# SAMPLE OUESTION CAPER

# **BLUE PRINT**

#### Time Allowed : 3 hours

#### Maximum Marks: 80

| S. No. | Chapter                          | VSA/Case based<br>(1 mark) | SA-I<br>(2 marks) | SA-II<br>(3 marks) | LA<br>(5 marks) | Total  |
|--------|----------------------------------|----------------------------|-------------------|--------------------|-----------------|--------|
| 1.     | Relations and Functions          | 3(3)#                      | _                 | 1(3)               | _               | 4(6)   |
| 2.     | Inverse Trigonometric Functions  | _                          | 1(2)              | _                  | _               | 1(2)   |
| 3.     | Matrices                         | 2(2)                       | _                 | _                  | 1(5)*           | 3(7)   |
| 4.     | Determinants                     | 1(1)                       | 1(2)              | _                  | _               | 2(3)   |
| 5.     | Continuity and Differentiability | -                          | 1(2)              | 2(6)#              | -               | 3(8)   |
| 6.     | Application of Derivatives       | 1(4)                       | 1(2)              | 1(3)*              | _               | 3(9)   |
| 7.     | Integrals                        | 2(2)*                      | 1(2)*             | 1(3)               | _               | 4(7)   |
| 8.     | Application of Integrals         | _                          | 1(2)              | 1(3)               | _               | 2(5)   |
| 9.     | Differential Equations           | 1(1)*                      | 1(2)*             | 1(3)               | _               | 3(6)   |
| 10.    | Vector Algebra                   | 1(1)                       | _                 | _                  | _               | 1(1)   |
| 11.    | Three Dimensional Geometry       | 2(2)# + 1(4)               | 1(2)              | _                  | 1(5)*           | 5(13)  |
| 12.    | Linear Programming               | -                          | _                 | _                  | 1(5)*           | 1(5)   |
| 13.    | Probability                      | 4(4)#                      | 2(4)#             | _                  | _               | 6(8)   |
|        | Total                            | 18(24)                     | 10(20)            | 7(21)              | 3(15)           | 38(80) |

\*It is a choice based question.

<sup>#</sup>Out of the two or more questions, one/two question(s) is/are choice based.

# Subject Code : 041

# MATHEMATICS

#### Time allowed : 3 hours

#### **General Instructions :**

- 1. This question paper contains two parts A and B. Each part is compulsory. Part-A carries 24 marks and Part-B carries 56 marks.
- 2. Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.
- 3. Both Part-A and Part-B have internal choices.

#### Part - A :

- 1. It consists of two Sections-I and II.
- 2. Section-I comprises of 16 very short answer type questions.
- 3. Section-II contains 2 case study-based questions.

#### Part - B :

- 1. It consists of three Sections-III, IV and V.
- 2. Section-III comprises of 10 questions of 2 marks each.
- 3. Section-IV comprises of 7 questions of 3 marks each.
- 4. Section-V comprises of 3 questions of 5 marks each.
- 5. Internal choice is provided in 3 questions of Section-III, 2 questions of Section-IV and 3 questions of Section-V. You have to attempt only one of the alternatives in all such questions.

### PART - A

#### Section - I

1. Show that the relation *R* in the set  $A = \{x \in Z : 0 \le x \le 12\}$ , given by  $R = \{(a, b) : a = b\}$  is both symmetric and transitive.

#### OR

OR

Give an example of a relation, which is transitive but neither reflexive nor symmetric.

2. If 
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix}$ , then find the matrix  $A^2 - B$ .

3. Evaluate :  $\int \frac{x-4}{(x-2)^3} e^x dx$ 

Evaluate : 
$$\int_{0}^{1} x e^{x^2} dx$$

4. Find the values of x for which 
$$\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$$
.

## Maximum marks : 80

5. Find the equation of a line passing through (1, 2, -3) and parallel to the line  $\frac{x-2}{1} = \frac{y+1}{3} = \frac{z-1}{4}$ . OR

Find the vector equation of the plane passing through a point having position vector  $2\hat{i} + 3\hat{j} + 4\hat{k}$  and perpendicular to the vector  $2\hat{i} + \hat{j} - 2\hat{k}$ .

6. Prove that the function  $f: R \to R$  defined by f(x) = 3 - 4x is onto.

7. Find the degree of the differential equation 
$$\left(\frac{d^3y}{dx^3}\right)^{2/3} + 5 - 2\frac{d^2y}{dx^2} = 0$$
.

#### OR

Find the integrating factor of the differential equation  $\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right)\frac{dx}{dy} = 1.$ 

- **8.** An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement, then find the probability that both drawn balls are black.
- 9. Prove that if *E* and *F* are independent events, then the events *E*' and *F*' are also independent.

OR

Given two independent events *A* and *B*, such that P(A) = 0.39 and P(B) = 0.6. Find  $P(A' \cap B')$ .

10. The cartesian equation of a line is 
$$\frac{x+3}{2} = \frac{y-5}{4} = \frac{z+6}{2}$$
. Find its vector equation.

- **11.** Let *R* be a relation on *N* defined by  $R = \{(1 + x, 1 + x^2) : x \le 5, x \in N\}$ . Then, verify the following :
  - (a) *R* is reflexive
  - (b) Domain of  $R = \{2, 3, 4, 5, 6\}$
- 12. Evaluate :  $\int \left(\frac{1-x}{1+x^2}\right)^2 e^x dx$
- **13.** If *A* and *B* are two events such that P(A) = 0.53, P(B) = 0.24 and  $P(A \cap B) = 0.42$ , then find  $P(B' \cap A)$ .
- 14. If  $\vec{u} = \hat{i} + 2\hat{j}$ ,  $\vec{v} = -2\hat{i} + \hat{j}$  and  $\vec{w} = 4\hat{i} + 3\hat{j}$ . Find scalars x and y respectively such that  $\vec{w} = x\vec{u} + y\vec{v}$ .
- **15.** An urn contains 6 balls of which two are red and four are black. Two balls are drawn at random. Find the probability that they are of the different colours.

