




**P**robability theory, like many other branches of mathematics, evolved out of practical considerations. It had its origin in the 16<sup>th</sup> century when an Italian physician and Mathematician Jerome Cardan (1501-1576) wrote the first book on the subject "Book on Games of Chance (Liber de Ludo Aleae)" It was published in 1663 after his death.

In 1654, a gambler Chevalier de Mere approached the well known French philosopher and mathematician Blaise Pascal (1623-1662) for certain dice problems. Pascal became interested in these problems and discussed with famous French mathematician Pierre de Fermat (1601-1665) Both Pascal and Fermat solved the problem independently.

|      | Contents                                                |  |  |  |  |
|------|---------------------------------------------------------|--|--|--|--|
| 1.1  | Introduction                                            |  |  |  |  |
| 1.2  | Definitions of various terms                            |  |  |  |  |
| 1.3  | Classical definition of probability                     |  |  |  |  |
| 1.4  | Some important remarks about coins, dice, playing cards |  |  |  |  |
| 1.5  | Problems based on combination and permutation           |  |  |  |  |
| 1.6  | Odds in favour and odds against an event                |  |  |  |  |
| 1.7  | Addition theorems on probability                        |  |  |  |  |
| 1.8  | Conditional probability                                 |  |  |  |  |
| 1.9  | Total probability and Baye's rule                       |  |  |  |  |
| 1.10 | Binomial distribution                                   |  |  |  |  |
|      | Assignment (Basic and Advance Level)                    |  |  |  |  |
|      | Answer Sheet of Assignment                              |  |  |  |  |
|      |                                                         |  |  |  |  |

#### **1.1 Introduction**

Numerical study of chances of occurrence of events is dealt in probability theory.

The theory of probability is applied in many diverse fields and the flexibility of the theory provides approximate tools for so great a variety of needs.

There are two approaches to probability viz. (i) Classical approach and (ii) Axiomatic approach.

In both the approaches we use the term 'experiment', which means an operation which can produce some well-defined outcome(*s*). There are two types of experiments:

(1) **Deterministic experiment :** Those experiments which when repeated under identical conditions produce the same result or outcome are known as deterministic experiments. When experiments in science or engineering are repeated under identical conditions, we get almost the same result everytime.

(2) **Random experiment** : If an experiment, when repeated under identical conditions, do not produce the same outcome every time but the outcome in a trial is one of the several possible outcomes then such an experiment is known as a probabilistic experiment or a random experiment.

In a random experiment, all the outcomes are known in advance but the exact outcome is unpredictable.

For example, in tossing of a coin, it is known that either a head or a tail will occur but one is not sure if a head or a tail will be obtained. So it is a random experiment.

#### **1.2 Definitions of Various Terms**

(1) **Sample space** : The set of all possible outcomes of a trial (random experiment) is called its sample space. It is generally denoted by S and each outcome of the trial is said to be a sample point.

*Example* : (i) If a dice is thrown once, then its sample space is  $S = \{1, 2, 3, 4, 5, 6\}$ 

(ii) If two coins are tossed together then its sample space is  $S = \{HT, TH, HH, TT\}$ .

(2) **Event** : An event is a subset of a sample space.

(i) **Simple event :** An event containing only a single sample point is called an elementary or simple event.

*Example* : In a single toss of coin, the event of getting a head is a simple event.

Here  $S = \{H, T\}$  and  $E = \{H\}$ 

(ii) **Compound events :** Events obtained by combining together two or more elementary events are known as the compound events or decomposable events.

For example, In a single throw of a pair of dice the event of getting a doublet, is a compound event because this event occurs if any one of the elementary events (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) occurs.

(iii) **Equally likely events :** Events are equally likely if there is no reason for an event to occur in preference to any other event.

*Example* : If an unbiased die is rolled, then each outcome is equally likely to happen *i.e.*, all elementary events are equally likely.

(iv) **Mutually exclusive or disjoint events :** Events are said to be mutually exclusive or disjoint or incompatible if the occurrence of any one of them prevents the occurrence of all the others.

*Example* : E = getting an even number, F = getting an odd number, these two events are mutually exclusive, because, if E occurs we say that the number obtained is even and so it cannot be odd *i.e.*, F does not occur.

 $A_1$  and  $A_2$  are mutually exclusive events if  $A_1 \cap A_2 = \phi$ .

(v) **Mutually non-exclusive events :** The events which are not mutually exclusive are known as compatible events or mutually non exclusive events.

(vi) **Independent events :** Events are said to be independent if the happening (or non-happening) of one event is not affected by the happening (or non-happening) of others.

*Example* : If two dice are thrown together, then getting an even number on first is independent to getting an odd number on the second.

(vii) **Dependent events :** Two or more events are said to be dependent if the happening of one event affects (partially or totally) other event.

*Example* : Suppose a bag contains 5 white and 4 black balls. Two balls are drawn one by one. Then two events that the first ball is white and second ball is black are independent if the first ball is replaced before drawing the second ball. If the first ball is not replaced then these two events will be dependent because second draw will have only 8 exhaustive cases.

(3) **Exhaustive number of cases** : The total number of possible outcomes of a random experiment in a trial is known as the exhaustive number of cases.

*Example* : In throwing a die the exhaustive number of cases is 6, since any one of the six faces marked with 1, 2, 3, 4, 5, 6 may come uppermost.

(4) **Favourable number of cases** : The number of cases favourable to an event in a trial is the total number of elementary events such that the occurrence of any one of them ensures the happening of the event.

*Example* : In drawing two cards from a pack of 52 cards, the number of cases favourable to drawing 2 queens is  ${}^{4}C_{2}$ .

(5) Mutually exclusive and exhaustive system of events : Let *S* be the sample space associated with a random experiment. Let  $A_1, A_2, \dots, A_n$  be subsets of *S* such that

(i)  $A_i \cap A_i = \phi$  for  $i \neq j$  and (ii)  $A_1 \cup A_2 \cup \dots \cup A_n = S$ 

Then the collection of events  $A_1, A_2, \dots, A_n$  is said to form a mutually exclusive and exhaustive system of events.

If  $E_1, E_2, \dots, E_n$  are elementary events associated with a random experiment, then

(i)  $E_i \cap E_j = \phi$  for  $i \neq j$  and (ii)  $E_1 \cup E_2 \cup \dots \cup E_n = S$ 

So, the collection of elementary events associated with a random experiment always form a system of mutually exclusive and exhaustive system of events.

In this system,  $P(A_1 \cup A_2 \dots \cup A_n) = P(A_1) + P(A_2) + \dots + P(A_n) = 1$ .

#### Important Tips

- Independent events are always taken from different experiments, while mutually exclusive events are taken from a single experiment.
- TIN Independent events can happen together while mutually exclusive events cannot happen together.
- *F* Independent events are connected by the word "and" but mutually exclusive events are connected by the word "or".

| Example: 1    | Two fair dice are tossed. Let A be the event that the first die shows an even number and B be the<br>event that second die shows an odd number. The two events A and B are[IIT 1979](1) If the second die shows an odd number. The two events A and B are[IIT 1979] |                                      |                                        |                   |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|-------------------|--|
|               | (a) Mutually exclusive                                                                                                                                                                                                                                              | e                                    | (b) Independent and mutually exclusive |                   |  |
|               | (c) Dependent                                                                                                                                                                                                                                                       |                                      | (d) None of these                      |                   |  |
| Solution: (d) | They are independent events but not mutually exclusive.                                                                                                                                                                                                             |                                      |                                        |                   |  |
| Example: 2    | The probabilities of a student getting I, II and III division in an examination are respectively $\frac{1}{10}$                                                                                                                                                     |                                      |                                        |                   |  |
|               | and $\frac{1}{4}$ . The probability that the student fail in the examination is [MF                                                                                                                                                                                 |                                      |                                        | [MP PET 1997]     |  |
|               | (a) $\frac{197}{200}$                                                                                                                                                                                                                                               | (b) $\frac{27}{200}$                 | (c) $\frac{83}{100}$                   | (d) None of these |  |
| Solution: (d) | A denote the event get                                                                                                                                                                                                                                              | tting I;                             | B denote the eve                       | ent getting II;   |  |
|               | <i>C</i> denote the event getting III; and <i>D</i> denote the event getting fail.                                                                                                                                                                                  |                                      |                                        |                   |  |
|               | Obviously, these four                                                                                                                                                                                                                                               | events are mutually exclu            | isive and exhaustive,                  | therefore         |  |
|               | •                                                                                                                                                                                                                                                                   | $=1 \implies P(D) = 1 - 0.95 = 0.05$ |                                        |                   |  |
|               |                                                                                                                                                                                                                                                                     | - , - (- , - 1 01)0 0100             | -                                      |                   |  |

#### **1.3 Classical definition of Probability**

If a random experiment results in n mutually exclusive, equally likely and exhaustive outcomes, out of which m are favourable to the occurrence of an event A, then the probability of occurrence of A is given by

 $P(A) = \frac{m}{n} = \frac{\text{Number of outcomes favourable to } A}{\text{Number of total outcomes}}$ 

It is obvious that  $0 \le m \le n$ . If an event *A* is certain to happen, then m = n, thus P(A) = 1.

If A is impossible to happen, then m = 0 and so P(A) = 0. Hence we conclude that

 $0 \leq P(A) \leq 1.$ 

Further, if  $\overline{A}$  denotes negative of A *i.e.* event that A doesn't happen, then for above cases *m*, *n*; we shall have

 $P(\overline{A}) = \frac{n-m}{n} = 1 - \frac{m}{n} = 1 - P(A)$ 

$$P(A) + P(\overline{A}) = 1$$
.

*.*..

**Notations :** For two events *A* and *B*,

(i) A' or  $\overline{A}$  or  $A^c$  stands for the non-occurrence or negation of A.

(ii)  $A \cup B$  stands for the occurrence of at least one of A and B.

(iii)  $A \cap B$  stands for the simultaneous occurrence of A and B.

(iv)  $A' \cap B'$  stands for the non-occurrence of both A and B.

(v)  $A \subseteq B$  stands for "the occurrence of A implies occurrence of B".

#### 1.4 Some important remarks about Coins, Dice, Playing cards and Envelopes

(1) **Coins** : A coin has a head side and a tail side. If an experiment consists of more than a coin, then coins are considered to be distinct if not otherwise stated.

Number of exhaustive cases of tossing *n* coins simultaneously (or of tossing a coin *n* times) =  $2^{n}$ .

(2) **Dice** : A die (cubical) has six faces marked 1, 2, 3, 4, 5, 6. We may have tetrahedral (having four faces 1, 2, 3, 4) or pentagonal (having five faces 1, 2, 3, 4, 5) die. As in the case of coins, if we have more than one die, then all dice are considered to be distinct if not otherwise stated.

Number of exhaustive cases of throwing *n* dice simultaneously (or throwing one dice *n* times) =  $6^n$ .

(3) **Playing cards** : A pack of playing cards usually has 52 cards. There are 4 suits (Spade, Heart, Diamond and Club) each having 13 cards. There are two colours red (Heart and Diamond) and black (Spade and Club) each having 26 cards.

In thirteen cards of each suit, there are 3 face cards or coart cards namely king, queen and jack. So there are in all 12 face cards (4 kings, 4 queens and 4 jacks). Also there are 16 honour cards, 4 of each suit namely ace, king, queen and jack.

(4) **Probability regarding** n letters and their envelopes : If n letters corresponding to n envelopes are placed in the envelopes at random, then

(i) Probability that all letters are in right envelopes  $=\frac{1}{n!}$ .

(ii) Probability that all letters are not in right envelopes  $=1-\frac{1}{n!}$ .

(iii) Probability that no letter is in right envelopes  $=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\ldots+(-1)^n\frac{1}{n!}$ .

(iv) Probability that exactly r letters are in right envelopes =  $\frac{1}{r!} \left[ \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots + (-1)^{n-r} \frac{1}{(n-r)!} \right].$ 

**Example: 3** If (1+3p)/3, (1-p)/4 and (1-2p)/2 are the probabilities of three mutually exclusive events, then the set of all values of p is [IIT 1986; AMU 2002; AIEEE 2003]

(a) 
$$\frac{1}{3} \le p \le \frac{1}{2}$$
 (b)  $\frac{1}{3} (c)  $\frac{1}{2} \le p \le \frac{2}{3}$  (d)  $\frac{1}{2}$$ 

| Solution: (a)                      | Since $\frac{(1+3p)}{3}, \frac{(1+3p)}{3}$        | $\frac{(1-p)}{4}$ and $\left(\frac{(1-2p)}{2}\right)$ are the                                                        | ne probabilities of the t                                                | hree events, we m                                                              | ust have                                                                |
|------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|                                    | $0 \le \frac{1+3p}{3} \le 1, 0 \le 1$             | $\leq \frac{1-p}{4} \leq 1$ and $0 \leq \frac{1-2p}{2} \leq 1$                                                       | $1 \Rightarrow -1 \le 3p \le 2, -3 \le p \le 2$                          | $\leq 1$ and $-1 \leq 2p \leq 1$                                               |                                                                         |
|                                    | $\Rightarrow -\frac{1}{3} \le p \le \frac{2}{3},$ | $-3 \le p \le 1$ and $-\frac{1}{2} \le p \le \frac{1}{2}$                                                            | <del>.</del> .                                                           |                                                                                |                                                                         |
|                                    | Also as $\frac{1+3p}{3}$ ,                        | $\frac{1-p}{4}$ and $\frac{1-2p}{2}$ are the                                                                         | probabilities of three n                                                 | nutually exclusive                                                             | events,                                                                 |
|                                    | $0 \le \frac{1+3p}{3} + \frac{1-p}{4}$            | $\frac{p}{2} + \frac{1-2p}{2} \le 1 \implies 0 \le 4 + 12p$                                                          | $p + 3 - 3p + 6 - 12p \le 12 =$                                          | $\Rightarrow \frac{1}{3} \le p \le \frac{13}{3}$                               |                                                                         |
|                                    | Thus the requi                                    | red values of $p$ are such t                                                                                         | that $\max\left\{-\frac{1}{3}, -3, -\frac{1}{2}, \frac{1}{3}\right\}$    | $\bigg\} \le p \le \min\bigg\{\frac{2}{3}, 1, \frac{1}{2}, \frac{1}{3}\bigg\}$ | $\left.\frac{3}{3}\right\} \implies \frac{1}{3} \le p \le \frac{1}{2}.$ |
| Example: 4                         | The probability                                   | that a leap year selected                                                                                            | d randomly will have 5                                                   | 3 Sundays is                                                                   | [MP PET 1991, 93, 95]                                                   |
|                                    | (a) $\frac{1}{7}$                                 | (b) $\frac{2}{7}$                                                                                                    | (c) $\frac{4}{53}$                                                       | (d) $\frac{4}{49}$                                                             |                                                                         |
| Solution: (b)                      | For the remain<br>(i) Sunday and<br>Thursday,     | itain 366 days <i>i.e</i> . 52 wee<br>ing two days, we may ha<br>Monday, (ii) Monday ar<br>nd Friday, (iv) Friday an | we any of the two days<br>nd Tuesday, (iii) Tuesda                       | ay and Wednesday                                                               | r, (iv) Wednesday and                                                   |
|                                    | Now for 53 Sur                                    | ndays, one of the two day                                                                                            | vs must be Sundays, her                                                  | nce required proba                                                             | bility $=\frac{2}{7}$ .                                                 |
| Example: 5                         | Three identical                                   | dice are rolled. The prol<br>[SCR                                                                                    | bability that same num<br>A 1991; MP PET 1989; IIT                       |                                                                                |                                                                         |
|                                    | (a) $\frac{1}{6}$                                 | (b) $\frac{1}{36}$                                                                                                   | (c) $\frac{1}{18}$                                                       | (d) $\frac{3}{28}$                                                             |                                                                         |
| Solution: (b)                      |                                                   | al dice are rolled then to<br>ents (same number appea                                                                |                                                                          | points $= 6 \times 6 \times 6 = 2$                                             | 16.                                                                     |
|                                    |                                                   | )(6, 6, 6). ∴ Requ                                                                                                   | 210                                                                      | $=\frac{1}{36}$ .                                                              |                                                                         |
| 1.5 Problem                        | ns based on (                                     | Combination and Pe                                                                                                   | ermutation                                                               |                                                                                |                                                                         |
|                                    |                                                   | n combination or sel                                                                                                 | ection : To solve s                                                      | such kind of p                                                                 | problems, we use                                                        |
| ${}^{n}C_{r} = \frac{n!}{r!(n-r)}$ |                                                   |                                                                                                                      |                                                                          |                                                                                |                                                                         |
| Example: 6                         |                                                   | x vertices of a regular he<br>ee vertices is equilateral,                                                            | -                                                                        | -                                                                              | oility that the triangle<br>IIT 1995; MP PET 2002]                      |
|                                    | (a) $\frac{1}{2}$                                 | (b) $\frac{1}{5}$                                                                                                    | (c) $\frac{1}{10}$                                                       | (d) $\frac{1}{20}$                                                             |                                                                         |
| Solution: (c)                      | Total number o                                    | of triangles which can be                                                                                            | formed = ${}^{6}C_{3} = \frac{6 \times 5 \times 4}{1 \times 2 \times 3}$ | = 20                                                                           |                                                                         |
|                                    | Number of equ                                     | ilateral triangles = 2. $\therefore$                                                                                 | Required probability =                                                   | $=\frac{2}{20}=\frac{1}{10}$ .                                                 |                                                                         |
| Example: 7                         | Three distinct                                    | numbers are selected f<br>visible by 2 and 3 is                                                                      |                                                                          | 20 10                                                                          | ity that all the three<br>[IIT Screening 2004]                          |
|                                    | 4                                                 | 4                                                                                                                    | 4                                                                        | 4                                                                              |                                                                         |

