Real Number

MATHEMATICS

QUESTIONS

CELLENCE BOOK

1. The L.C.M. and H.C. F. of marks scored by Supravin & Kumar in a test are 1489645 and 1 respectively. If Supravin's score is 1145, what is Kumar's score?

2. $5.67\overline{23}$

(a) An integer

(a) 2, 17

- (b) A rational number
- (c) An irrational number
- (d) A natural number
- 3. The value of $\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}}$ is (a) 0 (b) 1 (c) 2 (d) 4
- 4. The value of $\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{34}+\sqrt{35}} + \frac{1}{\sqrt{35}+\sqrt{36}}$ is (a) 0 (b) 2 (c) 3 (d) 5
- 5. 'P' is the remainder obtained when a perfect square is divided by 3. What is the value of 'p'?
 (a) 1
 (b) 0
 (c) Either (a) or (b)
 (d) Neither (a) or (b)
- 6. If $\sqrt{\mathbf{p}} < \sqrt{\mathbf{q}} < \sqrt{\mathbf{r}} < \sqrt{\mathbf{s}}$ where p, q, r, s are consecutive natural numbers, then (a) $\sqrt{\mathbf{s}} - \sqrt{r} > \sqrt{q} - \sqrt{p}$ (b) $\sqrt{q} - \sqrt{p} > \sqrt{\mathbf{s}} - \sqrt{r}$
 - (c) $\sqrt{s} \sqrt{q} > \sqrt{r} \sqrt{p}$ (d) $\sqrt{s} \sqrt{r} = \sqrt{q} \sqrt{p}$
- 7. The factor tree shows the prime factorization of 1020. Then (a, b) is

8. If $\mathbf{m} = \left(1 - 2^{\frac{1}{4}}\right)^{-1}$, then m can also be written as, (a) $\left(1 - \sqrt[4]{2}\right)\left(2 - \sqrt{2}\right)$ (b) $\left(1 - \sqrt[4]{2}\right)\left(2 + \sqrt{2}\right)$ (c) $-\left(1 + \sqrt[4]{2}\right)\left(1 + \sqrt{2}\right)$ (d) $\left(1 + \sqrt[4]{2}\right)\left(2 + \sqrt{2}\right)$

9. Euclid's division lemma: For any two positive integers 'a' and 'b', there exist unique integers 'q' and 'r' such that a = bq + r.
What is the condition that 'r' must satisfy?

(a) $0 \le r \le b$ (b) $0 < r \le b$ (c) $0 \le r < b$ (d) 0 < r < b

10. The 1000th root of $10^{(10^{10})}$ is (a) 10^{77} (b) $10^{(10^7)}$ (c) $(\sqrt[3]{10})^{10^5}$ (D) $10^{(\sqrt[3]{10})^{10}}$

11. The following are the first and last step in finding the H.C.F. of 36 and 56 using Euclid's algorithm. Step $1:56 = 36 \times 1 + 20$

Step 2: Step 3: _____ Step 4: $16 = 4 \times 4 + 0$ Choose the steps 2 and 3. (i) $36 = 20 \times 1 + 16$ (ii) $24 = 20 \times 1 + 4$ (iii) $20 = 16 \times 1 + 4$ (iv) $56 = 18 \times 2 + 20$ (a) (i) and (ii) (b) (i) and (iii) (c) (ii) and (iii) (d) (iii) and (iv) The difference between $10^{\scriptscriptstyle (10)^2}\,$ and $\left(10^{\scriptscriptstyle 10}\right)^2\,$ is the order of 12. (b) 10⁸⁰ (c) 10^{20} (a) 0 (D) None of these 13. For what value of 'x' does 3^x end with 5? (a) 0 (d) Never ends with 5 (b) 5 (c) 500 14. When a number is divided by 19, its remainder is always