**16.** Find the additive inverse of 
$$A + B$$
, where  $A$  and  $B$  are given as  $A = \begin{bmatrix} 2 & 5 \\ 9 & 3 \end{bmatrix}$  and  $B = \begin{bmatrix} -1 & 2 \\ 3 & -9 \end{bmatrix}$ 

#### Section - II

# Case study-based questions are compulsory. Attempt any 4 sub parts from each question. Each sub-part carries 1 mark.

- 17. A cricket match is organised between students of Class XI and Class XII for which a team from each class is chosen. Remaining students of Class XI and XII are respectively sitting on the plane's represented by the equation  $\vec{r} \cdot (\hat{i} + \hat{j} + 2\hat{k}) = 5$  and  $\vec{r} \cdot (2\hat{i} \hat{j} + \hat{k}) = 8$ , to cheers the team of their own class. Based on the above answer the following :
  - (i) The cartesian equation of the plane on which student of class XI are seated is
    - (a) 2x y + z = 8 (b) 2x + y + z = 8 (c) x + y + 2z = 5



(d) x + y + z = 5

(ii) The magnitude of the normal to the plane on which student of Class XII are seated, is

(a) 
$$\sqrt{5}$$
 (b)  $\sqrt{6}$  (c)  $\sqrt{3}$  (d)  $\sqrt{2}$ 

(iii) The intercept form of the equation of the plane on which student of Class XII are seated, is

(a) 
$$\frac{x}{5} + \frac{y}{5} + \frac{z}{5} = 1$$
 (b)  $\frac{x}{4} + \frac{y}{(-8)} + \frac{z}{8} = 1$  (c)  $\frac{x}{4} + \frac{y}{8} + \frac{z}{8} = 1$  (d)  $\frac{x}{5} + \frac{y}{5} + \frac{z}{5/2} = 1$ 

(iv) Which of the following is a student of Class XII?

- (a) A sitting at (1, 2, 1)
  (b) B sitting at (0, 1, 2)
  (c) C sitting at (4, 1, 1)
  (d) none of these
  (v) The distance of the plane, on which student of Class XII are seated, from the origin is
  - (a) 8 units (b)  $\frac{8}{\sqrt{6}}$  units (c)  $\frac{5}{\sqrt{6}}$  units (d) none of these
- 18. A mobile company in a town has 500 subscribers on its list and collects fix charges of ₹ 300 per year from each subscriber. The company proposes to increase the annual charges and it is believed that for every increase of ₹ 1, one subscriber will discontinue service.

Based on the above information answer the following questions:

- (i) If *x* denote the amount of increase in annual charges of each subscriber, then revenue, *R*, as a function of *x* can be represent as
  - (a)  $R(x) = 300 \times 500 \times x$  (b) R(x) = (300 2x)(500 + 2x)

(c) 
$$R(x) = (500 + x) (300 - x)$$
 (d)  $R(x) = (300 + x) (500 - x)$ 

(ii) If mobile company increases  $\mathbf{x}$  50 as annual charges, then *R* is equal to

(a) ₹ 157500(b) ₹ 167500(c) ₹ 17500(d) ₹ 15000

(iii) If revenue collected by the mobile company is ₹ 156,400, then value of amount increased as annual charges for each subscriber, is

- (a) 40 (b) 160 (c) Both (a) and (b) (d) None of these
- (iv) What amount of increase in annual charges will bring maximum revenue?
  (a) 100
  (b) 200
  (c) 300
  (d) 400
- (v) Maximum revenue is equal to
   (a) ₹ 15000
   (b) ₹ 160000
   (c) ₹ 20500
   (d) ₹ 25000

#### PART - B

#### Section - III

OR

**19.** For what value(s) of 'a' the matrix 
$$\begin{vmatrix} 1 & a & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1 \end{vmatrix}$$
 will not be invertible.

**20.** Evaluate :  $\int \frac{x}{1-\sin 2x} dx$ 

Evaluate :  $\int \frac{dx}{1 + \tan x}$ 

**21.** Find the equation of the tangent to the curve  $y = x^4 - 6x^3 + 13x^2 - 10x + 5$  at the point (1, 3).





134

- **22.** Using integration, find the area of the region bounded by the line 2y = 5x + 7, *x*-axis and the lines x = 2 and x = 8.
- 23. Let A and B be two events such that  $P(A) = \frac{3}{8}$ ,  $P(B) = \frac{5}{8}$  and  $P(A \cup B) = \frac{3}{4}$ . Find the value of  $P(A|B) \cdot P(A'|B)$ .

OR

Two events *E* and *F* are independent. If P(E) = 0.3,  $P(E \cup F) = 0.5$ , then find  $P(E \mid F) - P(F \mid E)$ .

- **24.** Find the value of  $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) 3\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$ .
- **25.** *A* speaks truth in 60% of the cases and *B* in 90% of the cases. In what percentage of cases are they likely to contradict each other in stating the same fact?
- **26.** Find  $\frac{dy}{dx}$  for the equation  $x^3 + y^3 = \sin(x + y)$ .

27. Find the distance between the lines given by  $\vec{r} = \hat{i} + \hat{j} + \lambda(\hat{i} - 2\hat{j} + 3\hat{k})$  and  $\vec{r} = (2\hat{i} - 3\hat{k}) + \mu(\hat{i} - 2\hat{j} + 3\hat{k})$ .

**28.** Solve  $\log\left(\frac{dy}{dx}\right) = ax + by$ .

OR

Solve the differential equation  $(x+y)^2 \frac{dy}{dx} = 1$ .

Section - IV

**29.** Evaluate : 
$$\int_{0}^{\pi} \frac{x \tan x}{\sec x + \tan x} dx$$

**30.** Consider  $f: \mathbb{R}_+ \to [4, \infty)$  given by  $f(x) = x^2 + 4$ . Show that *f* is bijective function.

**31.** Find the local maxima or local minima of  $f(x) = x^3 - 6x^2 + 9x + 15$ . Also, find the local maximum or local minimum values as the case may be.

OR

Find the values of x for which the function  $f(x) = x^x$ , x > 0 is (a) increasing (b) decreasing.

**32.** Find a particular solution of the differential equation  $\cos\left(\frac{dy}{dx}\right) = a(a \in R); y = 1$  when x = 0.

**33.** If 
$$y = x^{x^x}$$
, then find  $\frac{dy}{dx}$ .

**34.** If  $\alpha$ ,  $\beta$  are the roots of  $ax^2 + bx + c = 0$  and f(x) is continuous at  $x = \alpha$ , where  $f(x) = \frac{1 - \cos(ax^2 + bx + c)}{(x - \alpha)^2}$ , for  $x \neq \alpha$ , then prove that  $f(\alpha) = \frac{b^2 - 4ac}{2}$ . OR

If 
$$f(x) = \frac{2 - (256 - 7x)^{1/8}}{(5x + 32)^{1/5} - 2}$$
,  $x \neq 0$  then for f to be continuous everywhere, what should be the value of  $f(0)$ 

**35.** Find the area of the region bounded by the parabola  $y^2 = 4ax$ , its axis and two ordinates x = a and x = 2a.

#### Section - V

**36.** Solve the following LPP graphically :

Maximize Z = x + ySubject to the constraints,  $2x + 5y \le 100$  $\frac{x}{25} + \frac{y}{40} \le 1$  $x \ge 0, y \ge 0$ 

#### OR

Find the maximum value of Z = 5x + 2y subject to constraints  $3x + 5y \le 15$ ,  $5x + 2y \le 10$ ,  $x \ge 0$ ,  $y \ge 0$ .

**37.** Find the equation of the plane passing through the point *A*(1, 2, 1) and perpendicular to the line joining the points *P*(1, 4, 2) and *Q*(2, 3, 5). Also, find the distance of this plane from the line  $\frac{x+3}{2} = \frac{y-5}{-1} = \frac{z-7}{-1}$ .