(a) 
$$\frac{4}{25}$$
 (b)  $\frac{4}{35}$  (c)  $\frac{4}{55}$  (d)  $\frac{4}{1155}$ 

**Solution:** (d) The numbers should be divisible by 6. Thus the number of favourable ways is  ${}^{16}C_3$  (as there are 16 numbers in first 100 natural numbers, divisible by 6). Required probability is  $\frac{{}^{16}C_3}{{}^{100}C_3} = \frac{16 \times 15 \times 14}{100 \times 99 \times 98} = \frac{4}{1155} \,.$ Out of 21 tickets marked with numbers from 1 to 21, three are drawn at random. The chance that the **Example: 8** numbers on them are in A.P., is [Roorkee 1988; DCE 1999] (a)  $\frac{10}{133}$ (b)  $\frac{9}{122}$ (c)  $\frac{9}{1330}$ (d) None of these Total number of ways  $= {}^{21}C_3 = 1330$ . If common difference of the A.P. is to be 1, then the possible Solution: (a) groups are 1, 2, 3; 2, 3, 4; .....19, 20, 21. If the common difference is 2, then possible groups are 1, 3, 5; 2, 4, 6; ..... 17, 19, 21. Proceeding in the same way, if the common difference is 10, then the possible group is 1, 10, 21. Thus if the common difference of the A.P. is to be  $\geq$  11, obviously there is no favourable case. Hence, total number of favourable cases = 19 + 17 + 15 + ... + 3 + 1 = 100Hence, required probability  $=\frac{100}{1330}=\frac{10}{133}$ . (2) Problems based on permutation or arrangement : To solve such kind of problems, we use  $^{n}P_{r}=\frac{n!}{(n-r)!}$ . There are four letters and four addressed envelopes. The chance that all letters are not dispatched in Example: 9 the right envelope is [Rajasthan PET 1997; MP PET 1999; DCE 1999] (c)  $\frac{23}{24}$  (d)  $\frac{1}{24}$ (a)  $\frac{19}{24}$ (b)  $\frac{21}{23}$ Required probability is 1 – P (they go in concerned envelopes) =  $1 - \frac{1}{4!} = \frac{23}{24}$ . Solution: (c) The letters of the word 'ASSASSIN' are written down at random in a row. The probability that no two Example: 10 S occur together is

#### [BIT Ranchi 1990; IIT 1983]

(a) 
$$\frac{1}{35}$$
 (b)  $\frac{1}{14}$  (c)  $\frac{1}{15}$  (d) None of these

**Solution:** (b) Total ways of arrangements  $=\frac{8!}{2!4!}$ . •  $w \bullet x \bullet y \bullet z \bullet$ 

Now 'S' can have places at dot's and in places of w, x, y, z we have to put 2A's, one I and one N.

Therefore, favourable ways =  ${}^{5}C_{4}\left(\frac{4!}{2!}\right)$ . Hence, required probability =  $\frac{5 \cdot 4! \cdot 2! \cdot 4!}{2! \cdot 8!} = \frac{1}{14}$ .

#### 1.6 Odds In favour and Odds against an Event

As a result of an experiment if "a" of the outcomes are favourable to an event *E* and "b" of the outcomes are against it, then we say that odds are a to b in favour of E or odds are b to a against E.

Thus odds in favour of an event 
$$E = \frac{\text{Number of favourable cases}}{\text{Number of unfavourable cases}} = \frac{a}{b} = \frac{a/(a+b)}{b/(a+b)} = \frac{P(E)}{P(\overline{E})}$$
.  
Similarly, odds against an event  $E = \frac{\text{Number of unfavourable cases}}{N} = \frac{b}{b} = \frac{P(\overline{E})}{D(\overline{E})}$ .

Number of favourable cases  $= \frac{b}{a} = \frac{1}{P(E)}$ .

#### **Important Tips**

The odds in favour of an event are a : b, then the probability of the occurrence of that event is  $\frac{a}{a+b}$  and the probability of non-occurrence of that event is  $\frac{b}{a+b}$ .

The odds against an event are a : b, then the probability of the occurrence of that event is  $\frac{b}{a+b}$  and the probability of

non-occurrence of that event is  $\frac{a}{a+b}$ .

| Example: 11   | Two dice are tossed t                                       | ogether. The odds in favou             | ur of the sum of the nu | Imbers on them as 2 are[Rajasthan PET 1 |  |
|---------------|-------------------------------------------------------------|----------------------------------------|-------------------------|-----------------------------------------|--|
|               | (a) 1:36                                                    | (b) 1:35                               | (c) 35:1                | (d) None of these                       |  |
| Solution: (b) | If two dice are tossed                                      | l, total number of events =            | $6 \times 6 = 36.$      |                                         |  |
|               | Favourable event is (1, 1). Number of favourable events = 1 |                                        |                         |                                         |  |
|               | $\therefore$ odds in favour = $\frac{1}{36}$                | $\frac{1}{5-1} = \frac{1}{35}$ .       |                         |                                         |  |
| Example: 12   | A party of 23 persons                                       | take their seats at a round            | l table. The odds again | st two persons sitting together are     |  |
|               | [Rajasthan PET 1999]                                        |                                        |                         |                                         |  |
|               | (a) 10:1                                                    | (b) 1:11                               | (c) 9:10                | (d) None of these                       |  |
| Solution: (a) | $P = \frac{(21)!2!}{(22)!} = \frac{1}{11} = \frac{1}{1+10}$ | • . $\therefore$ odd against = 10 : 1. |                         |                                         |  |

#### **1.7 Addition Theorems on Probability**

**Notations :** (i) P(A+B) or  $P(A \cup B)$  = Probability of happening of A or B

= Probability of happening of the events A or B or both

= Probability of occurrence of at least one event A or B

(ii) P(AB) or  $P(A \cap B)$  = Probability of happening of events *A* and *B* together. (1) When events are not mutually exclusive : If *A* and *B* are two events which are not mutually

exclusive, then  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$  or P(A + B) = P(A) + P(B) - P(AB).

For any three events A, B, C

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$$

or P(A + B + C) = P(A) + P(B) + P(C) - P(AB) - P(BC) - P(CA) + P(ABC).

(2) When events are mutually exclusive : If A and B are mutually exclusive events, then

 $n(A \cap B) = 0 \implies P(A \cap B) = 0$ 

$$\therefore P(A \cup B) = P(A) + P(B).$$

For any three events A, B, C which are mutually exclusive,

 $P(A \cap B) = P(B \cap C) = P(C \cap A) = P(A \cap B \cap C) = \mathbf{0} \therefore P(A \cup B \cup C) = P(A) + P(B) + P(C).$ 

The probability of happening of any one of several mutually exclusive events is equal to the sum of their probabilities, *i.e.* if  $A_1, A_2, \dots, A_n$  are mutually exclusive events, then

 $P(A_1 + A_2 + \dots + A_n) = P(A_1) + P(A_2) + \dots + P(A_n)$  *i.e.*  $P(\sum A_i) = \sum P(A_i)$ .

(3) When events are independent : If A and B are independent events, then  $P(A \cap B) = P(A).P(B)$ 

 $\therefore P(A \cup B) = P(A) + P(B) - P(A).P(B).$ 

(4) Some other theorems

(i) Let A and B be two events associated with a random experiment, then

(a)  $P(\overline{A} \cap B) = P(B) - P(A \cap B)$ If  $B \subset A$ , then (a)  $P(A \cap \overline{B}) = P(A) - P(B)$ Similarly if  $A \subset B$ , then (a)  $(\overline{A} \cap B) = P(B) - P(A)$ (b)  $P(B) \le P(A)$ (c)  $P(B) \le P(A)$ (c)  $P(A \cap \overline{B}) = P(A) - P(B)$ (c)  $P(B) \le P(A)$ (c)  $P(A) \le P(B)$ .

*Note* :  $\Box$  Probability of occurrence of neither A nor B is  $P(\overline{A} \cap \overline{B}) = P(\overline{A \cup B}) = 1 - P(A \cup B)$ .

(ii) **Generalization of the addition theorem :** If  $A_1, A_2, \dots, A_n$  are *n* events associated with random experiment, then

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{\substack{i,j=1\\i\neq j}}^{n} P(A_{i} \cap A_{j}) + \sum_{\substack{i,j,k=1\\i\neq j\neq k}}^{n} P(A_{i} \cap A_{j} \cap A_{k}) + \dots + (-1)^{n-1} P(A_{1} \cap A_{2} \cap \dots \cap A_{n}) + \dots + (-1)^{n-1} P(A_{n} \cap A_{n}) + \dots + (-1)^{n-1} P(A_$$

If all the events  $A_i$  (i = 1, 2..., n) are mutually exclusive, then  $P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i)$ 

*i.e.* 
$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$$

а

(iii) **Booley's inequality :** If  $A_1, A_2, \dots, A_n$  are *n* events associated with a random experiment, then

(a) 
$$P\left(\bigcap_{i=1}^{n} A_{i}\right) \ge \sum_{i=1}^{n} P(A_{i}) - (n-1)$$
 (b)  $P\left(\bigcup_{i=1}^{n} A_{i}\right) \le \sum_{i=1}^{n} P(A_{i})$ 

These results can be easily established by using the Principle of Mathematical Induction.

#### **Important Tips**

Let *A*, *B*, and *C* are three arbitrary events. Then

| Verbal description of event           | Equivalent Set Theoretic Notation                                                                                                        |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| (i) Only A occurs                     | (i) $A \cap \overline{B} \cap \overline{C}$                                                                                              |
| (ii) Both A and B, but not C occur    | (ii) $A \cap B \cap \overline{C}$                                                                                                        |
| (iii) All the three events occur      | (iii) $A \cap B \cap C$                                                                                                                  |
| (iv) At least one occurs              | (iv) $A \cup B \cup C$                                                                                                                   |
| (v) At least two occur                | $(v) (A \cap B) \cup (B \cap C) \cup (A \cap C)$                                                                                         |
| (vi) One and no more occurs           | (vi) $(A \cap \overline{B} \cap \overline{C}) \cup (\overline{A} \cap B \cap \overline{C}) \cup (\overline{A} \cap \overline{B} \cap C)$ |
| (vii) Exactly two of A, B and C occur | (vii) $(A \cap B \cap \overline{C}) \cup (\overline{A} \cap B \cap C) \cup (A \cap \overline{B} \cap C)$                                 |
| (viii) None occurs                    | (viii) $\overline{A} \cap \overline{B} \cap \overline{C} = \overline{A \cup B \cup C}$                                                   |
| (ix) Not more than two occur          | (ix) $(A \cap B) \cup (B \cap C) \cup (A \cap C) - (A \cap B \cap C)$                                                                    |
| (x) Exactly one of A and B occurs     | $(x) \ (A \cap \overline{B}) \cup (\overline{A} \cap B)$                                                                                 |

Example: 13A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is<br/>chosen at random, what is the probability that it is rusted or is a nail[MP PET 1992, 2000](a) 3/16(b) 5/16(c) 11/16(d) 14/16Solution: (c)Let A be the event that the item chosen is rusted and B be the event that the item chosen is a nail.

:. 
$$P(A) = \frac{6}{16}, P(B) = \frac{6}{16}$$
 and  $P(A \cap B) = 3/16$ 

Required probability =  $P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{8}{16} + \frac{6}{16} - \frac{3}{16} = \frac{11}{16}$ . The probability that a man will be alive in 20 years is  $\frac{3}{5}$  and the probability that his wife will be Example: 14 alive in 20 years is  $\frac{2}{3}$ . Then the probability that at least one will be alive in 20 years is [Bihar CEE 1994] (a)  $\frac{13}{15}$ (b)  $\frac{7}{15}$ (c)  $\frac{4}{15}$ (d) None of these Let *A* be the event that the husband will be alive 20 years. *B* be the event that the wife will be alive 20 Solution: (a) years. Clearly A and B are independent events.  $\therefore P(A \cap B) = P(A)P(B)$ . Given  $P(A) = \frac{3}{5}, P(B) = \frac{2}{5}$ . The probability that at least one of them will be alive 20 years is  $P(A \cup B) = P(A) + P(B) - P(A \cap B) = P(A) + P(B) - P(A) \cdot P(B) = \frac{3}{5} + \frac{2}{3} - \frac{3}{5} \cdot \frac{2}{3} = \frac{9 + 10 - 6}{15} = \frac{13}{15} \cdot \frac{2}{5} \cdot \frac{2}{3} = \frac{9 + 10 - 6}{15} = \frac{13}{15} \cdot \frac{2}{5} \cdot \frac{2}{5} \cdot \frac{2}{5} = \frac{9 + 10 - 6}{15} = \frac{13}{15} \cdot \frac{2}{5} \cdot \frac{2}{5} \cdot \frac{2}{5} = \frac{9 + 10 - 6}{15} = \frac{13}{15} \cdot \frac{2}{5} \cdot \frac{2}{5} \cdot \frac{2}{5} \cdot \frac{2}{5} = \frac{9 + 10 - 6}{15} = \frac{13}{15} \cdot \frac{2}{5} \cdot \frac{2}{5} \cdot \frac{2}{5} \cdot \frac{2}{5} = \frac{9 + 10 - 6}{15} = \frac{13}{15} \cdot \frac{2}{5} \cdot \frac{2}{5}$ Let A and B be two events such that P(A) = 0.3 and  $P(A \cup B) = 0.8$ . If A and B are independent events, Example: 15 then P(B) =[IIT 1990; UPSEAT 2001, 02] (a)  $\frac{5}{6}$  (b)  $\frac{5}{7}$ (c)  $\frac{3}{5}$ (d)  $\frac{2}{5}$ **Solution:** (b) Here  $P(A \cup B) = 0.8$ , P(A) = 0.3 and A and B are independent events. Let P(B) = x .  $\therefore$   $P(A \cup B) = P(A) + P(B) - P(A \cap B) \implies P(A \cup B) = P(A) + P(B) - P(A) \cdot P(B)$  $\Rightarrow 0.8 = 0.3 + x - 0.3x \Rightarrow x = \frac{5}{7}$ . A card is chosen randomly from a pack of playing cards. The probability that it is a black king or Example: 16 queen of heart or jack is [Rajasthan PET 1998] (a) 1/52 (c) 7/52 (d) None of these (b) 6/52 Let A, B, C are the events of choosing a black king, a queen of heart and a jack respectively. **Solution:** (c)  $\therefore P(A) = \frac{2}{52}, P(B) = \frac{1}{52}, P(C) = \frac{4}{52}$ These are mutually exclusive events,  $\therefore P(A \cup B \cup C) = \frac{2}{52} + \frac{1}{52} + \frac{4}{52} = \frac{7}{52}$ . If A and B are events such that  $P(A \cup B) = 3/4$ ,  $P(A \cap B) = 1/4$ ,  $P(\overline{A}) = 2/3$ , then  $P(\overline{A} \cap B)$  is Example: 17 [AIEEE 2002] (a) 5/12 (c) 5/8 (d) 1/4**Solution:** (a)  $P(A \cup B) = \frac{3}{4}, P(A \cap B) = \frac{1}{4}, P(\overline{A}) = \frac{2}{3} \implies P(A) = \frac{1}{3}.$  $\therefore P(A \cap B) = P(A) + P(B) - P(A \cup B) \Rightarrow \frac{1}{4} = \frac{1}{2} + P(B) - \frac{3}{4} \Rightarrow P(B) = \frac{2}{3}.$  $P(\overline{A} \cap B) = P(B) - P(A \cap B) = \frac{2}{3} - \frac{1}{4} = \frac{8-3}{12} = \frac{5}{12}$ . The probability that A speaks truth is  $\frac{4}{5}$ , while this probability for B is  $\frac{3}{4}$ . The probability that they Example: 18 contradict each other when asked to speak on a fact is [AIEEE 2004] (d)  $\frac{3}{20}$ (a)  $\frac{4}{5}$ (c)  $\frac{7}{20}$ (b)  $\frac{1}{5}$ **Solution:** (c) Let *E* be the event that *B* speaks truth and *F* be the event that *A* speaks truth.

[IIT 1986]

Now 
$$P(E) = \frac{75}{100} = \frac{3}{4}$$
 and  $P(F) = \frac{80}{100} = \frac{4}{5}$ .