(a) Greater than 19

(b) Lies between $19 \ \text{and} \ 57$

(c) Greater or equal to zero but less than 19

(d) Less than zero

15.	If 9 divides 6561, which of the following statements is true?								
	(a) 9 divides 81	(b) 7 divides 243	(c) 7 divides 2178	(d) 9 divides 2189					
16.	X ₁ , X ₂ , X ₃ , X ₁₂ are	integers none of which a	are divisible by 3. The re	mainder when $X_1^2, X_2^2, X_3^2 + + X_{12}^2$ is					
	divided by 3 is								
	(a) 0	(b) 0 or 2	(c) 1 or 2	(d) 1					
17.	Diagonals of a rhombus are $(2^5 \times 7)$ cm and $(2 \times 5^2 \times 7^3)$ cm. Express the area of the rhombus i								
	prime factorization form.								
	(a) $2 \times 5 \times 7 \ cm^2$	(b) $2^2 \times 5^2 \times 7^2 cm^2$	(c) $2^5 \times 5^2 \times 7^4 cm^2$	(d) $2^6 \times 5^2 \times 7^4 cm^2$					
18.	Set of natural numbe	er is a subset of							
	(a) Set of even numbers	5	(b) Set of odd numbers						
	(c) Set of composite nu	mbers	(d) Set of real numbers.						
19.	Choose the irrationa	l number.							
	(a) $3 - \sqrt{9}$	(b) $\left(\sqrt{12}\right)^2$	(c) $\sqrt{625} - \sqrt{576}$	(d) $\sqrt{125} - \sqrt{64}$					
20.	$1/(\sqrt{3} - \sqrt{2})$ is not equal to								
	()		_						
	(a) $\sqrt{3} + \sqrt{2}$		(b) $\frac{\sqrt{3}}{(3-\sqrt{6})}$						
	(c) $(\sqrt{3} - \sqrt{2})/(5 - 2\sqrt{6})$		$(d)\left(\frac{\sqrt{4}}{\sqrt{10}-\sqrt{8}}\right)$						
21.	Given $a = p \cdot \sqrt{q}$ and $b = p + \sqrt{q}$ which of the following is correct. Where q is a prime number.								
	(a) a + b is irrational	(b) a - b is rational.	(c) 2ab is rational	(d) $\frac{a}{b}$ is rational					
22 .	According to the fund	damental theorem of ar	ithmetic, if p(a prime n	\mathbf{u} mumber) divides \mathbf{a}^2 and \mathbf{a} is positive.					
	then			· • • • •					
	(a) a divides p	(b) a^2 divides p	(c) p^2 divides a^2	(d) p divides a					

23. Which of the following is a non-terminating repeating decimal?

(a)
$$\frac{72}{6000}$$
 (b) $\frac{1771}{8000}$ (c) $\frac{123}{4^2 \times 5^4}$ (d) $\frac{145}{4^3 \times 5^2 \times 7^2}$

24.	The number in the form of $4K + 3$ where K is whole number, is always;							
	(a) An odd number	(b) An even number	(c) A perfect square	(d) Divisible by 3				
25.	Choose the terminating decimal.							
	(a) $\frac{641}{8000}$	(b) $\frac{29}{66}$	(c) $\frac{283}{120}$	(d) $\frac{617}{81}$				
26.	The number of subs	sets of A = {0, 1, 2} wi	ll be					
	(a) 3	(b) 5	(c) 6	(d) 8				
27.	Find the number wh	nich when divided by 8	7 leaves a remainder 4	9 and gives a quotient 50.				
	(a) 3997	(b) 4399	(c) 4301	(d) 4019				
28.	By what number mu	ist 1587 be divided to	get a quotient 27 and	remainder 21?				
	(a) 58	(b) 57	(c) 59	(d) 63				
29.	At an event on Sara	nswati Puja for student	s, 1643 Calendars and	1060 sweets were to be distributed				
	amongst students of class X such that each student gets the same number of calendar and also same							
	number of sweets, what is the maximum number of students in class X?							
	(a) 53	(b) 93	(c) 79	(d) 69				
30.	Which of the follow	ing is true for two co-p	rime numbers?					
	(a) Then- H.C.F. is 1.							
	(b) Their L.C.M. is 1.							
	(c) Their H.C.F. is equal to their product.							
	(d) Their L.C.M. is twi	ce their H.C.F.						
31.	Choose the method	s that can be used to fi	ind the H.C.F. of any t	wo numbers.				
	(i) Euclid's division len	nma						
	(ii) Prime factorization							
	(iii) Division of the numbers							
	(iv) Product of number	rs						
	(a) (i) and (iv) only		(b) (i), (ii) and (iii) only	J				
	(c) (i), (iii) and (iv) only	У	(d) (ii), (iii) and (iv) on	ly				
32.	A positive number '	'n' when divided by 9 l	eaves a remainder 6 w	hat is the remainder when $3n + 2$ is				
	divided by 3?							