#### OR

Find the coordinates of the points on the line  $\frac{x+2}{3} = \frac{y+1}{2} = \frac{z-3}{6}$ , which are at a distance of 2 units from the point (-2, -1, 3).

**38.** If 
$$A = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$$
 and  $f(x) = x^2 - 5x - 14$ , find  $f(A)$ . Hence obtain  $A^3$ .  
OR

Solve the following system of equations by matrix method : 2x + 5y = 1, 3x + 2y = 7



1. The set  $A = \{x \in Z : 0 \le x \le 12\} = \{0, 1, 2, ..., 12\}$  $R = \{(a, b) : a = b\} = \{(0, 0), (1, 1), (2, 2), \dots, (12, 12)\}$ (i) Let  $(a, b) \in R \Rightarrow a = b \Rightarrow b = a$  $\Rightarrow$  (*b*, *a*)  $\in$  *R*. So, *R* is symmetric. (ii) Let  $(a, b) \in R$  and  $(b, c) \in R \Longrightarrow a = b = c$  $\Rightarrow a = c \Rightarrow (a, c) \in R.$ 

So, *R* is transitive.

#### OR

Let  $A = \{1, 2, 3\}$  and defined a relation R on A as  $R = \{(1, 2), (2, 2)\}.$ 

Then, *R* is transitive, as  $(1, 2), (2, 2) \in R \Longrightarrow (1, 2) \in R$ But *R* is not reflexive, as  $1 \in A$  but  $(1, 1) \notin R$ .

and also *R* is not symmetric, as  $(1, 2) \in R$  but  $(2, 1) \notin R$ .

2. 
$$A^{2} = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 4-3 & -2-2 \\ 6+6 & -3+4 \end{bmatrix} = \begin{bmatrix} 1 & -4 \\ 12 & 1 \end{bmatrix}$$
$$\therefore A^{2} - B = \begin{bmatrix} 1 & -4 \\ 12 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix}$$
$$= \begin{bmatrix} 1-0 & -4-4 \\ 12+1 & 1-7 \end{bmatrix} = \begin{bmatrix} 1 & -8 \\ 13 & -6 \end{bmatrix}$$
3. Let  $I = \int \frac{x-4}{(x-2)^{3}} \cdot e^{x} dx$ 
$$= \int \left[ \frac{x-2}{(x-2)^{3}} - \frac{2}{(x-2)^{3}} \right] e^{x} dx$$
$$= \int \left[ \frac{1}{(x-2)^{2}} - \frac{2}{(x-2)^{3}} \right] e^{x} dx = \frac{e^{x}}{(x-2)^{2}} + C$$
$$\left[ \because \int [f(x) + f'(x)] e^{x} dx = e^{x} f(x) + C \right]$$
OR

Let 
$$I = \int_{0}^{1} x e^{x^{2}} dx = \int_{0}^{1} e^{t} \frac{dt}{2}$$
  
[Putting  $x^{2} = t \implies 2x dx = dt$ ]  
 $= \frac{1}{2} [e^{t}]_{0}^{1} = \frac{1}{2} (e - 1)$ 

4. We have, 
$$\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$$
  
 $\Rightarrow 3 - x^2 = 3 - 8 \Rightarrow x^2 = 8$ . Hence,  $x = \pm 2\sqrt{2}$ .

5. Since, the line is parallel to the line  $\frac{x-2}{1} = \frac{y+1}{3} = \frac{z-1}{4}$ 

 $\therefore$  D.R.'s of the required line are <1, 3, 4>

Hence, equation of the line passing through (1, 2, -3)

with d.r.'s <1, 3, 4> is  $\frac{x-1}{1} = \frac{y-2}{3} = \frac{z+3}{4}$ 

Vector equation of plane passing through a point having position vector  $\vec{a}$  and perpendicular to  $\vec{n}$  is given by  $\vec{r} \cdot \vec{n} = \vec{a} \cdot \vec{n}$ 

Here  $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$  and  $\vec{n} = 2\hat{i} + \hat{j} - 2\hat{k}$  $\therefore$  Required equation is  $\vec{r} \cdot (2\hat{i} + \hat{j} - 2\hat{k}) = 4 + 3 - 8 = -1$ 

6. Let  $y \in R$  be any real number, such that f(x) = y.  $\therefore y = 3 - 4x$  $\Rightarrow 4x = 3 - y \Rightarrow x = \frac{3 - y}{A}$ 

Since, for any real number  $y \in R$ , there exists  $\frac{3-y}{4} \in R$ 

such that 
$$f\left(\frac{3-y}{4}\right) = 3-4\left(\frac{3-y}{4}\right) = 3-3+y=y$$
  
Hence,  $f$  is onto.

7. We have, 
$$\left(\frac{d^3 y}{dx^3}\right)^{2/3} = 2\frac{d^2 y}{dx^2} - 5$$
  

$$\Rightarrow \left(\frac{d^3 y}{dx^3}\right)^2 = \left(2\frac{d^2 y}{dx^2} - 5\right)^3 \quad \text{(On cubing both sides)}$$

Clearly, degree is 2.

[: Power of highest order derivative is 2]

We have, 
$$\frac{dy}{dx} + \frac{1}{\sqrt{x}}y = \frac{e^{-2\sqrt{x}}}{\sqrt{x}}$$

This is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q, \text{ where } P = \frac{1}{\sqrt{x}}, Q = \frac{e^{-2\sqrt{x}}}{\sqrt{x}}$$
$$\therefore \text{ I.F.} = e^{\int Pdx} \implies \text{ I.F.} = e^{\int \frac{1}{\sqrt{x}}dx} = e^{2\sqrt{x}}$$

8. Let *E* and *F* denote respectively the events that first and second ball drawn are black. We have to find  $P(E \cap F)$ .

Now, 
$$P(E) = \frac{10}{15}$$
,  $P(F|E) = \frac{9}{14}$   
By multiplication rule of probability, we have

$$P(E \cap F) = P(E) \cdot P(F|E) = \frac{10}{15} \times \frac{9}{14} = \frac{3}{7}$$

- **9.** Since, *E* and *F* are independent events.
- $\therefore P(E \cap F) = P(E) P(F)$

Now,  $P(E' \cap F') = 1 - P(E \cup F)$ [::  $P(E' \cap F') = P((E \cup F)')$ ]  $= 1 - [P(E) + P(F) - P(E \cap F)]$  = 1 - P(E) - P(F) + P(E) P(F) [Using (i)] = (1 - P(E)) (1 - P(F)) = P(E') P(F')Hence, E' and F' are also independent events.

#### OR

Since *A* and *B* are independent events, therefore *A*' and *B*' will also be independent.