 $\therefore$  *P* (*A* and *B* contradict each other)

= *P* [(*B* tells truth and *A* tells lie) or (*B* tells lie and *A* tells truth)]

$$= P[(E \cap \overline{F}) \cup (\overline{E} \cap F)] = P(E) \cdot P(\overline{F}) + P(\overline{E}) \cdot P(F) = \frac{3}{4} \times \frac{1}{5} + \frac{1}{4} \times \frac{4}{5} = \frac{7}{20} .$$

**Example: 19** A student appears for tests I, II and III. The student is successful if he passes either in tests I and II or tests I and III. The probabilities of the student passing in tests I, II, III are p, q and  $\frac{1}{2}$  respectively. If

the probability that the student is successful is  $\frac{1}{2}$ , then

(a) 
$$p = 1, q = 0$$
 (b)  $p = \frac{2}{3}, q = \frac{1}{2}$ 

(c) There are infinitely many values of p and q (d) All of the above **Solution:** (c) Let A, B and C be the events that the student is successful in test I, II and III respectively, then P (the student is successful)

$$= P[(A \cap B \cap C') \cup (A \cap B' \cap C) \cup (A \cap B \cap C)] = P(A \cap B \cap C') + P(A \cap B' \cap C) + P(A \cap B \cap C)$$
  
= P(A).P(B).P(C') + P(A).P(B').P(C) + P(A).P(B).P(C) [:: A, B, C are independent]  
= pq  $\left(1 - \frac{1}{2}\right) + p(1 - q)\left(\frac{1}{2}\right) + pq\left(\frac{1}{2}\right) = \frac{1}{2}p(1 + q) \implies \frac{1}{2} = \frac{1}{2}p(1 + q) \implies p(1 + q) = 1.$ 

This equation has infinitely many values of *p* and *q*.

**Example: 20** A man and his wife appear for an interview for two posts. The probability of the husband's selection

is  $\frac{1}{7}$  and that of wife's selection is  $\frac{1}{5}$ . What is the probability that only one of them will be selected.[AISSE 1]

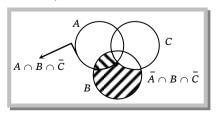
(a) 
$$\frac{1}{7}$$
 (b)  $\frac{2}{7}$  (c)  $\frac{3}{7}$  (d) None of these  
**Solution:** (b) The probability of husband is not selected =  $1 - \frac{1}{7} = \frac{6}{7}$ ; The probability that wife is not

selected =  $1 - \frac{1}{5} = \frac{4}{5}$ 

The probability that only husband is selected =  $\frac{1}{7} \times \frac{4}{5} = \frac{4}{35}$ ; The probability that only wife

is selected =  $\frac{1}{5} \times \frac{6}{7} = \frac{6}{35}$ 

Hence, required probability  $= \frac{6}{35} + \frac{4}{35} = \frac{10}{35} = \frac{2}{7}$ .


**Example: 21** If  $P(B) = \frac{3}{4}$ ,  $P(A \cap B \cap \overline{C}) = \frac{1}{3}$  and  $P(\overline{A} \cap B \cap \overline{C}) = \frac{1}{3}$ , then  $P(B \cap C)$  is (a) 1/12 (b) 1/6 (c) 1/15

**Solution:** (a) From Venn diagram, we can see that

$$P(B \cap C) = P(B) - P(A \cap B \cap \overline{C}) - P(\overline{A} \cap B \cap \overline{C})$$
$$= \frac{3}{4} - \frac{1}{3} - \frac{1}{3} = \frac{1}{12} \cdot \frac{1}{2}$$

[IIT Screening 2003]





**Example: 22** A purse contains 4 copper coins and 3 silver coins, the second purse contains 6 copper coins and 2 silver coins. If a coin is drawn out of any purse, then the probability that it is a copper coin is **[Ranchi BIT 199**]

|               | (a) 4/7                                                                                                               | (b) 3/4                                                                   | (c) 37/56                   | (d) None of these |
|---------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------|-------------------|
| Solution: (c) | Required probability =                                                                                                | $=\frac{1}{2}\cdot\frac{4}{7}+\frac{1}{2}\cdot\frac{6}{8}=\frac{37}{56}.$ |                             |                   |
| Example: 23   | exclusive events, the                                                                                                 | ppening an event A is c<br>en the probability of ha<br>(b) 0.2            | ppening neither A r         |                   |
| Solution: (b) | (a) 0.6<br>$P(\overline{A} \cap \overline{B}) = P(\overline{A \cup B}) = 1 - $<br>Since <i>A</i> and <i>B</i> are mut |                                                                           | (c) 0.21<br>B = P(A) + P(B) | (d) None of these |
|               | Hence, required proba                                                                                                 | bility = $1 - (0.5 + 0.3) = 0.2$ .                                        |                             |                   |

#### **1.8 Conditional Probability**

Let *A* and *B* be two events associated with a random experiment. Then, the probability of occurrence of *A* under the condition that *B* has already occurred and  $P(B) \neq 0$ , is called the conditional probability and it is denoted by P(A/B).

Thus, P(A/B) = Probability of occurrence of A, given that B has already happened.

$$=\frac{P(A\cap B)}{P(B)}=\frac{n(A\cap B)}{n(B)}.$$

Similarly, P(B/A) = Probability of occurrence of *B*, given that *A* has already happened.

$$=\frac{P(A\cap B)}{P(A)}=\frac{n(A\cap B)}{n(A)}.$$

**Note:**  $\Box$  Sometimes, P(A/B) is also used to denote the probability of occurrence of A when B occurs. Similarly, P(B/A) is used to denote the probability of occurrence of B when A occurs.

(1) Multiplication theorems on probability

(i) If A and B are two events associated with a random experiment, then  $P(A \cap B) = P(A)$ .  $P(B \mid A)$ , if  $P(A) \neq 0$  or  $P(A \cap B) = P(B)$ .  $P(A \mid B)$ , if  $P(B) \neq 0$ .

(ii) **Extension of multiplication theorem :** If  $A_1, A_2, ..., A_n$  are *n* events related to a random experiment, then  $P(A_1 \cap A_2 \cap A_3 \cap ... \cap A_n) = P(A_1)P(A_2 / A_1)P(A_3 / A_1 \cap A_2)....P(A_n / A_1 \cap A_2 \cap ... \cap A_{n-1})$ ,

where  $P(A_i / A_1 \cap A_2 \cap ... \cap A_{i-1})$  represents the conditional probability of the event  $A_i$ , given that the events  $A_1, A_2, ..., A_{i-1}$  have already happened.

(iii) **Multiplication theorems for independent events :** If *A* and *B* are independent events associated with a random experiment, then  $P(A \cap B) = P(A) \cdot P(B)$  *i.e.*, the probability of simultaneous occurrence of two independent events is equal to the product of their probabilities.

By multiplication theorem, we have  $P(A \cap B) = P(A) \cdot P(B \mid A)$ .

Since *A* and *B* are independent events, therefore P(B | A) = P(B). Hence,  $P(A \cap B) = P(A)$ . P(B).

(iv) Extension of multiplication theorem for independent events : If  $A_1, A_2, ..., A_n$  are independent events associated with a random experiment, then  $P(A_1 \cap A_2 \cap A_3 \cap ... \cap A_n) = P(A_1)P(A_2)...P(A_n)$ . By multiplication theorem, we have

 $P(A_1 \cap A_2 \cap A_3 \cap ... \cap A_n) = P(A_1)P(A_2 / A_1)P(A_3 / A_1 \cap A_2)...P(A_n / A_1 \cap A_2 \cap ... \cap A_{n-1})$ 

Since  $A_1, A_2, ..., A_{n-1}, A_n$  are independent events, therefore

 $P(A_2 / A_1) = P(A_2), P(A_3 / A_1 \cap A_2) = P(A_3), \dots, P(A_n / A_1 \cap A_2 \cap \dots \cap A_{n-1}) = P(A_n)$ 

Hence,  $P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1)P(A_2)....P(A_n)$ .

(2) Probability of at least one of the *n* independent events : If  $p_1, p_2, p_3, \dots, p_n$  be the probabilities of happening of *n* independent events  $A_1, A_2, A_3, \dots, A_n$  respectively, then

(i) Probability of happening none of them  $= P(\overline{A}_1 \cap \overline{A}_2 \cap \overline{A}_3 \dots \cap \overline{A}_n) = P(\overline{A}_1) \cdot P(\overline{A}_2) \cdot P(\overline{A}_3) \dots P(\overline{A}_n) = (1 - p_1)(1 - p_2)(1 - p_3) \dots (1 - p_n).$ (ii) Probability of happening at least one of them  $= P(A_1 \cup A_2 \cup A_3 \dots \cup A_n) = 1 - P(\overline{A}_1)P(\overline{A}_2)P(\overline{A}_3) \dots P(\overline{A}_n) = 1 - (1 - p_1)(1 - p_2)(1 - p_3) \dots (1 - p_n).$ (iii) Probability of happening of first event and not happening of the remaining  $= P(A_1)P(\overline{A}_2)P(\overline{A}_3) \dots P(\overline{A}_n) = p_1(1 - p_2)(1 - p_3) \dots (1 - p_n).$ 

Example: 24 If 
$$4P(A) = 6$$
,  $P(B) = 10$ ,  $P(A \cap B) = 1$ , then  $P\left(\frac{B}{A}\right) =$  [MP PET 2003]  
(a)  $\frac{2}{5}$  (b)  $\frac{3}{5}$  (c)  $\frac{7}{10}$  (d)  $\frac{19}{60}$   
Solution: (a)  $P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)} = \frac{(1/10)}{(1/4)} = \frac{2}{5}$ .

**Example: 25** A coin is tossed three times in succession. If *E* is the event that there are at least two heads and *F* is the event in which first throw is a head, then  $P\left(\frac{E}{F}\right) =$  [MP PET 1996]

(a) 
$$\frac{3}{4}$$
 (b)  $\frac{3}{8}$  (c)  $\frac{1}{2}$  (d)  $\frac{1}{8}$ 

**Solution:** (a)  $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT \}$ n(E) = 4, n(F) = 4 and  $n(E \cap F) = 3$ 

:. 
$$P\left(\frac{E}{F}\right) = \frac{P(E \cap F)}{P(F)} = \frac{3/8}{4/8} = \frac{3}{4}$$
.

Example: 26Two cards are drawn one by one from a pack of cards. The probability of getting first card an ace and<br/>second an honour card is (before drawing second card first card is not placed again in the pack)[UPSEAQT 19<br/>(a) 1/26(a) 1/26(b) 5/52(c) 5/221(d) 4/13

**Solution:** (c)  $P(E_1) = \frac{4}{52} = \frac{1}{13}, P\left(\frac{E_2}{E}\right) = \frac{15}{51} = \frac{5}{17}$ 

$$P(E_1 \cap E_2) = P(E_1) \cdot P\left(\frac{E_2}{E_1}\right) = \frac{1}{13} \cdot \frac{5}{17} = \frac{5}{221}$$

**Example: 27** If *A* and *B* are two events such that  $P(A) \neq 0$  and  $P(B) \neq 1$ , then  $P\left(\frac{A}{\overline{B}}\right) =$ 

[IIT 1982; RPET 1995, 2000; DCE 2000; UPSEAT 2001]

(a) 
$$1-P\left(\frac{A}{B}\right)$$
 (b)  $1-P\left(\frac{\overline{A}}{B}\right)$  (c)  $\frac{1-P(A \cup B)}{P(\overline{B})}$  (d)  $\frac{P(\overline{A})}{P(\overline{B})}$ 

Solution: (c) 
$$P\left(\frac{\lambda}{B}\right) = \frac{P(\overline{\Lambda} \cap \overline{D})}{P(\overline{B})} = \frac{P(\overline{\Lambda} \cap \overline{D})}{P(\overline{B})} = \frac{1 - P(\Lambda \supset \overline{B})}{P(\overline{B})}$$
.  
Example: 23 If *A* and *B* are two events such that  $P(\Lambda \cup B) = P(\Lambda \cap B)$ , then the true relation is [ITT 1985]  
(a)  $P(\Lambda) + P(B) = 0$  (b)  $P(\Lambda) + P(B) = P(\Lambda \cup B) = 0$  (c)  $P(\Lambda \cap B) = P(\Lambda \cap B) = P(\Lambda \cap B)$   
(c)  $P(\Lambda) + P(B) = 2P(\Lambda)P\left(\frac{H}{A}\right)$  (d) None of these  
Solution: (c)  $P(\Lambda \cup B) = P(\Lambda) - P(B) - P(\Lambda \cap B) \rightarrow P(\Lambda \cap B) = P(\Lambda) + P(B) - P(\Lambda \cap B)$  (:  $P(\Lambda \cap B) = P(\Lambda \cup B)$ }  
 $\Rightarrow 2P(\Lambda \cap B) = P(\Lambda) + P(B) \rightarrow 2P(\Lambda) \frac{P(\Lambda \cap B)}{P(\Lambda)} \rightarrow P(\Lambda) + P(B) \rightarrow 2P(\Lambda)P\left(\frac{H}{A}\right) = P(\Lambda) + P(B)$ .  
Example: 29 Let *E* and *F* be two independent events. The probability that both *E* and *F* happens is  $\frac{1}{12}$  and the  
probability that neither *E* nor *F* happens is  $\frac{1}{2}$ , then [ITT 1993]  
(a)  $P(D) - \frac{1}{3}, P(D) - \frac{1}{4}$  (b)  $P(D) - \frac{1}{2}, P(D) - \frac{1}{6}$  (c)  $P(D) - \frac{1}{6}, P(D) - \frac{1}{2}$  (d) None of these  
Solution: (a) We are given  $P(K \cap P) = \frac{1}{12}$  and  $P(\overline{K} \cap \overline{P}) = \frac{1}{2}$  .....(ii)  
 $\Rightarrow [1 - P(E)]((1 - P(F)) = \frac{1}{2} \Rightarrow 1 + P(D)P(D - P(E) - P(D) = \frac{1}{2} \Rightarrow 1 + \frac{1}{12} - [P(D) + P(D)] = \frac{1}{2}$   
 $\Rightarrow P(C) - P(F) = \frac{1}{12}$  .....(iii)  
On solving (1) and (iii), we get  $P(E) = \frac{1}{3}, \frac{1}{4}$  and  $P(E) = \frac{1}{4}, \frac{1}{3}$ .  
Example: 30 Let *p* denotes the probability that a man aged x years will die in a year. The probability that out of *n*  
men  $A_{1}, A_{2}, A_{2}, ..., A_{n}$  each aged *x*,  $A_{1}$  will die in a year. The probability that out of *n*  
men  $A_{1}, A_{2}, A_{2}, ..., A_{n}$  dies in a year.  
Then  $P(K) = P(F) = P(F) - P(F) = F(F) - CS \cap C_{1}, ..., F_{2}) = P(F_{1})P(F_{2}) ..., P(F_{2}) = (1 - P)^{F}$ ,  
because  $E_{1}, E_{1}, ..., E_{n}$  are independent.  
Let *B* denotes the event that *A* lest in a year.  
Then  $P(K) = 1 - P(E_{1}, CE_{2}, ..., ..., E_{n}) = P(F_{1} \cap CS \cap C_{n}, ..., E_{n}) = P(F_{2})P(F_{2}) ..., P(F_{n}) = (1 - P)^{F}$ ,  
because  $E_{1}, E_{1}, ..., E_{n}$  are independent.  
Let *B* denotes the event that *A* is the first to die.  
Then  $P(K) = 1 - P(E_{$ 

Therefore the probability that the problem is not solved by any one of them  $=\frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} = \frac{2}{5}$ .

Hence, the probability that problem is solved =  $1 - \frac{2}{5} = \frac{3}{5}$ .

**Example: 32** The probability of happening an event *A* in one trial is 0.4. The probability that the event *A* happens at least once in three independent trials is [IIT 1980; Kurukshetra CEE 1998; DCE 2001] (a) 0.936 (b) 0.784 (c) 0.904 (d) 0.216 Solution: (b) Here P(A) = 0.4 and  $P(\overline{A}) = 0.6$ 

Probability that A does not happen at all  $= (0.6)^3$ . Thus required probability  $= 1 - (0.6)^3 = 0.784$ .

#### **1.9 Total Probability and Baye's rule**

(1) The law of total probability : Let *S* be the sample space and let  $E_1, E_2, \dots, E_n$  be *n* mutually exclusive and exhaustive events associated with a random experiment. If *A* is any event which occurs with  $E_1$  or  $E_2$  or .... or  $E_n$ , then  $P(A) = P(E_1)P(A/E_1) + P(E_2)P(A/E_2) + \dots + P(E_n)P(A/E_n)$ .

(2) **Baye's rule** : Let *S* be a sample space and  $E_1, E_2, \dots, E_n$  be *n* mutually exclusive events such that  $\bigcup_{i=1}^{n} E_i = S$  and  $P(E_i) > 0$  for  $i = 1, 2, \dots, n$ . We can think of ( $E_i$ 's as the causes that lead to the

outcome of an experiment. The probabilities  $P(E_i)$ , i = 1, 2, ..., n are called prior probabilities. Suppose the experiment results in an outcome of event A, where P(A) > 0. We have to find the probability that the observed event A was due to cause  $E_i$ , that is, we seek the conditional probability  $P(E_i / A)$ . These probabilities are called posterior probabilities, given by Baye's rule

as 
$$P(E_i / A) = \frac{P(E_i) \cdot P(A / E_i)}{\sum_{k=1}^{n} P(E_k) \cdot P(A / E_k)}$$
.