(a) 0	(b) 1	(c) 2	(d) 3
			· ·

33. The remainder when a number is divided by 165 is 21. What is the remainder, when the same number is divided by 11?

(a) 4 (b) 5 (c) 11 (d) 10

34. Three distances are 8 m, 9 m 20 cm and 10 m 80 cm long. What is the greatest possible length which can be used to measure these ropes?
(a) 40 cm
(b) 50 cm
(c) 60 cm
(s) 1 m 20 cm

35. Sohan purchased 98 fruits out of which 35 are oranges and the remaining 63 are mangoes. Oranges and mangoes are to be packed in separate bundles and each bundle must contain the same number of fruit. Find the least number of bundles which can be made of these 98 fruit.
(a) 13
(b) 7
(c) 14
(d) 9

36. Two candidates during a physical test start running around a circular path. First candidate takes 22 minutes and second candidates takes 24 minutes to complete one round of the path. If both of them

start at the same point, then find after how many minutes they will meet again at the same starting point.

(a) 46 minutes	(b) 1 hour 22 minutes
(c) 92 minutes	(d) 4 hours 24 minutes

37. The sum of $1^2 + 2^2 + \dots n^2$ is

	(a) $\frac{n(n+1)^3}{3}$	(b) $\frac{(n+1)n^2}{6}$	(c) $\frac{n(n-1)(2n+1)}{12}$	(d) $\frac{n(n+1)(2n+1)}{6}$			
38.	The sum of $1^3 + 2^3 + \dots + n^3$ is						
	(a) $\frac{n^2(2n+1)(3n+2)}{6}$	(b) $\frac{n^2(n+1)^2}{4}$	(c) $\frac{n^3(n-1)}{3}$	(d) $\frac{(n-3)^2(n+5)}{9}$			

- **39.** Find the sum of 2² + 3² +100². (a) 338349 (b) 99999 (c) 103245 (d) 563000
- 40. Find the sum of $2^2 + 4^2 + 6^2$(2n)². (a) $\frac{n(n+1)^3}{3}$ (b) $\frac{2n(n+1)(2n+1)}{3}$ (c) $\frac{n(n-3)(2n+3)}{12}$ (d) $\frac{n(n+1)(2n+4)}{6}$

ANSWER - KEY									
1.	D	2.	В	3.	В	4.	D	5.	С
6.	В	7.	В	8.	С	9.	С	10.	В
11.	В	12.	D	13.	D	14.	С	15.	А
16.	А	17.	С	18.	D	19.	D	20.	D
21.	С	22.	D	23.	D	24.	А	25.	А
26.	D	27.	В	28.	А	29.	А	30.	А
31.	В	32.	С	33.	D	34.	A	35.	С
36.	D	37.	D	38.	В	39.	А	40.	В

SOLUTIONS

- 1. (D): $1145 \times b = 1489645 \times 1$ $\Rightarrow b = 1301$
- **2.** (B): $5.67\overline{23} = 5.67 \pm .00\overline{23}$

 $\therefore 5.67\overline{23} = \frac{567}{100} + \frac{23}{9900}$ which is a rational number.