So,  $P(A' \cap B') = P(A') \cdot P(B') = (1 - P(A)) (1 - P(B))$ = (1 - 0.39) (1 - 0.6) = 0.61 × 0.4 = 0.244

**10.** The given cartesian equation is

 $\frac{x+3}{2} = \frac{y-5}{4} = \frac{z+6}{2}$ 

The line passes through the point (-3, 5, -6) and is parallel to vector  $2\hat{i} + 4\hat{j} + 2\hat{k}$ .

Hence, the vector equation of the line is  $\vec{x} = \hat{x} + \hat{y}$ 

 $\vec{r} = -3\hat{i} + 5\hat{j} - 6\hat{k} + \lambda (2\hat{i} + 4\hat{j} + 2\hat{k}).$ 

**11.** Clearly,  $R = \{(2, 2), (3, 5), (4, 10), (5, 17), (6, 26)\}$ Domain of  $R = \{x : (x, y) \in R\} = \{2, 3, 4, 5, 6\}$ and *R* is not reflexive, as  $1 \in N$  but  $(1, 1) \notin R$ .

12. Let 
$$I = \int \left(\frac{1+x^2-2x}{(1+x^2)^2}\right) e^x dx$$
  

$$= \int \left(\frac{1}{1+x^2} - \frac{2x}{(1+x^2)^2}\right) e^x dx = \frac{1}{1+x^2} e^x + C$$

$$\left[\because \int e^x [f(x) + f'(x)] dx = e^x f(x) + C\right]$$
13.  $P(B' \cap A) = P(A - B) = P(A) - P(A \cap B)$   

$$= 0.53 - 0.42 = 0.11$$

14. We have,  $\vec{w} = x\vec{u} + y\vec{v}$  $\Rightarrow \hat{4i} + 3\hat{j} = x(\hat{i} + 2\hat{j}) + y(-2\hat{i} + \hat{j})$   $\Rightarrow (x - 2y - 4)\hat{i} + (2x + y - 3)\hat{j} = \vec{0}$   $\Rightarrow x - 2y - 4 = 0 \text{ and } 2x + y - 3 = 0$   $\Rightarrow x = 2 \text{ and } y = -1$ 

**15.** Total number of possible outcomes =  ${}^{6}C_{2} = 15$ Number of favourable outcomes =  ${}^{2}C_{1} {}^{4}C_{1} = 2 \times 4 = 8$ ∴ Required probability =  $\frac{8}{15}$ 

**16.** Let 
$$C = A + B = \begin{bmatrix} 1 & 7 \\ 12 & -6 \end{bmatrix}$$
  
Now,  $(-C) = \begin{bmatrix} -1 & -7 \\ -12 & 6 \end{bmatrix}$ , which is the additive inverse of  $A + B$ .

17. (i) (c) : Clearly, the plane for Class XI students is  $\vec{r} \cdot (\hat{i} + \hat{j} + 2\hat{k}) = 5$ , which can be rewritten as  $(x\hat{i} + y\hat{j} + z\hat{k}) \cdot (\hat{i} + \hat{j} + 2\hat{k}) = 5$  $\Rightarrow x + y + 2z = 5$ , which is the required cartesian

equation. (ii) (b) : Clearly, the plane for Class XII students is

 $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) = 8$ , which is of the form  $\vec{r} \cdot \vec{n} = d$ 

:. Normal vector to the plane is  $\vec{n} = 2\hat{i} - \hat{j} + \hat{k}$  and its magnitude is  $|\vec{n}| = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{6}$ 

(iii) (b) : The cartesian form is 2x - y + z = 8, which can be rewritten as

$$\frac{2x}{8} - \frac{y}{8} + \frac{z}{8} = 1$$
$$\implies \frac{x}{4} + \frac{y}{-8} + \frac{z}{8} = 1$$

(iv) (c) : Since, only the point (4, 1, 1) satisfy the equation of plane representing Class XII, therefore *C* is the student of XII.

(v) (b): Equation of plane representing Class XII is  $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) = 8$ , which is not in normal form, as  $|\vec{r}| \neq 1$ 

On dividing both sides by  $\sqrt{2^2 + 1^2 + 1^2} = \sqrt{6}$ , we get  $\vec{-1} = \sqrt{6}$ , we get

$$\vec{r} \cdot \left(\frac{2}{\sqrt{6}}\hat{i} - \frac{1}{\sqrt{6}}\hat{j} + \frac{1}{\sqrt{6}}\hat{k}\right) = \frac{3}{\sqrt{6}}$$

which is of the form  $\vec{r} \cdot \hat{n} = d$ 

Thus, the required distance is  $\frac{8}{\sqrt{6}}$  units.

**18.** (i) (d) : If x be the amount of increase in annual charges of each subscriber, then number of subscriber reduces to 500 - x

:. Revenue, R(x) = (300 + x) (500 - x)= 150000 + 200x - x<sup>2</sup>, 0 < x < 500

(iii) (c) : Since,  $150000 + 200x - x^2 = 156400$  (Given)  $\Rightarrow x^2 - 200x + 6400 = 0 \Rightarrow x^2 - 160x - 40x + 6400 = 0$  $\Rightarrow x(x - 160) - 40(x - 160) = 0 \Rightarrow x = 40, 160$ 

(iv) (a): 
$$\frac{dR}{dx} = 200 - 2x$$
 and  $\frac{d^2R}{dx^2} = -2 < 0$ 

For maximum revenue,  $\frac{dR}{dx} = 0$  $\Rightarrow x = 100$ 

$$\Rightarrow x = 10$$

- $\therefore$  Required amount = 100
- (v) (b) : Maximum revenue = *R*(100) = (300 + 100) (500 - 100) = 400 × 400 = ₹ 160000

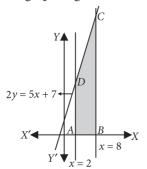
19. The matrix will not be invertible if 
$$\begin{vmatrix} 1 & a & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1 \end{vmatrix} = 0$$
  
 $\Rightarrow 1(2-5) - a(1-10) + 2(1-4) = 0$   
 $\Rightarrow -3 + 9a - 6 = 0 \Rightarrow a = 1$   
20. Let  $I = \int \frac{x}{1-\sin 2x} dx = \int \frac{x(1+\sin 2x)}{\cos^2 2x} dx$   
 $= \int x \left( \sec^2 2x + \sec 2x \tan 2x \right) dx$   
 $= x \left( \frac{\tan 2x}{2} + \frac{\sec 2x}{2} \right)$   
 $-\left( \frac{\log|\sec 2x|}{4} + \frac{\log|\sec 2x + \tan 2x|}{4} \right) + C$   
 $\therefore I = \frac{x}{2} (\tan 2x + \sec 2x) - \frac{1}{4} \log|\sec^2 2x + \sec 2x \tan 2x| + C$   
OR  
Let  $I = \int \frac{dx}{1+\tan x} = \int \frac{\cos x}{\cos x + \sin x} dx$   
 $= \frac{1}{2} \int \frac{2\cos x}{\cos x + \sin x} dx$   
 $= \frac{1}{2} \int \frac{(\cos x + \sin x) + (\cos x - \sin x)}{(\cos x + \sin x)} dx$   
 $= \left[ \frac{1}{2} \int dx + \frac{1}{2} \int \left( \frac{\cos x - \sin x}{\cos x + \sin x} \right) dx \right]$   
 $= \frac{x}{2} + \frac{1}{2} \log |\cos x + \sin x| + C$   
21. Here,  $y = x^4 - 6x^3 + 13x^2 - 10x + 5$  ...(i)