**Example: 33** In a bolt factory, machines *A*, *B* and *C* manufacture respectively 25%, 35% and 40% of the total bolts. Of their output 5, 4 and 2 percent are respectively defective bolts. A bolt is drawn at random from the product. Then the probability that the bolt drawn is defective is

(a) 0.0345 (b) 0.345 (c) 3.45 (d) 0.0034**Solution:** (a) Let  $E_1, E_2, E_3$  and A be the events defined as follows:

 $E_1$  = the bolts is manufactured by machine *A*;  $E_2$  = the bolts is manufactured by machine *B*;  $E_3$  = the bolts is manufactured by machine *C*, and *A* = the bolt is defective.

Then 
$$P(E_1) = \frac{25}{100} = \frac{1}{4}, P(E_2) = \frac{35}{100}, P(E_3) = \frac{40}{100}$$

 $P(A / E_1)$  = Probability that the bolt drawn is defective given the condition that it is manufactured by machine A = 5/100.

Similarly  $P(A / E_2) = \frac{4}{100}$  and  $P(A / E_3) = \frac{2}{100}$ .

Using the law of total probability, we have  $P(A) = P(E_1)P(A / E_1) + P(E_2)P(A / E_2) + P(E_3)P(A / E_3)$ 

$$= \frac{25}{100} \times \frac{5}{100} + \frac{35}{100} \times \frac{4}{100} + \frac{40}{100} \times \frac{2}{100} = 0.0345 .$$

**Example: 34** A lot contains 20 articles. The probability that the lot contains 2 defective articles is 0.4 and the probability that the lot contains exactly 3 defective articles is 0.6. Articles are drawn at random one

by one without replacement and tested till all the defective articles are found. The probability that the testing procedure ends at the twelfth testing is

(a) 
$$\frac{9}{1900}$$
 (b)  $\frac{19}{1000}$  (c)  $\frac{99}{1900}$  (d)  $\frac{19}{900}$ 

Solution: (c)The testing procedure may terminate at the twelfth testing in two mutually exclusive ways.(I) When lot contains 2 defective articles,<br/>Consider the following events.(II) When lot contains 3 defective articles.

*A* = Testing procedure ends at the twelfth testing.

 $A_1 =$  Lot contains 2 defective articles.

 $A_2$  = Lot contains 3 defective articles.

Required probability

 $= P(A) = P(A \cap A_1) \cup (A \cap A_2) = P(A \cap A_1) + P(A \cap A_2) = P(A_1)P(A / A_1) + P(A_2)P(A / A_2)$ 

Now,  $P(A/A_1)$  = Probability that first 11 draws contain 10 non-defective and one defective and 12th draw contains a defective article.

$$=\frac{{}^{18}C_{10}\times{}^{2}C_{1}}{{}^{20}C_{11}}\times\frac{1}{9}$$

And  $P(A/A_2)$  = Probability that first 11 draws contain 9 non defective and 2 defective articles and 12<sup>th</sup>

draw contains a defective article =  $\frac{{}^{17}C_9 \times {}^3C_2}{{}^{20}C_{11}} \times \frac{1}{9}$ Hence, required probability =  $0.4 \times \frac{{}^{18}C_{10} \times {}^2C_1}{{}^{20}C_{11}} \times \frac{1}{9} + 0.6 \times \frac{{}^{17}C_9 \times {}^3C_2}{{}^{20}C_{11}} \times \frac{1}{9} = \frac{99}{1900}$ .

Example: 35A bag A contains 2 white and 3 red balls and bag B contains 4 white and 5 red balls. One ball is drawn<br/>at random from a randomly chosen bag and is found to be red. The probability that it was drawn from<br/>B isB is[BIT Ranchi 1988; IIT 1976]

(a) 
$$\frac{5}{14}$$
 (b)  $\frac{5}{16}$  (c)  $\frac{5}{18}$  (d)  $\frac{25}{52}$ 

**Solution:** (d) Let  $E_1$  be the event that the ball is drawn from bag A,  $E_2$  the event that it is drawn from bag B and E that the ball is red.

We have to find  $P(E_2 / E)$ .

Since both the bags are equally likely to be selected,

we have 
$$P(E_1) = P(E_2) = \frac{1}{2}$$
. Also  $P(E/E_1) = 3/5$  and  $P(E/E_2) = 5/9$ .

Hence by Baye's theorem, we have 
$$P(E_2 / E) = \frac{P(E_2)P(E / E_2)}{P(E_1)P(E / E_1) + P(E_2)P(E / E_2)} = \frac{\frac{1}{2} \cdot \frac{5}{9}}{\frac{1}{2} \cdot \frac{3}{5} + \frac{1}{2} \cdot \frac{5}{9}} = \frac{25}{52}.$$

**Example: 36** A man is known to speak the truth 3 out of 4 times. He throws a die and reports that it is a six. The probability that it is actually a six, is

(a) 
$$\frac{3}{8}$$
 (b)  $\frac{1}{5}$  (c)  $\frac{3}{4}$  (d) None of these

**Solution:** (a) Let *E* denote the event that a six occurs and *A* the event that the man reports that it is a '6', we have

$$P(E) = \frac{1}{6}, P(E') = \frac{5}{6}, P(A / E) = \frac{3}{4} \text{ and } P(A / E') = \frac{1}{4}$$

By Baye's theorem, 
$$P(E/A) = \frac{P(E).P(A/E)}{P(E).P(A/E) + P(E')P(A/E')} = \frac{\frac{1}{6} \times \frac{3}{4}}{\frac{1}{6} \times \frac{3}{4} + \frac{5}{6} \times \frac{1}{4}} = \frac{3}{8}$$

Example: 37 A pack of playing cards was found to contain only 51 cards. If the first 13 cards which are examined are all red, then the probability that the missing cards is black, is

(a) 
$$\frac{1}{3}$$
 (b)  $\frac{2}{3}$  (c)  $\frac{1}{2}$  (d)  $\frac{{}^{25}C_{13}}{{}^{51}C_{13}}$ 

**Solution:** (b) Let  $A_1$  be the event that the black card is lost,  $A_2$  be the event that the red card is lost and let *E* be the event that first 13 cards examined are red.

> Then the required probability  $= P\left(\frac{A_1}{E}\right)$ . We have  $P(A_1) = P(A_2) = \frac{1}{2}$ ; as black and red cards were initially equal in number.

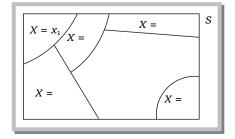
> > 26

Also 
$$P\left(\frac{E}{A_1}\right) = \frac{{}^{26}C_{13}}{{}^{51}C_{13}}$$
 and  $P\left(\frac{E}{A_2}\right) = \frac{{}^{25}C_{13}}{{}^{51}C_{13}}$ .

The required probability 
$$= P\left(\frac{A_1}{E}\right) = \frac{P(E/A_1)P(A_1)}{P(E/A_1)P(A_1) + P(E/A_2)P(A_2)} = \frac{\frac{1}{2} \cdot \frac{C_{13}}{51}}{\frac{1}{2} \cdot \frac{2^5 C_{13}}{51}} = \frac{2}{3}$$

#### **1.10 Binomial Distribution**

(1) Geometrical method for probability : When the number of points in the sample space is infinite, it becomes difficult to apply classical definition of probability. For instance, if we are interested to find the probability that a point selected at random from the interval [1, 6] lies either in the interval [1, 2] or [5, 6], we cannot apply the classical definition of probability. In this case we define the probability as follows:


$$P\{x \in A\} = \frac{\text{Measure of region } A}{\text{Measure of the sample space } S},$$

where measure stands for length, area or volume depending upon whether S is a onedimensional, two-dimensional or three-dimensional region.

(2) **Probability distribution** : Let *S* be a sample space. A random variable *X* is a function from the set *S* to *R*, the set of real numbers.

For example, the sample space for a throw of a pair of dice is 
$$S = \begin{cases} 11, 12, \dots, 16 \\ 21, 22, \dots, 26 \\ \vdots & \vdots & \ddots & \vdots \\ 61, 62, \dots, 66 \end{cases}$$

Let X be the sum of numbers on the dice. Then X(12) = 3, X(43) = 7, etc. Also,  $\{X = 7\}$  is the event {61, 52, 43, 34, 25, 16}. In general, if X is a random variable defined on the sample space S and *r* is a real number, then  $\{X = r\}$  is an event. If the random variable *X* takes *n* distinct values  $x_1, x_2, ..., x_n$ , then  $\{X = x_1\}$ ,  $\{X = x_2\}, ..., \{X = x_n\}$  are mutually exclusive and exhaustive events.



Now, since  $(X = x_i)$  is an event, we can talk of  $P(X = x_i)$ . If  $P(X = x_i) = P_i (1 \le i \le n)$ , then the system of numbers.

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ p_1 & p_2 & \cdots & p_n \end{pmatrix}$$

is said to be the probability distribution of the random variable *X*. The expectation (mean) of the random variable *X* is defined as  $E(X) = \sum_{i=1}^{n} p_i x_i$ 

and the variance of X is defined as  $\operatorname{var}(X) = \sum_{i=1}^{n} p_i (x_i - E(X))^2 = \sum_{i=1}^{n} p_i x_i^2 - (E(X))^2$ .

(3) **Binomial probability distribution :** A random variable *X* which takes values 0, 1, 2, ..., *n* is said to follow binomial distribution if its probability distribution function is given by  $P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}, r = 0, 1, 2, ..., n$ 

where p, q > 0 such that p + q = 1.

The notation  $X \sim B(n, p)$  is generally used to denote that the random variable X follows binomial distribution with parameters n and p.

We have  $P(X = 0) + P(X = 1) + ... + P(X = n) = {^{n}C_{0}p^{0}q^{n-0}} + {^{n}C_{1}p^{1}q^{n-1}} + ... + {^{n}C_{n}p^{n}q^{n-n}} = (q + p)^{n} = 1^{n} = 1$ . Now probability of

Now probability of

(a) Occurrence of the event exactly *r* times

 $P(X=r) = {}^{n}C_{r}q^{n-r}p^{r}.$ 

(b) Occurrence of the event at least *r* times

$$P(X \ge r) = {}^{n}C_{r}q^{n-r}p^{r} + \dots + p^{n} = \sum_{X=r}^{n} {}^{n}C_{X}p^{X}q^{n-X}.$$

(c) Occurrence of the event at the most *r* times

$$P(0 \le X \le r) = q^{n} + {}^{n}C_{1}q^{n-1}p + \dots + {}^{n}C_{r}q^{n-r}p^{r} = \sum_{X=0}^{r} p^{X}q^{n-X}$$

(iv) If the probability of happening of an event in one trial be p, then the probability of successive happening of that event in r trials is  $p^r$ .

*Note*: If n trials constitute an experiment and the experiment is repeated N times, then the frequencies of 0, 1, 2, ..., n successes are given by N.P(X = 0), N.P(X = 1), N.P(X = 2), ..., N.P(X = n).

(i) **Mean and variance of the binomial distribution :** The binomial probability distribution is

The mean of this distribution is 
$$\sum_{i=1}^{n} X_i p_i = \sum_{X=1}^{n} X_i {}^{n} C_X q^{n-X} p^X = np$$
,

the variance of the Binomial distribution is  $\sigma^2 = npq$  and the standard deviation is  $\sigma = \sqrt{(npq)}$ .

(ii) Use of multinomial expansion : If a die has m faces marked with the numbers 1, 2, 3, ....*m* and if such *n* dice are thrown, then the probability that the sum of the numbers exhibited on the upper faces equal to p is given by the coefficient of  $x^{p}$  in the expansion of  $(x + x^{2} + x^{3} + \dots + x^{m})^{n}$ 

$$m^n$$

**Example: 38** A random variable *X* has the probability distribution :

| <i>X</i> : | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|------------|------|------|------|------|------|------|------|------|
| Р(X)<br>:  | 0.15 | 0.23 | 0.12 | 0.10 | 0.20 | 0.08 | 0.07 | 0.05 |

For the events  $E = \{X \text{ is a prime number}\}$  and  $F = \{X < 4\}$ , the probability  $P(E \cup F)$  is [AIEEE 2004]

(a) 0.50 (b) 0.77 (c) 0.35  
**Solution:** (b) 
$$E = \{X \text{ is a prime number}\}$$
  
 $P(E) = P(2) + P(3) + P(5) + P(7) = 0.62$ ,  $F = \{x < 4\}$   
 $P(F) = P(1) + P(2) + P(3) = 0.50$  and  $P(E \cap F) = P(2) + P(3) = 0.35$   
 $\therefore P(E \cup F) = P(E) + P(F) - P(E \cap F) = 0.62 + 0.50 - 0.35 = 0.77$ .

Example: 39 8 coins are tossed simultaneously. The probability of getting at least 6 heads is[AISSE 1985; MNR 1985; MP PE

(a) 
$$\frac{57}{64}$$

(b)  $\frac{229}{256}$  (c)  $\frac{7}{64}$  (d)  $\frac{37}{256}$ **Solution:** (d) The required probability  $= {}^{8}C_{6}\left(\frac{1}{2}\right)^{6} \cdot \left(\frac{1}{2}\right)^{2} + {}^{8}C_{7}\left(\frac{1}{2}\right)^{7} \cdot \left(\frac{1}{2}\right) + {}^{8}C_{8}\left(\frac{1}{2}\right)^{8} = \frac{37}{256}$ .

Example: 40 An unbiased die with faces marked 1, 2, 3, 4, 5 and 6 is rolled four times. Out of four face values obtained the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5, is

[IIT 1993; DCE 2000; Roorkee 2000]

(d) 0.87

(a) 
$$\frac{16}{81}$$
 (b)  $\frac{1}{81}$  (c)  $\frac{80}{81}$  (d)  $\frac{6}{81}$ 

**Solution:** (a) *P*(minimum face value is not less than 2 and maximum face value is not greater than 5)

= 
$$P(2 \text{ or } 3 \text{ or } 4 \text{ or } 5) = \frac{4}{6} = \frac{2}{3}$$
.

Hence required probability  $= {}^{4}C_{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{0} = \frac{16}{81}$ .

One hundred identical coins each with probability p of showing up heads are tossed once. If 0Example: 41 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, then the value of *p* is

[IIT 1988; CEE 1993; MP PET 2001]

(a) 
$$\frac{1}{2}$$
 (b)  $\frac{49}{101}$  (c)  $\frac{50}{101}$  (d)  $\frac{51}{101}$ 