$$\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} + \frac{1}{\sqrt{3}+\sqrt{2}} \times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}} + \frac{1}{\sqrt{4}+\sqrt{3}} \times \frac{\sqrt{4}-\sqrt{3}}{\sqrt{4}-\sqrt{3}} \dots = 1$$

- **3.** (B): Not Available
- 4. (D): Follow the same procedure as in previous question. (Multiplying successive term by $(\sqrt{2}-1), (\sqrt{3}-\sqrt{2}), \dots, (\sqrt{36}-\sqrt{35})$ lead to rationalization of each terms. Middle terms cancel. What remain is $\sqrt{36}-1=6-1=5$)
- **5.** (C) Not Available
- **6.** (B) Not Available

7. (B):
$$\frac{510}{a} = 170 \Rightarrow a = 3$$

 $\frac{170}{5} = b \Rightarrow b = 34$
8. (C): $\frac{1}{1 - \sqrt[4]{2}} = \frac{1 + \sqrt[4]{2}}{1^2 - (\sqrt[4]{2})^2} = \frac{1 + \sqrt[4]{2}}{1 - \sqrt{2}} = \frac{(1 + \sqrt[4]{2})(1 + \sqrt{2})}{-1}$

9. (C) Not Available

10. (B):
$$\left\{10^{(10^{10})}\right\}^{\frac{1}{1000}} = \left\{10^{(10^{10 \cdot 1000})}\right\} = 10^{(10^{7})}$$

11. (B): Step 2: $36 = 20 \times 1 + 16$ Step 3: $20 = 16 \times 1 + 4$

12. (D):
$$(a^{n})^{n} = a^{nn} \therefore (10)^{n} = 100 \Rightarrow 10^{100}^{n} = 10^{100}$$

 $(10^{10})^{2} = 10^{10 \cdot 2} = 10^{20}$
 \therefore Difference $1 - 10^{20} = 10^{20} (10^{80} - 1)$: so it is of the order of 10^{100}
13. (D): 3^{n} always ands with 3, 9, 7, 1. Try it with some TRIVIAL
Values of x e.g. x = 1, 2, 3, 4, 5
14. (C): This is as per Euclid's division lemma.
15. (A) Not Available
16. (A): When a perfect square is divided by 3, remainder is 1.
 \therefore Each time remainder is 1 in all twelve terms.
 \therefore Sum of remainders = $1 + 1 + \dots \dots (12 \text{ times})$.
 $= 12$
Which is divisible by 3
 \therefore Net remainder = zero
17. (C): Area $= \frac{1}{2} \times \text{Product of diagonals}$
 $= \frac{1}{2} \times (2^{5} \times 7) \times (2 \times 5^{2} \times 7^{2})$
 $= 2^{5} \times 7^{4} \times 5^{2}$
18. (D) Not Available
19. (D) Not Available
20. (D): From $\frac{1}{\sqrt{3} - \sqrt{2}}$, (A) is obtained by multiplying numerator and denominator by $(\sqrt{3} + \sqrt{2})$
(B) is obtained by multiplying numerator and denominator by $(\sqrt{3} - \sqrt{2})$ But (D) cannot be obtained.
21. (C): $2ab = 2(p - \sqrt{q})(p + \sqrt{q}) = 2(p^{2} - q)$

12.