Differentiating (i) w.r.t. *x*, we get

$$\frac{dy}{dx} = 4x^3 - 18x^2 + 26x - 10$$
  
$$\therefore \quad \left(\frac{dy}{dx}\right)_{(1,3)} = 4 - 18 + 26 - 10 = 2$$

Hence the equation of the tangent to (i) at (1, 3) is  $y - 3 = 2(x - 1) \Longrightarrow y = 2x + 1$ 

22. Let us draw the graph of given lines, as shown below:



$$\therefore \text{ Required area (shown in shaded region)} = \int_{2}^{8} y \, dx = \int_{2}^{8} \left(\frac{5x+7}{2}\right) dx$$
$$= \frac{1}{2} \left[\frac{5x^{2}}{2} + 7x\right]_{2}^{8} = \frac{1}{2} \left[\left\{\frac{5(64)}{2} + 56\right\} - \left\{\frac{5(4)}{2} + 14\right\}\right]$$
$$= \frac{1}{2} [(160+56) - (10+14)] = \frac{1}{2} (216-24) = \frac{192}{2}$$
$$= 96 \text{ sq. units.}$$

23. Given,  $P(A) = \frac{3}{8}$ ,  $P(B) = \frac{5}{8}$  and  $P(A \cup B) = \frac{3}{4}$ . Clearly,  $P(A \cap B) = P(A) + P(B) - P(A \cup B)$  $= \frac{3}{8} + \frac{5}{8} - \frac{3}{4} = \frac{3+5-6}{8} = \frac{1}{4}$ 

Also, we know that  $P(A' \cap B) + P(A \cap B) = P(B)$ [As  $A' \cap B$  and  $A \cap B$  are mutually exclusive events]  $\therefore P(A' \cap B) = P(B) - P(A \cap B) = \frac{5}{8} - \frac{1}{4} = \frac{3}{8}$ Now,  $P(A \mid B) \cdot P(A' \mid B) = \frac{P(A \cap B)}{P(B)} \cdot \frac{P(A' \cap B)}{P(B)}$  $= \frac{1/4}{5/8} \cdot \frac{3/8}{5/8} = \frac{3}{32} \times \frac{64}{25} = \frac{6}{25}$ 

OR

Since, E and F are independent events.  

$$\therefore P(E \cap F) = P(E) P(F)$$

$$\Rightarrow P(E|F) = P(E) \text{ and } P(F|E) = P(F)$$
Now,  $P(E \cup F) = P(E) + P(F) - P(E \cap F)$   

$$\Rightarrow 0.5 = 0.3 + P(F) - 0.3 P(F)$$

$$\Rightarrow P(F)(1 - 0.3) = 0.5 - 0.3 \Rightarrow P(F) = \frac{0.2}{0.7} = \frac{2}{7}$$

$$\therefore P(E \mid F) - P(F \mid E) = P(E) - P(F)$$

$$= 0.3 - \frac{2}{7} = \frac{3}{10} - \frac{2}{7} = \frac{1}{70}$$
24.  $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) - 3\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{4} - 3\left(\frac{\pi}{3}\right)$ 

$$= \frac{\pi}{4} - \pi = \frac{-3\pi}{4}$$

$$\left[ \because \text{ Principal value of } \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4} \text{ and}$$

$$\text{ that of } \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} \right]$$

**25.** Let *E* = the event of *A* speaking the truth and *F* = the event of *B* speaking the truth Then,  $P(E) = \frac{60}{100} = \frac{3}{5}$  and  $P(F) = \frac{90}{100} = \frac{9}{10}$ Required probability = *P* (*A* and *B* contradicting each other)

 $= P(E\overline{F} \text{ or } \overline{E}F) = P(E\overline{F}) + P(\overline{E}F)$ 

$$= P(E) \cdot P(\overline{F}) + P(\overline{E}) \cdot P(F)$$

[:: E and *F* are independent events]

$$= P(E) \cdot [1 - P(F)] + [1 - P(E)] \cdot P(F)$$
  
$$= \frac{3}{5} \left( 1 - \frac{9}{10} \right) + \left( 1 - \frac{3}{5} \right) \cdot \frac{9}{10} = \frac{21}{50} = \frac{42}{100}$$

Thus, *A* and *B* are likely to contradict each other in 42% cases.

**26.** We have,  $x^3 + y^3 = sin(x + y)$ On differentiating both sides w.r.t. *x*, we get

$$3x^{2} + 3y^{2} \frac{dy}{dx} = \cos(x+y) \frac{d}{dx}(x+y)$$
$$= \cos(x+y) \left(1 + \frac{dy}{dx}\right)$$
$$\Rightarrow 3x^{2} + 3y^{2} \cdot \frac{dy}{dx} = \cos(x+y) + \cos(x+y) \frac{dy}{dx}$$
$$\Rightarrow 3y^{2} \frac{dy}{dx} - \cos(x+y) \frac{dy}{dx} = \cos(x+y) - 3x^{2}$$
$$\Rightarrow \frac{dy}{dx} \left[3y^{2} - \cos(x+y)\right] = \cos(x+y) - 3x^{2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{\cos(x+y) - 3x^{2}}{3y^{2} - \cos(x+y)}$$

27. The given lines are parallel.

Here,  $\vec{a}_1 = \hat{i} + \hat{j}$ ,  $\vec{a}_2 = 2\hat{i} - 3\hat{k}$  and  $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ Now,  $\vec{a}_2 - \vec{a}_1 = (2\hat{i} - 3\hat{k}) - (\hat{i} + \hat{j}) = \hat{i} - \hat{j} - 3\hat{k}$   $\vec{b} \times (\vec{a}_2 - \vec{a}_1) = \hat{i}(6+3) - \hat{j}(-3-3) + \hat{k}(-1+2)$   $= 9\hat{i} + 6\hat{j} + \hat{k}$   $|\vec{b}| = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{1+4+9} = \sqrt{14}$ Shortest distance  $= \frac{|\vec{b} \times (\vec{a}_2 - \vec{a}_1)|}{|\vec{b}|} = \frac{|9\hat{i} + 6\hat{j} + \hat{k}|}{\sqrt{14}}$   $= \frac{1}{\sqrt{14}}\sqrt{(9)^2 + (6)^2 + (1)^2} = \sqrt{\frac{118}{14}} = \sqrt{\frac{59}{7}}$  units **28.** We have  $\log\left(\frac{dy}{dx}\right) = ax + by$   $\Rightarrow \frac{dy}{dx} = e^{ax+by} \Rightarrow dy = e^{ax} e^{by} dx \Rightarrow e^{-by} dy = e^{ax} dx$   $\Rightarrow \frac{e^{-by}}{-b} = \frac{e^{ax}}{a} + C$ , [Integrating both sides] which is the required solution.