| Solution: (d) | We have ${}^{100}C_{50}p^{50}(1-$                                                       | $p)^{50} = {}^{100}C_{51}p^{51}(1-p)^{49}$ or                                                                                 | $\frac{1-p}{p} = \frac{100!}{51!.49!} \times \frac{50!.50!}{100!}$          | $=\frac{50}{51}$ or $51-51p=50$              | $p \Rightarrow p = \frac{51}{101}$ . |
|---------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|
| Example: 42   | The mean and the va<br>2 successes is                                                   | ariance of a binomial dist                                                                                                    | ribution are 4 and 2 re                                                     | espectively. Then the                        | e probability o                      |
|               | 2 546665665 15                                                                          |                                                                                                                               |                                                                             |                                              | [AIEEE 2004]                         |
|               | (a) $\frac{28}{256}$                                                                    | (b) $\frac{219}{256}$                                                                                                         | (c) $\frac{128}{256}$                                                       | (d) $\frac{37}{256}$                         |                                      |
| Solution: (a) | $ \begin{array}{c} np = 4 \\ npq = 2 \end{array} \} \implies q = \frac{1}{2}, p = $     | $=\frac{1}{2}, n=8$                                                                                                           |                                                                             |                                              |                                      |
|               | $p(X = 2) = {}^{8}C_{2} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right)^{2}$      | $\int_{0}^{6} = 28 \cdot \frac{1}{2^8} = \frac{28}{256} \cdot$                                                                |                                                                             |                                              |                                      |
| Example: 43   | -                                                                                       | forward with probability<br>even steps he is one step                                                                         |                                                                             |                                              | The probability                      |
|               | (a) ${}^{11}C_6(0.24)^5$                                                                | <b>(b)</b> ${}^{11}C_6(0.4)^6(0.6)^5$                                                                                         | (c) ${}^{11}C_6(0.6)^6(0.4)^5$                                              | (d) None of thes                             | e                                    |
| Solution: (a) | behind the starting p<br>∴ The required prob                                            |                                                                                                                               |                                                                             | -                                            | -                                    |
|               | The probability of th                                                                   | is event is ${}^{11}C_6(0.4)^6(0.6)^5$                                                                                        |                                                                             |                                              |                                      |
|               | The man will be one steps forward.                                                      | e step behind at the end                                                                                                      | of eleven steps if he                                                       | noves six steps bacl                         | ward and five                        |
|               | The probability of th                                                                   | is event is ${}^{11}C_6(0.6)^6(0.4)^5$                                                                                        |                                                                             |                                              |                                      |
|               | Hence the required r                                                                    | probability $= {}^{11}C_6(0.4)^6(0.6)$                                                                                        | $^{5} + {}^{11}C_{6}(0.6)^{6}(0.4)^{5} = {}^{11}C_{6}$                      | $(0.4)^5 (0.6)^5 (0.4 + 0.6) =$              | $^{11}C_6(0.24)^5$ .                 |
| Example: 44   |                                                                                         | ird with probability 3/4.                                                                                                     |                                                                             |                                              |                                      |
|               |                                                                                         |                                                                                                                               |                                                                             | [Rajas                                       | than PET 1997                        |
|               |                                                                                         | (b) 781/1024                                                                                                                  | (c) 1/1024                                                                  | (d) 1023/1024                                |                                      |
| Solution: (c) | Probability to kill a l                                                                 | pird $p=\frac{3}{4}$ ,                                                                                                        | p + q = 1                                                                   |                                              |                                      |
|               | $\Rightarrow q = 1 - p = 1 - \frac{3}{4} = \frac{1}{4}$                                 | and $n = 5$ .                                                                                                                 |                                                                             |                                              |                                      |
|               | Probability that he n                                                                   | nay not kill the bird,                                                                                                        |                                                                             |                                              |                                      |
|               | $P(X=0) = {}^{5}C_{0} \left(\frac{3}{4}\right)^{0} \cdot \left(\frac{1}{4}\right)^{0}$  | $\left(\frac{1}{2}\right)^{5-0} = \frac{1}{1024}$ .                                                                           |                                                                             |                                              |                                      |
| Example: 45   | If X follows a binom                                                                    | ial distribution with para                                                                                                    | meters $n = 8$ and $p = -$                                                  | $\frac{1}{2}$ , then $P( X-4  \le 2)$        | equals                               |
|               | (a) $\frac{118}{128}$                                                                   |                                                                                                                               | (c) $\frac{117}{128}$                                                       | (d) None of thes                             |                                      |
| Solution: (b) | We have, $P( X-4  \le$                                                                  | $2) = P(-2 \le X - 4 \le 2) = P(2 \le 2)$                                                                                     | $\leq X \leq 6) = P(X=2) + P(X=2)$                                          | = 3) + P(X = 4) + P(X = 5)                   | P(X=6)                               |
|               | $= {}^{8}C_{2}\left(\frac{1}{2}\right)^{8} + {}^{8}C_{3}\left(\frac{1}{2}\right)^{8} +$ | ${}^{8}C_{4}\left(\frac{1}{2}\right)^{8} + {}^{8}C_{5}\left(\frac{1}{2}\right)^{8} + {}^{8}C_{6}\left(\frac{1}{2}\right)^{8}$ | $\left(\frac{1}{2}\right)^8 = \frac{1}{2^8} \left[28 + 56 + 70 + 56\right]$ | $+28] = \frac{238}{2^8} = \frac{119}{128}$ . |                                      |
|               |                                                                                         |                                                                                                                               |                                                                             |                                              |                                      |

**Example: 46** Three six faced fair dice are thrown together. The probability that the sum of the numbers appearing on the dice is  $k(3 \le k \le 8)$ , is

(a) 
$$\frac{(k-1)(k-2)}{432}$$
 (b)  $\frac{k(k-1)}{432}$  (c)  $\frac{k^2}{432}$  (d) None of these  
Solution: (a) The total number of cases =  $6 \times 6 \times 6 = 216$   
The number of favourable ways  
= Coefficient of  $x^{k}$  in  $(x + x^{2} + ... + x^{6})^{3}$   
= Coefficient of  $x^{k-3}$  in  $(1 - x^{6})^{3}(1 - x)^{-3}$   
= Coefficient of  $x^{k-3}$  in  $(1 - x^{6})^{3}(1 - x)^{-3}$   
= Coefficient of  $x^{k-3}$  in  $(1 + ^{3}C_{1}x + ^{4}C_{2}x^{2} + ^{5}C_{3}x^{3} + ...) = ^{k-1}C_{2} = \frac{(k-1)(k-2)}{2}$   
Thus the probability of the required event is  $\frac{(k-1)(k-2)}{432}$ .  
Example: 47 If three dice are thrown simultaneously, then the probability of getting a score of 7 is[Kurukshetra CEE 1998]  
(a)  $5/216$  (b)  $1/6$  (c)  $5/72$  (d) None of these  
Solution: (c)  $n(S) = 6 \times 6 \times 6$   
 $n(E) = The number of solutions of  $x + y + z = 7$ ,  
where  $1 \le x \le 5, 1 \le y \le 5, 1 \le z \le 5$   
= Coefficient of  $x^{4}$  in  $(1 + x + ... + x^{4})^{3}$  = Coefficient of  $x^{4}$  in  $\left(\frac{1 - x^{5}}{1 - x}\right)^{3}$   
= Coefficient of  $x^{4}$  in  $(1 - 3x^{5} + 3x^{10} - x^{15})(1 - x)^{-3}$   
= Coefficient of  $x^{4}$  in  $(1 - 3x^{5} + 3x^{10} - x^{15})(1 - x)^{-3}$   
= Coefficient of  $x^{4}$  in  $(1 - 3x^{5} + 3x^{10} - x^{15})(1 - x)^{-3}$   
= Coefficient of  $x^{4}$  in  $(1 - 3x^{5} + 3x^{10} - x^{15})(1 - x)^{-3}$   
= Coefficient of  $x^{4}$  in  $(1 - 3x^{5} + 3x^{10} - x^{15})(1 - x)^{-3}$   
= Coefficient of  $x^{4}$  in  $(1 - 3x^{5} + 3x^{10} - x^{15})(1 - x)^{-3}$   
= Coefficient of  $x^{4}$  in  $(1 - 3x^{5} + 3x^{10} - x^{15})(1 - x)^{-3}$   
= Coefficient of  $x^{4}$  in  $(1 - 3x^{5} + 3x^{10} - x^{15})(1 - x)^{-3}$   
= Coefficient of  $x^{4}$  in  $(1 - 3x^{5} + 3x^{10} - x^{15})(1 - x)^{-3}$   
= Coefficient of  $x^{4}$  in  $(1 - 3x^{5} + 3x^{10} - x^{15})(1 - x)^{-3}$   
= Coefficient of  $x^{4}$  in  $(1 - 3x^{5} + 3x^{10} - x^{15})(1 - x)^{-3}$   
= Coefficient of  $x^{4}$  in  $(1 - 3x^{5} + 3x^{10} - x^{15})(1 - x)^{-3}$   
= Coefficient of  $x^{4}$  in  $(1 - 3x^{5} + 3x^{10} - x^{15})(1 - x)^{-3}$   
= Coefficient of  $x^{4}$  in  $(1 - 3x^{5} + 3x^{10} - x^{15})(1 - x)^{-3}$   
= Coefficient of  $x^{4}$  i$ 



|     |                                                          |                                             |                                      | Definition of various terms            |
|-----|----------------------------------------------------------|---------------------------------------------|--------------------------------------|----------------------------------------|
|     |                                                          | Basic                                       | c Level                              |                                        |
| 1.  | Two coins are tossed. I<br>shows a tail. Two event       |                                             | rst coin shows head and B            | be the event that the second coin      |
|     | (a) Mutually exclusive                                   |                                             | (b) Dependent                        |                                        |
|     | (c) Independent and m                                    | utually exclusive                           | (d) None of these                    |                                        |
| 2.  | -                                                        | pack of 52 cards. If $A = card$             |                                      | an ace and $A \cap B =$ card is ace of |
|     | (a) Independent                                          | (b) Mutually exclusive                      | (c) Dependent                        | (d) Equally likely                     |
| 3.  | The probabilities of thr                                 | ee mutually exclusive events                | are $2/3$ , $1/4$ and $1/6$ . The    | statement is                           |
|     | (a) True                                                 | (b) False                                   | (c) Could be either                  | (d) Do not know                        |
| 4.  | If $P(A_1 \cup A_2) = 1 - P(A_1^c) P(A_1^c)$             | $(A_2^c)$ , where c stands for comp         | blement, then the events $A_{\rm p}$ | $_1$ and $A_2$ are                     |
|     | (a) Mutually exclusive                                   | (b) Independent                             | (c) Equally likely                   | (d) None of these                      |
| 5۰  | If $\frac{1-3p}{2}, \frac{1+4p}{3}$ and $\frac{1+3p}{6}$ | $\frac{p}{p}$ are the probabilities of the  | nree mutually exclusive an           | d exhaustive events, then the set      |
|     | of all values of <i>p</i> is                             |                                             |                                      |                                        |
|     |                                                          |                                             | [MNR 1992;                           | Rajasthan PET 2000; UPSEAT 2000]       |
|     | (a) [0, 1]                                               | (b) $\left[-\frac{1}{4},\frac{1}{3}\right]$ | (c) $\left[0,\frac{1}{3}\right]$     | (d) (0,∞)                              |
| 6.  | The event A is independ                                  | dent of itself if and only if $P(x)$        | A) =                                 |                                        |
|     | (a) O                                                    | (b) 1                                       | (c) 0, 1                             | (d) None of these                      |
| 7.  | If A and B are independ                                  | lent events and $P(C) = 0$ , then           | L                                    |                                        |
|     | (a) A and C are independent                              | ndent                                       | (b) <i>B</i> and <i>C</i> are indep  | endent                                 |
|     | (c) <i>A</i> , <i>B</i> and <i>C</i> are indep           | pendent                                     | (d)                                  | All of these                           |
|     |                                                          |                                             |                                      | Definition of Probability              |
|     |                                                          | Basic                                       | c Level                              |                                        |
|     |                                                          |                                             |                                      |                                        |
| 8.  | The probability that an                                  | ordinary or a non-leap year                 | has 53 Sundays, is                   |                                        |
|     | (a) 2/7                                                  | (b) 1/7                                     | (c) 3/7                              | (d) None of these                      |
| 9.  |                                                          | -                                           |                                      | velopes are also written. Without      |
|     | -                                                        | s, the probability that the let             |                                      |                                        |
| 10  | (a) 1/27                                                 | (b) 1/9                                     | (c) $4/27$                           | (d) $1/6$                              |
| 10. | The probability of getti                                 | ng head and tail alternately i              | in three throws of a coll (0         | a throw of three collis, is            |

(a) 
$$\frac{1}{8}$$
 (b)  $\frac{1}{4}$  (c)  $\frac{1}{3}$  (d)  $\frac{3}{8}$   
11. In a lottery there were 90 tickets numbered 1 to 90. Five tickets were drawn at random. The probability that two of the tickets drawn numbers 15 and 89 is  
(a) 2/801 (b) 2/623 (c) 1/267 (d) 1/623  
12. Two numbers are selected randomly from the set  $S = [1, 2, 4, 4, 5, 6]$  without replacement one by one. The probability that minimum of the two numbers is less than 4 is  
(a) 1/15 (b) 14/15 (c) 1/5 (d) 4/5  
13. Among 15 players, 8 are batsmen and 7 are bowlers. Find the probability that a team is chosen of 6 batsmen and 7 bowlers [UPEAT 2003]  
(a)  $\frac{4C_6 \times C_5}{12C_1}$  (b)  $\frac{4C_1 + C_6}{12C_1}$  (c)  $\frac{15}{28}$  (d) None of these  
14. The probability of obtaining sum (8' in a single throw of two dice  
(a)  $\frac{1}{36}$  (b)  $\frac{1}{35}$  (c)  $\frac{1}{4}$  (c)  $\frac{1}{3}$  (d) None of these  
14. The probability of obtaining sum (8' in a single throw of two dice  
(a)  $\frac{1}{3}$  (b)  $\frac{1}{3}$  (c)  $\frac{1}{3}$  (c)  $\frac{1}{3}$  (d) None of these  
15. Three manges and three apples are in a box. If two fruits are chosen at random, the probability that one is a mange and there angles are in a box. If two fruits are chosen at random, the probability of drawing a number which is a square is [EAACET 1989]  
(a)  $\frac{1}{3}$  (b)  $\frac{1}{3}$  (c)  $\frac{1}{10}$  (d) None of these  
16. A card is drawn at random from a pack of 100 cards numbered 1 to 100. The probability of drawing a number which is a square is [EAACET 1989]  
(a)  $\frac{1}{3}$  (b)  $\frac{1}{3}$  (c)  $\frac{1}{10}$  (d) None of these  
17. A bag contains 5 white, 7 black and 4 red balls. Three balls are drawn from the bag at random. The probability that all the three balls are white, is  
(a)  $\frac{1}{36}$  (b)  $\frac{3}{11}$  (c)  $\frac{5}{11}$  (d)  $\frac{1}{6}$   
18. Two dice are thrown together. The probability that a least one will show its digit 6 is  
(a)  $\frac{1}{36}$  (b)  $\frac{3}{10}$  (c)  $\frac{3}{11}$  (d)  $\frac{1}{2}$   
19. The sum of two positive numbers is 100. The probability that their product is greater than 1000 is  
(a)  $\frac{1}{36}$  (b)  $\frac{3}{2}$  (c)  $\frac{1}{11}$  (d)  $\frac{$ 

|    | Probability                        | 3                                         | 17                                  | 4                                         |
|----|------------------------------------|-------------------------------------------|-------------------------------------|-------------------------------------------|
|    | (a) $\frac{2}{19}$                 | (b) $\frac{3}{29}$                        | (c) $\frac{17}{19}$                 | (d) $\frac{4}{19}$                        |
| 6. | Two dice are thrown.               | The probability that the sum              | n of the points on two dice         | will be 7, is                             |
|    | _                                  | <b>TII</b> ]                              | _                                   | an PET 1995, 97, 2002; UPSEAT 2000        |
|    | (a) $\frac{5}{36}$                 | (b) $\frac{6}{36}$                        | (c) $\frac{7}{36}$                  | (d) $\frac{8}{36}$                        |
| 7. | A bag contains ticket              | s numbered from 1 to 20. Ty               | vo tickets are drawn. The p         | robability that both the numbers a        |
|    | prime, is                          | [AISSE 1981]                              | 1                                   | ç                                         |
|    | (a) $\frac{14}{95}$                | (b) $\frac{7}{95}$                        | (c) $\frac{1}{95}$                  | (d) None of these                         |
| 8. | )5                                 | 95                                        | )5                                  |                                           |
| 0. | 7                                  | wo dice, the probability of ge            | -                                   | 5                                         |
|    | (a) $\frac{7}{36}$                 | (b) $\frac{7}{12}$                        | (c) $\frac{5}{12}$                  | (d) $\frac{5}{36}$                        |
| 9. |                                    | _                                         | ility of the event that the         | sum of the integers coming on th          |
|    | upper sides of the two             |                                           |                                     |                                           |
| 0. | (a) 7/18<br>The probability of get | (b) 5/36<br>tting number 5 in throwing a  | (c) 1/9<br>die is                   | (d) 1/6<br>[MP PET 1983                   |
| 0. | (a) 1                              | (b) 1/3                                   | (c) 1/6                             | (d) 5/6                                   |
| 1. |                                    | ting a number greater than :              |                                     |                                           |
|    | (a) 1/3                            | (b) 2/3                                   | (C) 1/2                             | (d) 1/6                                   |
| 2. | The chance of throwing             | ng at least 9 in a single throw           | w with two dice, is                 |                                           |
|    | (a) $\frac{1}{18}$                 | (b) $\frac{5}{18}$                        | (c) $\frac{7}{18}$                  | (d) $\frac{11}{18}$                       |
| 3. | The probability that t             | the three cards drawn from a              | pack of 52 cards are all red        | 10                                        |
|    | (a) $\frac{1}{17}$                 | (b) $\frac{3}{19}$                        | (c) $\frac{2}{10}$                  | (d) $\frac{2}{17}$                        |
|    | 17                                 | 1)                                        | 19                                  | 17                                        |
| 4. |                                    | tting a total of 5 or 6 in a sin          | -                                   |                                           |
| 5. | (a) $1/2$                          | (b) $1/4$ is to be chosen from a gr       | (c) $1/3$                           | (d) 1/6<br>h you are a member. What is th |
| 3. | probability that you w             | will be on the committee                  | oup of 30 people of which           | i you are a member. what is th            |
|    | (a) $\binom{38}{3}$                | (b) $\begin{pmatrix} 37\\2 \end{pmatrix}$ | (c) $\binom{37}{2} / \binom{38}{3}$ | (d) 666/8436                              |
| c  |                                    |                                           | (2)/(3)                             |                                           |
| 6. |                                    | a doublet with 2 dice is                  | 5                                   | [Kurukshetra CEE 2002<br>5                |
|    | (a) $\frac{2}{3}$                  | (b) $\frac{1}{6}$                         | (c) $\frac{5}{6}$                   | (d) $\frac{5}{36}$                        |
| 7. | A bag contains 3 whit              | e and 5 black balls. If one ba            | ll is drawn, then the probal        | bility that it is black, is               |
|    | (a) $\frac{3}{8}$                  | (b) $\frac{5}{8}$                         | (c) $\frac{6}{8}$                   | (d) $\frac{10}{20}$                       |
| _  | 0                                  | 8                                         | 0                                   |                                           |
| 8. | (a) 1/9                            | together. The probability that<br>(b) 1/3 | (c) 1/4                             | (d) 5/9                                   |
| 9. |                                    | ppening of an impossible eve              |                                     | (u) 5/9                                   |
|    | (a) 1                              | (b) 0                                     | (c) 2                               | (d) – 1                                   |
| о. | For any event A                    |                                           |                                     | [Rajasthan PET 199                        |
|    | (a) $P(A) + P(\overline{A}) = 0$   | (b) $P(A) + P(\overline{A}) = 1$          | (c) $P(A) > 1$                      | (d) $P(\overline{A}) < 1$                 |
| 1. | A bag contains 3 red,              | 4 white and 5 black balls. T              | hree balls are drawn at ran         | dom. The probability of being the         |
|    | different colours is               |                                           |                                     |                                           |
|    | (2) 2/11                           | (b) $2/11$                                | (c) 0/11                            | [Rajasthan PET 199<br>(d) None of these   |
|    | (a) 3/11                           | (b) 2/11                                  | (c) 8/11                            | (d) None of these                         |

