6. Application of Definite Integral

e Area of the region bounded by the curve y = f(x), x-axis, and the lines x = a and x = b (b > a) is given by
A= [gydx or A= Jaf (x)dx

e The area of the region bounded by the curve x = g(y), y-axis, and the lines y = ¢ and y = d is given by
A= [xdy or A= [{g(y)dx

e Ifaliney = mx + p intersects a curve y = f(x) at x = g and x = b, (b > a), then the area (4) of region
bounded by the curve y = f{x) and the line y = mx + p is

i I|'£(y1 —¥yq)dx, wherey; =mx + p andy, = 7(x)

A= 3 mx + p) = £(x)1dx

If a line y = mx + p intersects a curve x = g(y) at y = c and y = d ,(d > ¢), then the area (4) of region
bounded by the curve x = g(y) and the line y = mx + p is

A= ,Ilf},(xl —x3)dy, wherex) = 'P_!P andxy; = g(y)

A=JI[(EE) -g0n]dy

Example 1: Find the area of the region in the first and third quadrant enclosed by the x-axis and the line
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x= E (1)
Fo
b2 . (2)

A
2
1

Substituting ¥ ~ ﬁ in equation (2), we obtain
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Hence, the line meets the ellipse a 2 bz

the first and third quadrant respectively.
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a. The area of the region enclosed between two curves y = f(x) and y = g(x) and the linesx =a andx = b is
given by,
.|f';[f(x) —g(x)]dx, where f(x) 2 g(x) infa, b]

A= AL () —g()]dx + [Qlg(x) = F(x)]dx
wherea <c <b andf(x) zg(x)infa,e] andf(x) = g(x) infe, &]

Example 2: Show that region bounded by two parabolas (shown in the figure) y2 — 4ax and x2 = 4by 1s
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Solution:
T ST | B
The point of intersection of the parabolas y2 = 4ax and x2 = 4by are 0 (0, 0) and AW ab”. A a’d

2 T ek
Here, ¥ =4ax =y :EJ;J-_-:J{(-T} and X by =y —‘E =g(x)
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It can be observed that f{x) > g(x) in L ~ @

Therefore, required area of the shaded region
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If we rotate a curve about the x-axis through 360°, then the curve maps out the surface of a solid as it rotates.
Such solids are called solids of revolution. The fixed line about which the area is rotated is called the axis of
solid of revolution.

e [fa semicircle is revolved about its diameter, then the surface of a sphere is obtained.

e Ifaright angled triangle is revolved about a line making a right angle, then the surface of a cone is
obtained.

» Ifarectangle is revolved about one of its sides, then the surface of a right circular cylinder is obtained.

Volume of Solid Revolution

If the area bounded by the curve y = f(x) and lines x = a and x = b is rotated about the x-axis, then the volume
of the solid of revolution is given by

V=Jabny2dx = [x=ax=br fx2 dx

If the area bounded by the curve x = g(y) and lines y = a@ and y = b is rotated about the y-axis, then the volume of
the solid of revolution is given by

V=labnx2dy = [y=ay=b r gy2 dy