We have 
$$(x + y)^2 \frac{dy}{dx} = 1$$
 ...(i)  
Let  $x + y = u \Rightarrow 1 + \frac{dy}{dx} = \frac{du}{dx}$   
(i) becomes,  $\frac{du}{dx} - 1 = \frac{1}{u^2} \Rightarrow \frac{du}{dx} = \frac{1}{u^2} + 1 = \frac{1 + u^2}{u^2}$ 

$$\Rightarrow \int \frac{u^2}{u^2 + 1} du = \int dx + C \Rightarrow \int \frac{u^2 + 1 - 1}{u^2 + 1} du = x + C$$
  
$$\Rightarrow u - \tan^{-1}(u) = x + C$$
  
$$\Rightarrow (x + y) - \tan^{-1}(x + y) = x + C$$
  
$$\Rightarrow y - \tan^{-1}(x + y) = C \text{ is the required solution}$$

29. Let 
$$I = \int_{0}^{\pi} \frac{x \tan x}{\sec x + \tan x} dx$$
  
 $\Rightarrow I = \int_{0}^{\pi} \frac{x \sin x}{1 + \sin x} dx$  ...(i)  
 $\Rightarrow I = \int_{0}^{\pi} \frac{(\pi - x) \sin(\pi - x)}{1 + \sin(\pi - x)} dx$   
 $\Rightarrow I = \int_{0}^{\pi} \frac{(\pi - x) \sin x}{1 + \sin x} dx$  ...(ii)

Adding (i) and (ii), we get

$$2I = \int_{0}^{\pi} \frac{\pi \sin x}{1 + \sin x} dx \implies I = \frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x (1 - \sin x)}{(1 + \sin x)(1 - \sin x)} dx$$
  
$$\implies I = \frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x - \sin^{2} x}{\cos^{2} x} dx \implies I = \frac{\pi}{2} \int_{0}^{\pi} \left(\frac{\sin x}{\cos^{2} x} - \frac{\sin^{2} x}{\cos^{2} x}\right) dx$$
  
$$= \frac{\pi}{2} \int_{0}^{\pi} (\tan x \sec x - \tan^{2} x) dx$$
  
$$= \frac{\pi}{2} \int_{0}^{\pi} [\tan x \sec x - (\sec^{2} x - 1)] dx = \frac{\pi}{2} [\sec x - \tan x + x]_{0}^{\pi}$$
  
$$= \frac{\pi}{2} [\sec \pi - \tan \pi + \pi] - \frac{\pi}{2} [\sec 0 - \tan 0 + 0]$$
  
$$= \frac{\pi}{2} [-1 - 0 + \pi] - \frac{\pi}{2} [1 - 0 + 0] = -\frac{\pi}{2} + \frac{\pi^{2}}{2} - \frac{\pi}{2}$$
  
$$= \frac{\pi^{2}}{2} - \pi = \frac{\pi}{2} (\pi - 2)$$
  
**30.** We have,  $f: R \rightarrow [4, \infty)$  defined by  $f(x) = x^{2} + 4$ .

**30.** We have, 
$$f: R_+ \to [4, \infty)$$
 defined by  $f(x) = x^2 + 4$ .  
(i) Let  $x_1, x_2 \in R_+$  s.t.  $f(x_1) = f(x_2)$   
 $\Rightarrow x_1^2 + 4 = x_2^2 + 4 \Rightarrow x_1^2 = x_2^2$   
 $\Rightarrow x_1 = x_2$  ( $\because x_1, x_2 \in R_+$ )  
 $\Rightarrow f$  is one-one  
(ii)  $y = f(x)$ , where  $y \in [4, \infty)$ , *i.e.*,  $y \ge 4$   
 $\Rightarrow x^2 + 4 = y \Rightarrow x = \sqrt{y-4}$   
Now,  $x$  is defined if,  $y - 4 \ge 0$  and  $\sqrt{y-4} \in R_+$   
Thus, for each  $y \in [4, \infty)$ , we have  $x = \sqrt{y-4} \in R_+$   
such that  $f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4 = (y-4) + 4 = y$   
 $\Rightarrow f$  is onto.  
 $\therefore$   $f$  is one-one and onto.

 $\Rightarrow$  *f* is bijective function

140

**31.** Given that,  $f(x) = x^3 - 6x^2 + 9x + 15$   $\Rightarrow f'(x) = 3x^2 - 12x + 9$ . For local maxima or minima, we must have f'(x) = 0. Now,  $f'(x) = 0 \Rightarrow 3(x^2 - 4x + 3) = 0$   $\Rightarrow 3(x - 3)(x - 1) = 0$  $\Rightarrow x = 3 \text{ or } x = 1$ 

#### **Case I :** When *x* = 3

In this case, when x is slightly less than 3 then f'(x) is negative and when x is slightly more than 3 then f'(x) is positive.

Thus, f'(x) changes sign from negative to positive as x increases through 3.

So, x = 3 is a point of local minima.

 $\therefore$  Local minimum value = f(3) = 15

#### **Case II :** When *x* = 1

In this case, when x is slightly less than 1 then f'(x) is positive and when x is slightly more than 1 then f'(x)is negative.

Thus, f'(x) changes sign from positive to negative as x increases through 1.

So, x = 1 is a point of local maxima.

 $\therefore$  Local maximum value = f(1) = 19.

OR

Given, 
$$f(x) = x^x$$
  
 $\Rightarrow f(x) = e^{x \log x}$ .  
 $\Rightarrow f'(x) = e^{x \log x}$ .  
 $\frac{d}{dx}(x \log x) = x^x (1 + \log_e x)$  ...(i)  
(a)  $f(x)$  is increasing  
 $\Rightarrow f'(x) \ge 0 \Rightarrow x^x (1 + \log_e x) \ge 0$  [From (i)]  
 $\Rightarrow (1 + \log_e x) \ge 0$  [ $\because x^x > 0$  when  $x > 0$ ]  
 $\Rightarrow \log_e x \ge -1 \Rightarrow x \ge e^{-1} \Rightarrow x \in \left[\frac{1}{e}, \infty\right]$   
 $\therefore f(x)$  is increasing on  $\left[\frac{1}{e}, \infty\right]$ .  
(b)  $f(x)$  is decreasing  
 $\Rightarrow f'(x) \le 0 \Rightarrow x^x (1 + \log_e x) \le 0$   
 $\Rightarrow (1 + \log_e x) \le 0$  [ $\because x^x > 0$ ]  
 $\Rightarrow \log_e x \le -1 \Rightarrow x \le e^{-1} \Rightarrow 0 < x \le \frac{1}{e} \Rightarrow x \in \left(0, \frac{1}{e}\right]$   
 $\therefore f(x)$  is decreasing on  $\left(0, \frac{1}{e}\right]$ .  
Hence,  $f(x)$  is increasing on  $\left[\frac{1}{e}, \infty\right]$  and decreasing  
on  $\left(0, \frac{1}{e}\right]$ .