Find the probability that the two digit number formed by digits 1, 2, 3, 4, 5 is divisible by 4 (while repetition of 42. digit is allowed) [UPSEAT 2002] (c)  $\frac{1}{40}$ (a)  $\frac{1}{30}$ (b)  $\frac{1}{20}$ (d) None of these If P(A) = 0.65, P(B) = 0.15, then  $P(\overline{A}) + P(\overline{B}) =$ 43. [Pb. CET 1989; EAMCET 1988] (b) 1.2 (c) 0.8 (d) None of these (a) 1.5 If four persons are chosen at random from a group of 3 men, 2 women and 4 children. Then the probability that 44. exactly two of them are children, is [Kurukshetra CEE 1996; DCE 1999] (a) 10/21 (b) 8/63 (c) 5/21 (d) 9/21 A single letter is selected at random from the word "PROBABILITY". The probability that the selected letter is a 45. vowel is [MNR 1986; UPSEAT 2000] (a) 2/11 (b) 3/11 (c) 4/11 (d) 0 The probability of three persons having the same date and month for the birthday is 46. (b)  $1/(365)^2$ (c)  $1/(365)^3$ (a) 1/365 (d) None of these Out of 20 consecutive positive integers, two are chosen at random, the probability that their sum is odd is 47. (a) 1/20 (b) 10/19 (c) 19/20 (d) 9/19 A and B play a game where each is asked to select a number from 1 to 25. If the two numbers match, both of 48. them win a prize. The probability that they will not win a prize in a single trial is (b) 24/25 (c) 2/25 (d) None of these (a) 1/25 If *E* and *F* are events with  $P(E) \le P(F)$  and  $P(E \cap F) > 0$ , then 49. (a) Occurrence of  $E \Rightarrow$  occurrence of F(b) Occurrence of  $F \Rightarrow$  occurrence of E(c) Non-occurrence of  $E \Rightarrow$  non-occurrence of F(d) None of the above implications holds A single letter is selected form the word 'KURUKSHETRA UNIVERSITY' the probability that it is a vowel is [Kurukshetr 50. (c) 8/21 (d) 2/5 (a) 4/5(b) 3/7 From the word 'POSSESSIVE', a letter is chosen at random. The probability of it to be S is 51. (c)  $\frac{3}{6}$ (b)  $\frac{4}{10}$ (d)  $\frac{4}{6}$ (a)  $\frac{3}{10}$ Out of 40 consecutive natural numbers, two are chosen at random. Probability that the sum of the numbers is 52. odd, is [MP PET 2002] (a)  $\frac{14}{29}$ (b)  $\frac{20}{39}$ (c)  $\frac{1}{2}$ (d) None of these Two dice are tossed. The probability that the total score is a prime number is 53. (b)  $\frac{5}{12}$ (c)  $\frac{1}{2}$ (a)  $\frac{1}{6}$ (d) None of these A lot consists of 12 good pencils, 6 with minor defects and 2 with major defects. A pencil is choosen at random. 54. The probability that this pencil is not defective is (b) 3/10 (a) 3/5 (c) 4/5 (d) 1/2 7 white balls and 3 black balls are placed in a row at random. The probability that no two black balls are 55. adjacent is (c)  $\frac{2}{15}$ (a)  $\frac{1}{2}$ (b)  $\frac{7}{15}$ (d)  $\frac{1}{2}$ Advance Level

**56.** Twenty children are standing in a line outside a ticket window at Appu Ghar in New Delhi. Ten of these children have a one-rupee coin each and the remaining 10 have a two-rupee coin each. The entry ticket is priced Re. 1. If all the arrangements of the 20 children are equally likely, the probability that the 10<sup>th</sup> will be the first to wait for change is (Assume that the cashier has no change to begin with)

- (a)  $\frac{2^{10}}{{}^{20}C_{10}}$  (b)  $\frac{{}^{20}C_{10}}{2^{10}}$  (c) o (d) None of these
- **57.** 4 five-rupee coins, 3 two-rupee coins and 2 one-rupee coins are stacked together in a column at random. The probability that the coins of the same denomination are consecutive is

(a) 
$$\frac{13}{9!}$$
 (b)  $\frac{1}{210}$  (c)  $\frac{1}{35}$  (d) None of these

58. Two small squares on a chess board are chosen at random. Probability that they have a common side is
(a) 1/3
(b) 1/9
(c) 1/18
(d) None of these

**59.** There are *n* persons ( $n \ge 3$ ), among whom are *A* and *B*, who are made to stand in a row in random order. Probability that there is exactly one person between *A* and *B* is

(a) 
$$\frac{n-2}{n(n-1)}$$
 (b)  $\frac{2(n-2)}{n(n-1)}$  (c)  $2/n$  (d) None of these

**60.** If *m* rupee coins and *n* ten paise coins are placed in a line, then the probability that the extreme coins are ten paise coins is

(a) 
$${}^{m+n}C_m$$
 (b)  $\frac{n(n-1)}{(m+n)(m+n-1)}$  (c)  ${}^{m+n}P_m$  (d)  ${}^{m+n}P_n$ 

**61.** Twelve balls are distributed among three boxes. The probability that the first box contains 3 balls is

(a) 
$$\frac{110}{9} \left(\frac{2}{3}\right)^{10}$$
 (b)  $\frac{9}{110} \left(\frac{2}{3}\right)^{10}$  (c)  $\frac{12}{12^3} \cdot 2^9$  (d)  $\frac{12}{3} \cdot C_3^3$   
62. Six boys and six girls sit in a row. What is the probability that the boys and girls sit alternately  
(a)  $1/462$  (b)  $1/924$  (c)  $1/2$  (d) None of these  
63. Word 'UNIVERSITY' is arranged randomly. Then the probability that both 'l' does not come together, is  
(a)  $\frac{3}{5}$  (b)  $\frac{2}{5}$  (c)  $\frac{4}{5}$  (d)  $\frac{1}{5}$   
64. A fair coin is tossed repeatedly. If tail appears on first four tosses, then the probability of head appearing on  
fifth toss equals [IIT 1998]  
(a)  $1/2$  (b)  $1/32$  (c)  $31/32$  (d)  $1/5$   
65. A determinant is chosen at random. The set of all determinants of order 2 with elements 0 or 1 only. The  
probability that value of the determinant chosen is positive, is  
(a)  $\frac{3}{16}$  (b)  $\frac{3}{8}$  (c)  $\frac{1}{4}$  (d) None of these  
66. Out of 13 applicants for a job, there are 5 women and 8 men. It is desired to select 2 persons for the job. The  
probability that at least one of the selected persons will be a woman is  
(a)  $25/39$  (b)  $14/39$  (c)  $5/13$  (d)  $10/13$   
67. Two numbers are selected at random from 1, 2, 3....100 and are multiplied, then the probability correct to two  
places of decimals that the product thus obtained is divisible by 3, is  
(a)  $0.55$  (b)  $0.44$  (c)  $0.22$  (d)  $0.33$   
68. Five digit numbers are formed using the digits 1, 2, 3, 4. 5, 6, and 8. What is the probability that they have  
even digits at both the ends [Rajasthan PET 1999]  
(a)  $2/7$  (b)  $3/7$  (c)  $4/7$  (d) None of these  
69. The corners of regular tetrahedrons are numbered 1, 2, 3, 4. Three tetrahedrons are tossed. The probability  
that the sum of upward corners will be 5 is  
(a)  $5/24$  (b)  $5/64$  (c)  $3/32$  (d)  $3/16$ 

[AMU 1999]

- **70.** If four vertices of a regular octagon are chosen at random, then the probability that the quadrilateral formed by them is a rectangle is
  - (a) 1/8 (b) 2/21 (c) 1/32 (d) 1/35
- 71. In a college, 25% of the boys and 10% of the girls offer Mathematics. The girls constitute 60% of the total number of students. If a student is selected at random and is found to be studying Mathematics, the probability that the student is a girl, is [MP PET 2001]
  - (a)  $\frac{1}{6}$  (b)  $\frac{3}{8}$  (c)  $\frac{5}{8}$  (d)  $\frac{5}{6}$
- **72.** There are *m* persons sitting in a row. Two of them are selected at random. The probability that the two selected persons are not together, is

(a) 
$$\frac{2}{m}$$
 (b)  $1 - \frac{2}{m}$  (c)  $\frac{m(m-1)}{(m+1)(m+2)}$  (d) None of these

- **73.** If the integers *m* and *n* are chosen at random between 1 and 100, then the probability that a number of the form  $7^m + 7^n$  is divisible by 5 equals
  - (a)  $\frac{1}{4}$  (b)  $\frac{1}{7}$  (c)  $\frac{1}{8}$  (d)  $\frac{1}{49}$
- **74.** Cards are drawn one by one at random from a well shuffled full pack of 52 cards until two aces are obtained for the first time. If *N* is the number of cards required to be drawn, then  $P_r[N=n]$ , where  $2 \le n \le 50$ , is
  - (a)  $\frac{(n-1)(52-n)(51-n)}{50 \times 49 \times 17 \times 13}$  (b)  $\frac{2(n-1)(52-n)(51-n)}{50 \times 49 \times 17 \times 13}$  (c)  $\frac{3(n-1)(52-n)(51-n)}{50 \times 49 \times 17 \times 13}$  (d)  $\frac{4(n-1)(52-n)(51-n)}{50 \times 49 \times 17 \times 13}$
- **75.** A locker can be opened by dialing a fixed three digit code (between 000 and 999). A stranger who does not know the code tries to open the locker by dialing three digits at random. The probability that the stranger succeeds at the  $k^{th}$  trial is

(a) 
$$\frac{k}{999}$$
 (b)  $\frac{k}{1000}$  (c)  $\frac{k-1}{1000}$  (d) None of these

**76.** Seven white balls and three black balls are randomly placed in a row. The probability that no two black balls are placed adjacently equals

**77.** A committee consists of 9 experts taken from three institutions *A*, *B* and *C*, of which 2 are from *A*, 3 from *B* and 4 from *C*. If three experts resign, then the probability that they belong to different institutions is

(a) 
$$\frac{1}{729}$$
 (b)  $\frac{1}{24}$  (c)  $\frac{1}{21}$  (d)  $\frac{2}{7}$ 

**78.** There are four machines and it is known that exactly two of them are faulty. They are tested, one by one, in a random order till both the faulty machines are identified. The probability that only two tests are needed is

- (a) 1/3 (b) 1/6 (c) 1/2 (d) 1/4
- **79.** A five digit number is formed by writing the digits 1, 2, 3, 4, 5 in a random order without repetitions. Then the probability that the number is divisible by 4 is

**80.** Five persons entered the lift cabin on the ground floor of an 8-floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first. The probability of all five persons leaving at different floors is

(a) 
$$\frac{7^5}{{}^7P_5}$$
 (b)  $\frac{{}^7P_5}{7^5}$  (c)  $\frac{5!}{7^5}$  (d) 1

**81.** If *A* and *B* are two events than the value of the determinant choosen at random from all the determinants of order 2 with entries 0 or 1 only is positive or negative respectively. Then

(a) 
$$P(A) \ge P(B)$$
 (b)  $P(A) \le P(B)$  (c)  $P(A) = P(B) = 1/2$  (d) None of these

**82.**  $x_1, x_2, x_3, \dots, x_{50}$  are fifty real numbers such that  $x_r < x_{r+1}$  for  $r = 1, 2, 3, \dots, 49$ . Five numbers out of these are picked up at random. The probability that the five numbers have  $x_{20}$  as the middle number is

(a) 
$$\frac{{}^{20}C_2 \times {}^{30}C_2}{{}^{50}C_5}$$
 (b)  $\frac{{}^{30}C_2 \times {}^{19}C_2}{{}^{50}C_5}$  (c)  $\frac{{}^{19}C_2 \times {}^{31}C_3}{{}^{50}C_5}$  (d) None of these

- **83.** A card is drawn from a pack. The card is replaced and the pack is reshuffled. If this is done six times, the probability that 2 hearts, 2 diamonds and 2 black cards are drawn is
  - (a)  $90 \cdot \left(\frac{1}{4}\right)^6$  (b)  $\frac{45}{2} \cdot \left(\frac{3}{4}\right)^4$  (c)  $\frac{90}{2^{10}}$  (d) None of these
- **84.** An even number of cards is drawn from a pack of 52 cards. The probability that half of these cards will be red and the other half black is

(a) 
$$\frac{{}^{52}C_2}{2^{51}-1}$$
 (b)  $\frac{{}^{52}C_{26}-1}{2^{51}-1}$  (c)  $\frac{{}^{52}C_2-1}{2^{51}-1}$  (d)  $\frac{{}^{52}C_2}{2^{51}+1}$ 

**85.** Two numbers *a* and *b* are chosen at random from the set {1, 2, 3,....,3*n*} the probability that  $a^2 - b^2$  is divisible by 3 is

(a) 
$$\frac{5(n-3)}{3n-1}$$
 (b)  $\frac{5(n+3)}{3n-1}$  (c)  $\frac{5n-3}{3(3n-1)}$  (d) None of these

86. The probability that the birth days of six different persons will fall in exactly two calendar months is

(a) 
$$\frac{1}{6}$$
 (b)  ${}^{12}C_2 \times \frac{2^6}{12^6}$  (c)  ${}^{12}C_2 \times \frac{2^6-1}{12^6}$  (d)  $\frac{341}{12^5}$ 

**87.** A bag contains *n* white and *n* red balls. Pairs of balls are drawn without replacement until the bag is empty. The probability of each pair consisting of balls of different colours is

(a) 
$$\frac{2^n}{2^n C_n}$$
 (b)  $\frac{2^{n-1}}{2^n C_n}$  (c)  $\frac{2^n}{2^{n-1} C_n}$  (d) 1

**88.** To avoid detection at customs, a traveller has placed six narcotic tablets in a bottle containing nine vitamin pills that are similar in appearance. If the customs official selects three of the tablets at random for analysis, the probability that traveller will be arrested for illegal possession of narcotics is

(a) 
$$\frac{53}{63}$$
 (b)  $\frac{53}{65}$  (c)  $\frac{51}{65}$  (d)  $\frac{13}{63}$ 

**89.** Six different balls are put in three different boxes, no box being empty. The probability of putting balls in the boxes in equal numbers is

(a) 3/10
(b) 1/6
(c) 1/5
(d) None of these
90. A man and a woman appear in an interview for two vacancies in the same post. The probability of man's selection is 1/4 and that of woman's selection is 1/3. What is the probability that none of them will be selected (a) 1/2
(b) 1/12
(c) 1/4
(d) None of these
91. Three six faced unbiased dice are thrown together. The probability that exactly two of the three numbers are equal is

92. If the papers of 4 students can be checked by any one of the seven teachers, then the probability that all the four papers are checked by exactly two teachers is
(a) 2/7
(b) 12/49
(c) 32/343
(d) None of these

**93.** *m* boys and *m* girls take their seats randomly around a circle. The probability of their sitting is  $(2^{m-1}C_m)^{-1}$  when

(a) No two boys sit together(b)No two girls sit together(c) Boys and girls sit alternatively(d)All the boys sit together94.m men and w women seat themselves at random on m+w seats arranged in row (circle). If  $p_1(p_2)$  denote the

probability of all women sitting together when they are arranged in row (circle), then