9

- **22.** (D) Not Available
- **23.** (D): A non terminating repeating decimal is one is which denominator has a factor other than 2 and 5.
- **24.** (A) Not Available
- **25.** (A): Terminating decimal is one in which its fractional form (in its lowest term) has a denominator which can be expressed as product of only 2 (or its powers) and / or 5 (or its powers). This is satisfied in (A) only as denominator $= 2^3 \times 1000 = 2^6 \times 5^3$
- **26.** (D): subsets are ϕ , $\{0\}$, $\{1\}$, $\{2\}$, $\{0,1\}$, $\{0,2\}$, $\{1,2\}$, $\{0,1,2\}$ i.e. 8 is total
- **27.** (B): Number = Dividend = Divisor \times Quotient + Remainder = $87 \times 50 + 49$ = 4399
- **28.** (A): $1587 = n \times 27 + 21$ (Solve for 'n')
- 29. (A): Mind of a mathematician Just by careful study of question, we see that 53 should fully divide both 1643 and 1060 i.e. $53 \times x_1 = 1643$ and $53 \times x_2$
- **30.** (A) Not Available
- **31.** (B) Not Available
- **32.** (C): According to statement of problem, n = 9k + 6 $\therefore 3n + 2 = 27k + 20$

Dividing 27k + 20 by $3; \frac{27k + 20}{3} = (9k+6) + \frac{2}{3}$ \Rightarrow Remainder = 2

33. (D): Let number be $'n' \Rightarrow n = 165 \times k + 21$ where $k \in N$

```
=11 \times 15 \times k + 11 + 10
```

The indicated part is clearly divisible by 11

```
\therefore Remainder = 10
```

34. (A): Greatest length will be HCF of 800, 920 and 1080 Consider 80, 92 and 180 By prime factorization method,

 $80 = 2^{4} \times 5$ $92 = 2^{2} \times 23$ $108 = 2^{2} \times 3^{3}$ Hence, HCF = 40

35. (C): Let number of bundles of oranges be B_1 and bundle of mangoes be B_2 . Let bundles B_1 have n oranges and bundles B_2 have n mangoes each. Then $35 = B_1 \times n$ and $63 = B_2 \times n$.

Since B_1, n_1, B_2, n_2 all have to be natural numbers.

: Possibilities are $B_1 = (1,5,7,35) : B_2 = (1,3,7,9,63)$

Common factor is $7 \Rightarrow$ no of fruits in each bundle = 7

$$\Rightarrow B_1 = \frac{35}{7} = 5 \text{ and } B_2 = \frac{63}{7} = 9$$
$$\therefore B_1 + B_2 = 14$$

36. (D): It will be LCM of 22 min and 24 min

37. (D) Consider the identify $n^3 - (n-1)^3 - 3n^2 - 3n + 1$ Now, RHS

$$\sum (3n^2 - 3n + 1) = 3 \times \sum n^2 - 3\sum n + \sum 1$$

= 3S - $\frac{3n(n+1)}{2} + n$

Taking the summation of LHS

$$\sum_{1}^{n} n^{3} - (n-1)^{3} = n^{3}$$

$$\therefore n^{3} = 3S - \frac{3n(n+1)}{2} + n$$

$$\therefore 3S = n^{3} + \frac{3n(n+1)}{2} - n$$

$$\therefore 6S = 2n^{3} + 3n^{2} + 3n - 2n$$

$$= 2n^{3} + 3n^{2} + n = n[2n^{2} + 3n + 1]$$

$$= n(2n+1)(n+1)$$

$$= \frac{n(n+1)(2n+1)}{6}$$

38. (B): Consider
$$n^4 - (n-1)^4 = 4n^3 - 6n^2 + 4n - 1$$

$$\sum n^4 - (n-1)^4 = 4\sum n^3 - 6\sum n^2 + 4\sum n - \sum 1$$

$$n^4 = 4s - n(n+1)(2n+1) + 2n(n+1) - n$$

$$4s = n^4 + n(n+1)(2n+1) - 2n(n+1) + n$$

$$4s = \frac{n^2(n+1)^2}{4}$$

$$s = \frac{n^2(n+1)^2}{4}$$

39. (A): Not Available

40. (B):
$$S = 2^2 + 4^2 + 6^2 + \dots + n^2$$

= $2^2 \Big[1^2 + 2^2 + 3^2 + \dots + n^2 \Big]$
= $2^2 \times \frac{n(n+1)(2n+1)}{6}$
= $\frac{2n(n+1)(2n+1)}{3}$