32. We have, 
$$\cos\left(\frac{dy}{dx}\right) = a$$
  
 $\Rightarrow \frac{dy}{dx} = \cos^{-1}a \Rightarrow dy = \cos^{-1}a dx$  ...(i)  
Integrating (i) both sides, we get  
 $\int dy = \cos^{-1}a \int dx \Rightarrow y = x \cos^{-1}a + C$ 

When x = 0,  $y = 1 \implies 1 = C$ Thus, particular solution is  $y = x \cos^{-1} a + 1$   $\implies (y - 1) = x \cos^{-1} a \implies \cos^{-1} a = \left(\frac{y - 1}{x}\right)$   $\implies a = \cos\left(\frac{y - 1}{x}\right)$  **33.** Given,  $y = x^{x^x}$ Taking log on both sides, we get log  $y = x^x \log x$ 

Again, taking log on both sides, we get  $\log (\log y) = \log(x^x \log x)$  $\Rightarrow \log (\log y) = \log x^x + \log (\log x)$ 

$$\Rightarrow \log (\log y) = x (\log x) + \log (\log x) \qquad \dots(i)$$

On differentiating (i) both sides w.r.t. *x*, we get

$$\frac{1}{\log y} \cdot \frac{1}{y} \cdot \frac{dy}{dx} = \left[ x \cdot \frac{1}{x} + \log x \cdot 1 \right] + \left[ \frac{1}{\log x} \cdot \frac{1}{x} \right]$$
$$\Rightarrow \frac{1}{y \log y} \cdot \frac{dy}{dx} = 1 + \log x + \frac{1}{x \log x}$$
$$\Rightarrow \frac{dy}{dx} = y \log y \left[ 1 + \log x + \frac{1}{x \log x} \right]$$
$$= x^{(x^x)} \log x^{(x^x)} \left[ 1 + \log x + \frac{1}{x \log x} \right]$$

34. Given,  $\alpha$ ,  $\beta$  are the roots of  $ax^2 + bx + c = 0$ , therefore  $ax^2 + bx + c = a(x - \alpha)(x - \beta)$ Since  $f(\alpha)$  is continuous at  $x = \alpha$ , therefore  $f(\alpha) = \lim_{x \to \alpha} f(x)$  $\Rightarrow f(\alpha) = \lim_{x \to \alpha} \left( \frac{1 - \cos(a(x - \alpha)(x - \beta))}{(x - \alpha)^2} \right)$  $= \lim_{x \to \alpha} \left( \frac{1 - \cos(a(x - \alpha)(x - \beta))}{(x - \alpha)^2} \right)$ 

$$= \frac{a^2}{x \to \alpha} \left( a^2 (x - \alpha)^2 (x - \beta)^2 - a^2 (x - \beta)^2 \right)$$
$$= \frac{a^2}{2} (\alpha - \beta)^2 \qquad \dots (i)$$
Now  $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta = \left(\frac{-b}{a}\right)^2 - 4\left(\frac{c}{a}\right)$ 
$$= \frac{b^2 - 4ac}{a^2}$$
From (i), we get  $f(\alpha) = \frac{b^2 - 4ac}{a^2}$ .

2

#### OR

Consider,  $\lim_{x \to 0} f(x) = f(0)$  $\Rightarrow \lim_{x \to 0} f(x) = -\lim_{x \to 0} \frac{(256 - 7x)^{1/8} - 256^{1/8}}{(5x + 32)^{1/5} - 32^{1/5}}$   $= -\lim_{x \to 0} \frac{\frac{(256 - 7x)^{1/8} - 256^{1/8}}{(256 - 7x) - (256)} \times (-7x)}{\frac{(5x + 32)^{1/5} - 32^{1/5}}{(5x + 32) - (32)}} \times 5x$   $= \frac{\frac{7}{5} \cdot \frac{1}{8} \cdot 256^{\frac{1}{8} - 1}}{\frac{1}{5} \cdot 32^{\frac{1}{5} - 1}} = \frac{7}{64}$ 

35. Equation of parabola is  $y^2 = 4ax$ Its axis is y = 0 and vertex is (0, 0)∴ Required area  $ABCDA = \int_{a}^{2a} y \, dx$   $= 2\sqrt{a} \int_{a}^{2a} \sqrt{x} \, dx$  [∵ y > 0]  $= 2\sqrt{a} \cdot \frac{2}{3} [x^{3/2}]_{a}^{2a}$   $= 2\sqrt{a} \cdot \frac{2}{3} [(2a)^{3/2} - (a)^{3/2}]$   $= \frac{4}{3}\sqrt{a} [a^{3/2}(2^{3/2} - 1)]$  $= \frac{4}{3}a^2 [2\sqrt{2} - 1]$  sq. units

36. Given problem is

Maximize Z = x + y

Subject to the constraints,  $x \ge 0$ ,  $y \ge 0$ ,  $2x + 5y \le 100$ ,

$$\frac{x}{25} + \frac{y}{40} \le 1 \Longrightarrow 8x + 5y \le 200$$

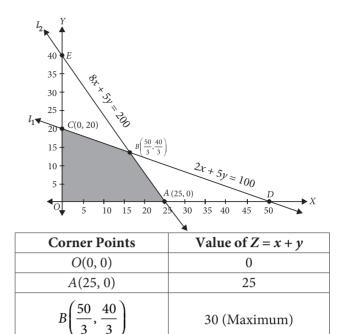
Let us convert the system of the inequations into equations.

$$l_1: 2x + 5y = 100$$
 and  $l_2: 8x + 5y = 200$   
Both the lines intersect at  $B\left(\frac{50}{3}, \frac{40}{3}\right)$ .

The solution set of the given system is the shaded region *OABC*.

The coordinates of corner points O, A, B, C are (0, 0),

(25, 0), 
$$\left(\frac{50}{3}, \frac{40}{3}\right)$$
 and (0, 20) respectively.



So, Z = x + y is maximum when  $x = \frac{50}{3}$  and  $y = \frac{40}{3}$ .