(a) 
$$p_1 = \frac{m+1}{n+c_m}$$
 (b)  $p_1 + p_2 = \frac{2m+u+1}{n+c_m}$  (c)  $p_1 = p_2$  if and only if  $w = 1$  (d)  $p_2 < p_1$  if  $w > 1$   
**95.** Three player  $A, B$  and  $C$ , toss a coin cyclically in that order (that is  $A, B, C, A, B, C, A, B, ...)$  (ill a head shows.  
Let  $p$  be the probability that the coin shows a head. Let  $a, \beta$  and  $\gamma$  be, respectively, the probabilities that  $A, B$   
and  $C$  gets the first head. Then  
(a)  $\beta = 1 - pk$  (b)  $\gamma + 2pa = (1 + p^2)x$  (c)  $a + \beta + \gamma = 1$  (d)  $a = 1/(3 - 3p + p^2)$   
**96.** Two players  $A$  and  $B$  toss a fair coin cyclically in the following order  $A, A, B, A, A, M$ . Itll a head shows (that is,  $A$   
will be allowed first two tosses, followed by a single toss of  $B$ ). Let  $a(\beta)$  denote the probability that  $A(B)$  gets  
the head first. Then  
(a)  $a - 6/7$  (b)  $a - 5/7$  (c)  $\beta = 1/7$  (d)  $\beta = 2/7$   
**97.** Three pollical parties are contesting election for  $(2n + 1)$  Lok Sabha seats. the probability that there will be a  
coalition government after the election is  
(a)  $\frac{4m+6}{n}$  (b)  $\frac{m}{4n-6}$  (c)  $\frac{m}{2a+3}$  (d) 1  
**98.** A and  $B$  each throw a dice. The probability that  $A$ 's throw is not greater than  $B$  is is  
(a)  $\frac{n^2}{n^2}$  (b)  $\frac{n^2}{2}$  (c)  $\frac{n^{2/2}}{2}$  (d) None of these  
(a)  $\frac{m}{n^2}$  (b)  $\frac{m^2}{n^2}$  (c)  $\frac{m^{2/2}}{n^{2/2}}$  (c)  $\frac{m^{2/2}}{n^{2/2}}$  (d) None of these  
**100.** Let a die is loaded in such a way that even faces are twice a silkely to occur as the odd faces. The probability  
that a prime number  $N_1 - 1, 2, 20$  and 3 is thrown thrice. The probability that the total is zero is  
(a)  $\frac{25}{216}$  (b)  $\frac{214}{217}$  (c)  $\frac{1}{216}$  (d) None of these  
**102.** If four small squares are chased at random on a chese board, the probability that they should be  
the same letter is taken at random out of each of the words CHOICE and CHANCE. The probability that they should be  
the same letter is  $(a) \frac{13}{22002}$  (b)  $\frac{1}{2102}$  (c)  $\frac{12}{22002}$  (d)  $\frac{2}{7}$   
**103.** A letter is taken at random out of each of the words CHOICE and CHANCE. The probability

|    | (a) $\frac{241}{1456}$                       | (b) $\frac{164}{4165}$                                          | (c) $\frac{451}{884}$                             | (d) None of these                                      |
|----|----------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|
|    |                                              | 4105                                                            | 004                                               |                                                        |
| 9. |                                              |                                                                 |                                                   | rked 1, 2, 3, 4, 5. One arrangeme                      |
|    | corresponding to i                           | its number, is                                                  | -                                                 | e of the object occupies the pla                       |
| 0. | 4                                            |                                                                 |                                                   | (d) None of these<br>that they are sitting alternately |
|    | (a) $\frac{4}{35}$                           | (b) $\frac{1}{70}$                                              | (c) $\frac{2}{35}$                                | (d) $\frac{1}{35}$                                     |
| 1. | Let $x = 33^n$ . The in in the units place i |                                                                 | al value at random. The proba                     | bility that the value of <i>x</i> will hav             |
|    | (a) $\frac{1}{4}$                            | (b) $\frac{1}{2}$                                               | (c) $\frac{1}{3}$                                 | (d) None of these                                      |
| 2. | There are 7 seats                            | 2                                                               | J                                                 | lity that the middle seat is alwa                      |
|    | (a) $\frac{9}{70}$                           | (b) $\frac{9}{35}$                                              | (c) $\frac{4}{35}$                                | (d) None of these                                      |
| 3. |                                              | s and 2 different pens are gi<br>he same boy does not receive b | iven to 3 boys so that each                       | gets equal number of things. T                         |
|    | (a) $\frac{5}{11}$                           | (b) $\frac{7}{11}$                                              | (c) $\frac{2}{3}$                                 | (d) $\frac{6}{11}$                                     |
| 4. | The probability th                           | at out of 10 persons, all born i                                | n April, at least two have the                    | same birthday is                                       |
|    | (a) $\frac{{}^{30}P_{10}}{(30)^{10}}$        | (b) $1 - \frac{{}^{30}C_{10}}{30!}$                             | (c) $\frac{(30)^{10} - {}^{30}P_{10}}{(30)^{10}}$ | (d) None of these                                      |
| 5. |                                              | cards each, one after another<br>ards drawn are of the same sui | -                                                 | l pack of 52 cards. The probabil                       |
|    | (a) $\frac{44}{85 \times 49}$                | (b) $\frac{11}{85 \times 49}$                                   | (c) $\frac{13 \times 24}{17 \times 25 \times 49}$ | (d) None of these                                      |
| 5. |                                              | umbers are selected at random<br>bers is equal to the third is  | from the set $A = \{1, 2, 3,, 10\}$               | }. The probability that the prod                       |
|    | (a) $\frac{3}{4}$                            | (b) $\frac{1}{40}$                                              | (c) $\frac{1}{8}$                                 | (d) None of these                                      |
| 7. | A point is selected<br>the boundary of the   |                                                                 | a circle. The probability that t                  | he point is closer to the centre th                    |
|    | (a) $\frac{3}{4}$                            | (b) $\frac{1}{2}$                                               | (c) $\frac{1}{4}$                                 | (d) None of these                                      |
| 3. |                                              | either of them occurs is 1/3. T                                 |                                                   | B occur together is $1/6$ and $\frac{1}{2}$ of A is    |
|    | (a) 0 or 1                                   | (b) 1/2 or 1/3                                                  | (c) 1/2 or 1/4                                    | (d) 1/3 or 1/4                                         |
|    |                                              |                                                                 | Odd                                               | s in favour and Odds agains                            |

**119.** For an event, odds against is 6 : 5. The probability that event does not occur, is

|      | (a) $\frac{5}{6}$                                                         | (b) $\frac{6}{11}$                                        | (c) $\frac{5}{11}$                                                              | (d) $\frac{1}{6}$                             |
|------|---------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------|
| 120. | An event has odds in                                                      | favour 4 : 5, then the pro                                | obability that event occurs, is                                                 |                                               |
|      | (a) $\frac{1}{5}$                                                         | (b) $\frac{4}{5}$                                         | (c) $\frac{4}{9}$                                                               | (d) $\frac{5}{9}$                             |
| 121. | A card is drawn from<br>his winning this bet                              | a pack of 52 cards. A ga                                  | ambler bets that it is a spade or a                                             | n ace. What are the odds against              |
|      | (a) 17:52                                                                 | (b) 52:17                                                 | (c) 9:4                                                                         | (d) 4:9                                       |
| 122. |                                                                           |                                                           | 5 and odds against of another 6<br>ng of at least one of them is                | event are 5 : 6. If the events are            |
|      | (a) 50/77                                                                 | (b) 51/77                                                 | (c) 52/77                                                                       | (d) 53/77                                     |
| 123. | In a horse race the of<br>will win the race is                            | dds in favour of three ho                                 | rses are 1 : 2, 1 : 3 and 1 : 4. The                                            | probability that one of the horse             |
|      | (a) $\frac{37}{60}$                                                       | (b) $\frac{47}{60}$                                       | (c) $\frac{27}{60}$                                                             | (d) $\frac{17}{60}$                           |
|      |                                                                           |                                                           | Advance Level                                                                   |                                               |
| 124. | - 0                                                                       |                                                           | s old living till he is 70 and 4 to<br>f them will be alive next 30 years       |                                               |
|      | (a) 59/91                                                                 | (b) 44/91                                                 | (c) 51/91                                                                       | (d) 32/91                                     |
| 125. |                                                                           |                                                           | ce of one is $2/3$ of the other, then                                           |                                               |
| 126. | <ul><li>(a) 2:3</li><li>If a party of <i>n</i> persor other are</li></ul> | (b) 1 : 3<br>ns sit at a round table, th<br>[MP PET 2002] | (c) 3 : 1<br>nen the odds against two specifie                                  | (d) 3:2<br>d individuals sitting next to each |
|      | (a) $2:(n-3)$                                                             | (b) $(n-3): 2$                                            | (c) $(n-2): 2$                                                                  | (d) $2:(n-2)$                                 |
| 127. | _                                                                         | ng a question by three st<br>l only by one student is     | udents are 2 : 1, 5 : 2 and 5 : 3 re                                            | espectively, then probability that            |
|      | (a) 31/56                                                                 | (b) 24/56                                                 | (c) 25/56                                                                       | (d) None of these                             |
| 128. |                                                                           |                                                           | lds in favour of $A \cup B$ are 3 to 1.<br>ility of event <i>B</i> are given by | Consistent with this information              |
|      | (a) $\frac{1}{6} \le P(B) \le \frac{1}{3}$                                | (b) $\frac{1}{3} \le P(B) \le \frac{1}{2}$                | (c) $\frac{1}{12} \le P(B) \le \frac{3}{4}$                                     | (d) None of these                             |
| 129. |                                                                           |                                                           | are of the chance of a second eve<br>he chances of the events are               | ent but the odds against the first            |
|      | (a) $\frac{1}{9}, \frac{1}{3}$                                            | (b) $\frac{1}{16}, \frac{1}{4}$                           | (c) $\frac{1}{4}, \frac{1}{2}$                                                  | (d) None of these                             |
|      |                                                                           |                                                           | Addit                                                                           | ion Theorem on Probability (                  |
|      |                                                                           |                                                           | Basic Level                                                                     |                                               |
| 130. | If <i>A</i> and <i>B</i> are two mu<br>[MNR 1978; MP PET 19               | utually exclusive events,<br>91. 1992]                    | then $P(A+B) =$                                                                 |                                               |
|      | (a) $P(A) + P(B) - P(AB)$                                                 |                                                           | (c) $P(A) + P(B)$                                                               | (d) $P(A) + P(B) + P(AB)$                     |
| 131. | If A and B are two ev                                                     | ents such that $P(A \cup B)$ +                            | $P(A \cap B) = \frac{7}{8}$ and $P(A) = 2P(B)$ , the                            | n $P(A) =$                                    |
|      |                                                                           |                                                           |                                                                                 |                                               |

| 50         | Trobability                                                        |                                                                     |                                        |                                 |
|------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|---------------------------------|
|            | (a) 7/12                                                           | (b) 7/24                                                            | (c) 5/12                               | (d) 17 / 24                     |
| 2.         | A bag contains 5 brown<br>same colour is                           | n and 4 white socks. A man pu                                       | lls out two socks. The pro             | bability that these are of the  |
|            |                                                                    |                                                                     | <u>.</u>                               | [UPSEAT 1999; MP PET 2000]      |
|            | (a) 5/108                                                          | (b) 18/108                                                          | (c) 30/108                             | (d) 48/108                      |
| 3.         | 1999]                                                              | eap year will have 53 Fridays or                                    | -                                      | [MP PET 2002; Roorkee           |
|            | (a) 2/7                                                            | (b) 3/7                                                             | (c) 4/7                                | (d) 1/7                         |
| 1.         | A box contains 10 good a<br>it is either good or has a             | articles and 6 with defects. One<br>a defect                        | article is chosen at random            | n. What is the probability that |
|            | (a) 24/64                                                          | (b) 40/64                                                           | (c) 49/64                              | (d) 64/64                       |
| 5.         | -                                                                  | currence of two events are resp<br>Then the probability that none o | -                                      | e probability that both occurs  |
|            | (a) 0.30                                                           | (b) 0.46                                                            | (c) 0.14                               | (d) None of these               |
| 5.         | A bag contains 30 balls<br>ball is multiple of 5 or 7              | numbered from 1 to 30, one ball<br>7 is                             | l is drawn randomly. The p             | robability that number on the   |
|            | (a) 1/2                                                            | (b) 1/3                                                             | (c) 2/3                                | (d) 1/4                         |
| 7.         | If $P(A) = P(B) = x$ and $P(A)$                                    | $A \cap B$ ) = $P(A' \cap B') = \frac{1}{3}$ , then $x =$           |                                        | [UPSEAT 2003]                   |
|            | (a) 1/2                                                            | (b) 1/3                                                             | (c) 1/4                                | (d) 1/6                         |
| 3.         | If the probability of <i>X</i> to <i>Y</i> fail in the examination | o fail in the examination is 0.3 a<br>n is                          | and that for <i>Y</i> is 0.2, then the | ne probability that either X or |
|            | (a) 0.5                                                            | (b) 0.44                                                            | (c) 0.6                                | (d) None of these               |
| 9.         | A card is drawn from a                                             | well shuffled pack of cards. The                                    | probability of getting a que           | een of club or king of heart is |
|            | (a) 1/52                                                           | (b) 1/26                                                            | (c) 1/18                               | (d) None of these               |
| <b>)</b> . | If A and B are two indep                                           | bendent events, then $P(A+B) =$                                     |                                        | [MP PET 1992]                   |
|            | (a) $P(A) + P(B) - P(A)P(B)$                                       | (b) $P(A) - P(B)$                                                   | (c) $P(A) + P(B)$                      | (d) $P(A) + P(B) + P(A)P(B)$    |
| ι.         | In two events $P(A \cup B) =$                                      | $5/6$ , $P(A^c) = 5/6$ , $P(B) = 2/3$ , the                         | en A and B are                         | [UPSEAT 2001]                   |
|            | (a) Independent                                                    | (b) Mutually exclusive                                              | (c) Mutually exhaustive                | (d) Dependent                   |
| 2.         | The probability that at probability $1/5$ , then $P(A)$            | least one of the events A and $A') + P(B')$ is                      | B occurs is $3/5$ . If A and           | -                               |
|            | (a) 2/5                                                            | (b) 4/5                                                             | (c) 6/5                                | (d) 7/5                         |
| 3.         | If A and B are arbitrary                                           | events, then                                                        |                                        | [DCE 2002]                      |
|            | (a) $P(A \cap B) \ge P(A) + P(B)$                                  | <b>(b)</b> $P(A \cup B) \le P(A) + P(B)$                            | (c) $P(A \cap B) = P(A) + P(B)$        | (d) None of these               |
| 4.         | If $P(A) = 2/3$ , $P(B) = 1/2$                                     | and $P(A \cup B) = 5/6$ then events.                                | A and B are                            | [Kerala (Engg.) 2002]           |
|            | (a) Mutually exclusive                                             |                                                                     | (b) Independent as well a              | s mutually exhaustive           |
|            | (c) Independent                                                    |                                                                     | (d) Dependent only on A                | -                               |
| 5.         |                                                                    | balls, 4 white balls and 3 red ba                                   |                                        | domwise, the probability that   |
|            | (a) 1/3                                                            | (b) 1/4                                                             | (c) 5/12                               | [EAMCET 2002]<br>(d) 2/3        |
| 6          |                                                                    | pack of cards. Find the probabil                                    |                                        |                                 |
| ٦.         |                                                                    | ruen of curao. This the probabil                                    | ing that the card will be a q          | accur of a near t               |
| 0.         | (a) $\frac{4}{3}$                                                  | (b) $\frac{16}{3}$                                                  | (c) $\frac{4}{13}$                     | (d) $\frac{5}{3}$               |

