1 and temperature T1 is injected into the left part and
another ideal gas at pressure p2 and temperature T2 is injected into the right part.

(a) When the piston is slowly moved to the equilibrium position, one side increases
in volume when the other side decreases.

The processes will be adiabatic,

For the left part,

 Where, subscript 1 and 2 represent the initial and the �inal state.

⇒ ……….(1)

And for the right part,

……….(2)

We are assuming P to be the common pressure.

Dividing (1) by (2) we get,

Answer.30

Given:

An adiabatic cylindrical tube of volume V



Again,

So,

⇒ 

⇒ 

Therefore, 

The �inal volume of the left and the right side will be  and 

respectively.

(b) The heat given will be zero as the whole process is taking place in an adiabatic
surrounding.

(c) So putting the above result in (1) we get,

⇒ 

Thus the �inal common pressure of the gasses will be 



An adiabatic cylindrical tube of cross-sectional area 1 cm2 is closed at one end and
�itted with a piston at the other end.

The tube contains 0.03g of an ideal gas at 1 atm pressure and at the temperature of
the surrounding.

The length of the gas column is 40 cm.

The piston is suddenly pulled out to double the length of the column and the
pressure of the gas falls to 0.355 atm.

The expansion process of the gas is adiabatic, so  Where, subscript 1
and 2 represent the initial and the �inal state.

When the length is increased to double the volume is also doubled.

So,

⇒ 

⇒ 

⇒ 

The speed of sound in gas at atmospheric pressure is given as

where γ is the adiabatic constant, P is pressure and ρ is the volume density. The
speed is

Answer .31

Given:



The speed of sound in hydrogen at 0°C is 1280 m s–1.

The density of hydrogen at STP is 0.089 kg m–3.

At STP the pressure P is 1.013×105Pa.

So the speed of sound in hydrogen  where  is the density of the gas.

So, putting data in, we get, 

So,  ;

4.0 g of helium occupies 22400 cm3 at STP.

The speci�ic heat capacity of helium at constant pressure is 5.0 cal K–1 mol–1 = 21J
K–1 mol–1

⇒ 

Answer .32

Given:

Answer .33

Given:



⇒ 

At STP the pressure P is 1.013×105Pa.

The velocity of sound will be  where P is the pressure of the gas, V is the

volume and M is the mass of the gas.

Thus putting the values given, we get,

The speed of sound in helium is m/s.

An ideal gas having density 1.7 × 10–3 g cm–3 = 1.7 kg m–3 at a pressure 1.5 × 105

Pa is �illed in a Kundt tube.

When the gas is resonated at a frequency of 3.0 kHz, nodes are formed at a
separation of 6.0 cm.

the node separation is given by  which is 6.0cm. Therefore,

the frequency of the sound (f) is 3kHz

thus velocity of sound = 

again,

where P is the pressure and is the density of the gas.

Thus

Answer.34

Given:



300 K.

The separation between the consecutive nodes is 3.3 cm.

the node separation is given by  which is 3.3cm. Therefore,

the frequency of the sound is 5kHz

thus the velocity of sound will be 

again,

 where R is the gas constant, T is the temperature of the gas in Kelvin

scale and M is the molar mass of the gas.

The molar mass of oxygen is 

Thus putting in the values in the above expression,

Again, 

Therefore, the CP and CV for oxygen are  and  
respectively.

Answer.35

Given:

Standing waves of frequency 5.0 kHz are produced in a tube �illed with oxygen 

at