OR Let us convert the given inequations into equations

20

Now, value of Z = 5x + 2y at these points are given below:

5x + 2y = 10

Here, *B* is the point of intersection of the lines

3x + 5y = 15 and 5x + 2y = 10 *i.e.*,  $B = \left(\frac{20}{10}, \frac{45}{10}\right)$ 

We have points A(2, 0),  $B\left(\frac{20}{19}, \frac{45}{19}\right)$  and C(0, 3).

$$Z(O) = 5(0) + 2(0) = 0$$
  

$$Z(A) = 5(2) + 2(0) = 10$$
  

$$Z(B) = 5\left(\frac{20}{19}\right) + 2\left(\frac{45}{19}\right) = 10$$
  

$$Z(C) = 5(0) + 2(3) = 6$$

C(0, 20)

and draw the corresponding lines.

*i.e.*,  $\frac{x}{5} + \frac{y}{3} = 1$  and  $\frac{x}{2} + \frac{y}{5} = 1$ 

We have, 3x + 5y = 15 and 5x + 2y = 10

0

As  $x \ge 0$ ,  $y \ge 0$ , solution lies in first quadrant.

Thus, *Z* has maximum value 10 at two points *A*(2, 0) and  $B\left(\frac{20}{19}, \frac{45}{19}\right)$ .

**37.** The line joining the given points *P*(1, 4, 2) and *Q*(2, 3, 5) has direction ratios <1 − 2, 4 − 3, 2 − 5> *i.e.*, <− 1, 1, −3> The plane through (1, 2, 1) and perpendicular to the line *PQ* is −1(*x* − 1) + 1(*y* −2) − 3(*z* − 1) = 0  $\Rightarrow x - y + 3z - 2 = 0$ 

Now, direction ratios of line  $\frac{x+3}{2} = \frac{y-5}{-1} = \frac{z-7}{-1}$  are 2, -1, -1.

Since 2(1) + (-1)(-1) + (3)(-1) = 2 + 1 - 3 = 0 $\therefore$  Line is parallel to the plane.

Since, (-3, 5, 7) lies on the given line.

 $\therefore$  Distance of the point (-3, 5, 7) from plane is

$$d = \left| \frac{-3 - 5 + 3(7) - 2}{\sqrt{1 + 1 + 9}} \right|$$
  

$$\Rightarrow d = \frac{11}{\sqrt{11}} = \sqrt{11} \text{ units.}$$
  
OR  

$$x + 2 \quad y + 1 \quad z = 3$$

 $\frac{x+2}{3} = \frac{y+1}{2} = \frac{z-3}{6}$  is the given line ...(i)

Let P(-2, -1, 3) lies on the line. The direction ratios of line (i) are 3, 2, 6 3 2

 $\therefore \text{ The direction cosines of line are } \frac{3}{7}, \frac{2}{7}, \frac{6}{7}$ Equation (i) may be written as

$$\frac{x+2}{\frac{3}{7}} = \frac{y+1}{\frac{2}{7}} = \frac{z-3}{\frac{6}{7}}$$
..(ii)

Coordinates of any point on the line (ii) may be taken as

$$\left(\frac{3}{7}r - 2, \frac{2}{7}r - 1, \frac{6}{7}r + 3\right)$$
  
Let  $Q \equiv \left(\frac{3}{7}r - 2, \frac{2}{7}r - 1, \frac{6}{7}r + 3\right)$ 

Given |r| = 2,  $\therefore r = \pm 2$ Putting the value *r*, we have

$$Q \equiv \left(\frac{-8}{7}, \frac{-3}{7}, \frac{33}{7}\right)$$
  
or 
$$Q \equiv \left(\frac{-20}{7}, \frac{-11}{7}, \frac{9}{7}\right)$$
  
**38.** We have, 
$$A = \begin{bmatrix} 3 & -5\\ -4 & 2 \end{bmatrix}$$
  
$$\therefore A^2 = AA = \begin{bmatrix} 3 & -5\\ -4 & 2 \end{bmatrix} \begin{bmatrix} 3 & -5\\ -4 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 3 \cdot 3 + (-5) \cdot (-4) & 3 \cdot (-5) + (-5) \cdot 2 \\ -4 \cdot 3 + 2 \cdot (-4) & -4 \cdot (-5) + 2 \cdot 2 \end{bmatrix} = \begin{bmatrix} 29 & -25 \\ -20 & 24 \end{bmatrix}$$
  
Given  $f(x) = x^2 - 5x - 14$   
 $\Rightarrow f(A) = A^2 - 5A - 14I_2$   
$$= \begin{bmatrix} 29 & -25 \\ -20 & 24 \end{bmatrix} - 5\begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix} - 14\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
  
$$= \begin{bmatrix} 29 & -25 \\ -20 & 24 \end{bmatrix} - \begin{bmatrix} 15 & -25 \\ -20 & 10 \end{bmatrix} - \begin{bmatrix} 14 & 0 \\ 0 & 14 \end{bmatrix}$$
  
$$= \begin{bmatrix} 29 - 15 - 14 & -25 - (-25) - 0 \\ -20 - (-20) - 0 & 24 - 10 - 14 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O$$
  
$$\Rightarrow A^2 = 5A + 14I_2 \qquad \dots(i)$$
  
$$\therefore A^3 = AA^2 = A(5A + 14I_2) \qquad (Using (i))$$
  
$$= A(5A) + A(14I_2) = 5AA + 14(AI_2)$$
  
$$= 5A^2 + 14A = 5(5A + 14I_2) + 14A \qquad (Using (i))$$
  
$$= 39A + 70I_2 = 39\begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix} + 70\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
  
$$= \begin{bmatrix} 117 & -195 \\ -156 & 78 \end{bmatrix} + \begin{bmatrix} 70 & 0 \\ 0 & 70 \end{bmatrix} = \begin{bmatrix} 187 & -195 \\ -156 & 148 \end{bmatrix}$$

The given equations can be written as

$$\begin{bmatrix} 2 & 5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$
  
or  $AX = B$ , where  $A = \begin{bmatrix} 2 & 5 \\ 3 & 2 \end{bmatrix}$ ,  $X = \begin{bmatrix} x \\ y \end{bmatrix}$  and  $B = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$ 

Now, on premultiplying the above matrix equation by  $A^{-1}$ , we get

$$(A^{-1}A)X = A^{-1}B$$
  

$$\Rightarrow X = A^{-1}B$$
 ...(i)  
Now as  $A = \begin{bmatrix} 2 & 5 \\ 3 & 2 \end{bmatrix}, |A| = -11 \text{ and } \text{adj } A = \begin{bmatrix} 2 & -5 \\ -3 & 2 \end{bmatrix}$   

$$\therefore A^{-1} = \frac{1}{|A|} (\text{adj } A) = \frac{1}{-11} \begin{bmatrix} 2 & -5 \\ -3 & 2 \end{bmatrix}$$
  
Now,  $X = \frac{1}{-11} \begin{bmatrix} 2 & -5 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 7 \end{bmatrix}$  [Using (i)]  

$$\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 33 \\ -11 \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

Hence x = 3 and y = -1.

 $\odot$  $\odot$  $\odot$  $\odot$  $\odot$