147. The chance of India winning toss is 3/4. If it wins the toss, then its chance of victory is 4/5 otherwise it is only 1/2. Then chance of India's victory is

|               | (a) 1/5                                                                                                                                                      | (b) 3/5                                              | (c) 3/40                                               | (d) 29/40                                                  |  |  |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|
| 148.          | Let A and B be even                                                                                                                                          | ts for which $P(A) = x$ , $P(B) = y$ , $A$           | $P(A \cap B) = z$ , then $P(\overline{A} \cap B)$ equa | ls [AMU 1999]                                              |  |  |  |  |  |
|               | (a) $(1-x)y$                                                                                                                                                 | (b) $1 - x + y$                                      | (c) <i>y</i> – <i>z</i>                                | (d) $1 - x + y - z$                                        |  |  |  |  |  |
| 149.          | A and B are two eve                                                                                                                                          | ents such that $P(A) = 0.4$ , $P(A + B)$             | P(AB) = 0.7 and $P(AB) = 0.2$ , then $P(AB) = 0.2$     | <i>B</i> ) =                                               |  |  |  |  |  |
|               | (a) 0.1                                                                                                                                                      | (b) 0.3                                              | (c) 0.5                                                | (d) None of these                                          |  |  |  |  |  |
| 1 <b>50.</b>  | A card is drawn at r                                                                                                                                         | andom from a pack of cards. Th                       | e probability of this card being                       | a red or a queen is                                        |  |  |  |  |  |
|               | (a) 1/13                                                                                                                                                     | (b) 1/26                                             | (c) 1/2                                                | (d) 7/13                                                   |  |  |  |  |  |
| 151.          | If $P(A) = 0.4, P(B) = x$ ,                                                                                                                                  | $P(A \cup B) = 0.7$ and the events A a               | nd B are mutually exclusive, th                        | en <i>x</i> =                                              |  |  |  |  |  |
|               | (a) 3/10                                                                                                                                                     | (b) 1/2                                              | (c) 2/5                                                | (d) 1/5                                                    |  |  |  |  |  |
| 52.           | One card is drawn r                                                                                                                                          | randomly from a pack of 52 card                      | s, then the probability that it is                     | s a king or spade is                                       |  |  |  |  |  |
|               |                                                                                                                                                              |                                                      |                                                        | T 2001, 1996; MP PET 1990, 94                              |  |  |  |  |  |
|               | (a) 1/26                                                                                                                                                     | (b) 3/26                                             | (c) 4/13                                               | (d) 3/13                                                   |  |  |  |  |  |
| 153.          | The chance of throw                                                                                                                                          | ving a total of 7 or 12 with 2 dice                  |                                                        | [Kurukshetra CEE 2002]                                     |  |  |  |  |  |
|               | (a) $\frac{2}{9}$                                                                                                                                            | (b) $\frac{5}{9}$                                    | (c) $\frac{5}{36}$                                     | (d) $\frac{7}{36}$                                         |  |  |  |  |  |
| 154.          | The probability of                                                                                                                                           | three mutually exclusive events                      | A, B and C are given by $2/3$ ,                        | 1/4 and $1/6$ respectively. The                            |  |  |  |  |  |
|               | statement                                                                                                                                                    | [MNR 1987]                                           | , , , , , , , , , , , , , , , , , , , ,                | , , , , , , , , , , , , , , , , , , , ,                    |  |  |  |  |  |
|               | (a) Is true                                                                                                                                                  | (b) False                                            | (c) Nothing can be said                                | (d) Could be either                                        |  |  |  |  |  |
| L <b>55</b> ۰ | If $A_1, A_2, \dots, A_n$ are a                                                                                                                              | any <i>n</i> events, then                            |                                                        |                                                            |  |  |  |  |  |
|               | (a) $P(A_1 \cup A_2 \cup \dots \cup A_n) = P(A_1) + P(A_2) + \dots + P(A_n)$<br>(b) $P(A_1 \cup A_2 \cup \dots \cup A_n) > P(A_1) + P(A_2) + \dots + P(A_n)$ |                                                      |                                                        |                                                            |  |  |  |  |  |
|               | (c) $P(A_1 \cup A_2 \cup \dots \cup A_n)$                                                                                                                    | $A_n \le P(A_1) + P(A_2) + \dots + P(A_n)$           | (d) None of these                                      |                                                            |  |  |  |  |  |
| 156           |                                                                                                                                                              | tudents 70 passed in Mathemat                        |                                                        | both The probability that a                                |  |  |  |  |  |
| 130.          |                                                                                                                                                              | random from the class, has pass                      |                                                        | both. The probability that a                               |  |  |  |  |  |
|               | (a) 13/25                                                                                                                                                    | (b) 3/25                                             | (c) 17/25                                              | (d) 8/25                                                   |  |  |  |  |  |
| 157.          | A speaks truth in 60 while describing sir                                                                                                                    | 0% cases and <i>B</i> speaks truth in angle event is | 70% cases. The probability tha                         | t they will say the same thing                             |  |  |  |  |  |
|               | (a) 0.56                                                                                                                                                     | (b) 0.54                                             | (c) 0.38                                               | (d) 0.94                                                   |  |  |  |  |  |
| <b>58.</b>    | The chances of thro                                                                                                                                          | wing a total of 3 or 5 or 11 with                    | two dice is                                            |                                                            |  |  |  |  |  |
|               | (a) 5/36                                                                                                                                                     | (b) 1/9                                              | (c) 2/9                                                | (d) 19/36                                                  |  |  |  |  |  |
| 159.          | In a box there are 2<br>of these being of sa                                                                                                                 | 2 red, 3 black and 4 white balls.<br>me colour is    | Out of these three balls are dr                        | awn together. The probability                              |  |  |  |  |  |
|               | (a) $\frac{1}{84}$                                                                                                                                           | (b) $\frac{1}{21}$                                   | (c) $\frac{5}{84}$                                     | (d) None of these                                          |  |  |  |  |  |
| 1 <b>60.</b>  | A card is drawn at diamond is                                                                                                                                | random from a well shuffled pa<br>[DSSE 1979]        | ack of 52 cards. The probabilit                        | y of getting a two of heart or                             |  |  |  |  |  |
|               | (a) $\frac{1}{26}$                                                                                                                                           | (b) $\frac{1}{52}$                                   | (c) $\frac{1}{13}$                                     | (d) None of these                                          |  |  |  |  |  |
| 61.           | A committee of five is serve together or not                                                                                                                 | is to be chosen from a group of 9<br>at all is       | people. The probability that a ce                      | rtain married couple will eithe                            |  |  |  |  |  |
|               | (a) $\frac{1}{2}$                                                                                                                                            | (b) $\frac{5}{9}$                                    | (c) $\frac{4}{9}$                                      | (d) $\frac{2}{3}$                                          |  |  |  |  |  |
|               | 2                                                                                                                                                            |                                                      |                                                        |                                                            |  |  |  |  |  |
| 162.          | 2                                                                                                                                                            | alternately, the first to show a h                   | nead being the winner. If A star                       | -                                                          |  |  |  |  |  |
| 1 <b>62.</b>  | A and B toss a coin                                                                                                                                          | alternately, the first to show a h                   | nead being the winner. If A star<br>(c) 1/3            | ts the game, the chance of his<br>[MP PET 1987]<br>(d) 2/3 |  |  |  |  |  |

|                      | (a) $P(A' \cap B) + P(A \cap B)$                                                                                                                      | $B') + P(A' \cap B')$                                                                                                                      | (b) $1 - P(A \cap B)$                                                                                |                                                          |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                      | (c) $P(A') + P(B') + P(A \cup A')$                                                                                                                    |                                                                                                                                            | (d) All of these                                                                                     |                                                          |
| 54.                  |                                                                                                                                                       |                                                                                                                                            |                                                                                                      | lities that they will solve it are 1/                    |
| -                    | =                                                                                                                                                     | probability that none can so                                                                                                               |                                                                                                      |                                                          |
|                      | (a) $\frac{2}{5}$                                                                                                                                     | (b) $\frac{3}{5}$                                                                                                                          | (c) $\frac{1}{3}$                                                                                    | (d) None of these                                        |
| 5.                   |                                                                                                                                                       |                                                                                                                                            | 2 3 1                                                                                                | spectively. The probability that o                       |
|                      | 11                                                                                                                                                    | will hit the target when the                                                                                                               |                                                                                                      |                                                          |
|                      | (a) $\frac{11}{24}$                                                                                                                                   | (b) $\frac{1}{12}$                                                                                                                         | (c) $\frac{1}{8}$                                                                                    | (d) None of these                                        |
| 6.                   | If A speaks truth in stating the same state                                                                                                           |                                                                                                                                            | ases, then the probability                                                                           | that they contradict each other                          |
|                      | -                                                                                                                                                     | 10                                                                                                                                         | 10                                                                                                   | [MP PET 1997, 200                                        |
|                      | (a) $\frac{7}{20}$                                                                                                                                    | (b) $\frac{13}{20}$                                                                                                                        | (c) $\frac{12}{20}$                                                                                  | (d) $\frac{2}{5}$                                        |
| 7.                   | -                                                                                                                                                     | t A and B will die within a ye<br>at the end of the year is                                                                                | ear are $p$ and $q$ respectively                                                                     | y, then the probability that only o                      |
|                      | (a) $p+q$                                                                                                                                             | (b) $p + q - 2qp$                                                                                                                          | (c) $p+q-pq$                                                                                         | (d) $p+q+pq$                                             |
| 8.                   |                                                                                                                                                       | hree boxes containing 3 whi<br>random. Then the probability                                                                                |                                                                                                      | d 2 black, 1 white and 3 black bal<br>pall will be drawn |
|                      | (a) 13/32                                                                                                                                             | (b) 1/4                                                                                                                                    | (c) 1/32                                                                                             | (d) 3/16<br>ses either in tests I and II or tests        |
|                      | and III. The probability<br>that the student is sum (a) $p = q = 1$                                                                                   |                                                                                                                                            | (b) $p = q = 1/2$                                                                                    | d 1/2 respectively. If the probabili                     |
|                      | (c) $p=1, q=0$                                                                                                                                        |                                                                                                                                            | (d) There are infin                                                                                  | nite values of <i>p</i> , <i>q</i>                       |
| 0.                   | A bag contains 3 whi<br>probability that the t                                                                                                        |                                                                                                                                            | One by one three balls are                                                                           | drawn without replacing them. T                          |
|                      | (a) $\frac{1}{2}$                                                                                                                                     | (b) $\frac{1}{2}$                                                                                                                          | (c) $\frac{2}{3}$                                                                                    | (d) $\frac{1}{4}$                                        |
| 1.                   | 2                                                                                                                                                     | 5                                                                                                                                          | 5                                                                                                    | 4<br>l the three try to solve the proble                 |
|                      | simultaneously, the p                                                                                                                                 | probability that exactly one o                                                                                                             | of them will solve it, is                                                                            |                                                          |
|                      | (a) $\frac{25}{168}$                                                                                                                                  | (b) $\frac{25}{56}$                                                                                                                        | (c) $\frac{20}{168}$                                                                                 | (d) $\frac{30}{168}$                                     |
|                      | The two events A and                                                                                                                                  | d <i>B</i> have probabilities 0.25 a<br>4. Then the probability that :                                                                     | and 0.50 respectively. The                                                                           | probability that both A and B occ                        |
| 2.                   | (2) 0 20                                                                                                                                              | (b) 0.25                                                                                                                                   | (c) 0.904                                                                                            | (d) None of these                                        |
| 2.                   | (a) 0.39                                                                                                                                              | apples and 7 oranges and r                                                                                                                 | another basket contains 4                                                                            | apples and 8 oranges. One fruit                          |
|                      | A basket contains 5 picked out from each                                                                                                              | basket. Find the probability                                                                                                               | = =                                                                                                  |                                                          |
| 3.                   | A basket contains 5<br>picked out from each<br>(a) 24/144                                                                                             | basket. Find the probability<br>(b) 56/144                                                                                                 | (c) 68/144                                                                                           | (d) 76/144                                               |
| 3.                   | A basket contains 5<br>picked out from each<br>(a) 24/144<br><i>A</i> , <i>B</i> , <i>C</i> are any three                                             | <ul><li>basket. Find the probability</li><li>(b) 56/144</li><li>events. If <i>P</i>(<i>S</i>) denotes the p</li></ul>                      | (c) 68/144<br>probability of <i>S</i> happening t                                                    | (d) $76/144$<br>then $P(A \cap (B \cup C)) =$            |
| 3.                   | A basket contains 5<br>picked out from each<br>(a) $24/144$<br>A, B, C are any three<br>(a) $P(A) + P(B) + P(C) -$                                    | basket. Find the probability<br>(b) $56/144$<br>events. If $P(S)$ denotes the p<br>$P(A \cap B) - P(A \cap C)$                             | (c) $68/144$<br>probability of <i>S</i> happening t<br>(b) $P(A) + P(B) + P(C)$                      | (d) $76/144$<br>then $P(A \cap (B \cup C)) =$            |
| 2.<br>3.<br>4.<br>5. | A basket contains 5<br>picked out from each<br>(a) $24/144$<br>A, B, C are any three<br>(a) $P(A) + P(B) + P(C) -$<br>(c) $P(A \cap B) + P(A \cap C)$ | basket. Find the probability<br>(b) $56/144$<br>events. If $P(S)$ denotes the p<br>$P(A \cap B) - P(A \cap C)$<br>) $- P(A \cap B \cap C)$ | (c) $68/144$<br>probability of <i>S</i> happening t<br>(b) $P(A) + P(B) + P(C)$<br>(d) None of these | (d) $76/144$<br>then $P(A \cap (B \cup C)) =$            |

| 176. | If A and B are any tw                  | vo events, then $P(\overline{A} \cap B) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [MP PET :                                    | 2001]  |
|------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------|
|      | (a) $P(\overline{A})P(\overline{B})$   | (b) $1 - P(A) - P(B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (c) $P(A) + P(B) - P(A \cap B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d) $P(B) - P(A \cap B)$                     |        |
| 177. | •                                      | o events, then the true relation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [ <b>IIT</b> :                               | 1988]  |
|      | (a) $P(A \cap B)$ is not le            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (b) $P(A \cap B)$ is not greated by $P(A \cap B)$ is not greated by $P(A \cap B)$ and $P(A \cap B)$ is not greated by $P(A \cap B)$ . |                                              |        |
|      | (c) $P(A \cap B) = P(A) + H$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (d) $P(A \cap B) = P(A) + P(B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |        |
| 78.  | -                                      | ck and 4 white balls. Two balls<br>second drawn ball is white, is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s are drawn one by one at ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ndom without replacement                     | . The  |
|      | (a) $\frac{4}{49}$                     | (b) $\frac{1}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) $\frac{4}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (d) $\frac{12}{49}$                          |        |
| 79.  | If $P(A) = 0.25$ , $P(B) = 0$ .        | .50 and $P(A \cap B) = 0.14$ , then $P(A \cap B) = 0.14$ . | $(A \cap \overline{B})$ is equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [Rajasthan PET :                             | 2001]  |
|      | (a) 0.61                               | (b) 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (c) 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (d) None of these                            |        |
| 80.  | Suppose that A, B, C                   | are events such that $P(A) = P(B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $P = P(C) = \frac{1}{4}, P(AB) = P(CB) = 0, P(CB) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $AC$ ) = $\frac{1}{8}$ , then $P(A+B)$ = [MP | PET 19 |
|      | (a) 0.125                              | (b) 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (c) 0.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (d) 0.5                                      |        |
| 81.  | For any two indepen                    | dent events $E_1$ and $E_2$ $P\{(E_1 \cup$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $E_2) \cap (\overline{E}_1 \cap \overline{E}_2)$ } is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [11]                                         | 1991]  |
|      | (a) $\leq \frac{1}{4}$                 | (b) > $\frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (c) $\geq \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) None of these                            |        |
| 82.  | Two cards are drawn<br>an ace of heart | n without replacement from a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | well-shuffled pack. Find the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | probability that one of the                  | em is  |
|      |                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [UPSEAT 2                                    | 2002]  |
|      | (a) $\frac{1}{25}$                     | (b) $\frac{1}{26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) $\frac{1}{52}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) None of these                            |        |
| 33.  | If $P(A \cup B) = 0.8$ and             | $P(A \cap B) = 0.3$ , then $P(\overline{A}) + P(\overline{B}) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [EAMCET 2                                    | 2003]  |
|      | (a) 0.3                                | (b) 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c) 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) 0.9                                      |        |
| 84.  | If A and B are two in                  | dependent events such that $P(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $A \cap B' = \frac{3}{25}$ and $P(A' \cap B) = \frac{8}{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , then $P(A) =$                              |        |
|      | (a) $\frac{1}{5}$                      | (b) $\frac{3}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) $\frac{2}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (d) $\frac{4}{5}$                            |        |
| 85.  | If A and B are two in                  | dependent events such that $P(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A) = 0.40, $P(B) = 0.50$ , then P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (neither A nor B) is equ                     | ial to |
|      | (a) 0.90                               | (b) 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (c) 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) 0.3                                      |        |
|      |                                        | Advar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nce Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |        |
| 86.  | The probability of In                  | dia winning a test match agair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nst West Indies is $\frac{1}{2}$ . Assum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ng independence from mat                     | ch to  |
|      | -                                      | ty that in a 5 match series India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a's second win occurs at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hird test is                                 |        |
|      | (a) $\frac{2}{3}$                      | (b) $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) $\frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (d) $\frac{1}{8}$                            |        |
| 87.  |                                        | ite and 2 red balls. A ball is di<br>of second ball to be red is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rawn and another ball is dra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | wn without replacing first                   | ball,  |
|      | (a) $\frac{8}{25}$                     | (b) $\frac{2}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) $\frac{3}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (d) $\frac{21}{25}$                          |        |
| 88.  | The probability of s                   | olving a question by three stu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | idents are $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}$ respectiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vely. Probability of questi                  | on is  |
|      | being solved will be                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |        |
|      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |        |

(a)  $\frac{33}{48}$  (b)  $\frac{35}{48}$  (c)  $\frac{31}{48}$  (d)  $\frac{37}{48}$ 

**189.** Three groups of children contain respectively 3 girls and 1 boy, 2 girls and 2 boys, one girl and 3 boys. One child is selected at random from each group. The chance that three selected consisting of 1 girl and 2 boys, is]

(a)  $\frac{9}{32}$  (b)  $\frac{3}{32}$  (c)  $\frac{13}{32}$  (d) None of these

**190.** *A*, *B*, *C* are three events for which P(A) = 0.6, P(B) = 0.4, P(C) = 0.5,  $P(A \cup B) = 0.8$ ,  $P(A \cap C) = 0.3$  and  $P(A \cap B \cap C) = 0.2$ . If  $P(A \cup B \cup C) \ge 0.85$  then the interval of values of  $P(B \cap C)$  is

- (a) [0.2, 0.35](b) [0.55, 0.7](c) [0.2, 0.55](d) None of these
- **191.** A student has to match three historical events-Dandi March, Quit India Movement and Mahatma Gandhi's assassination with the years 1948, 1930 and 1942. The student has no knowledge of the correct answers and decides to match the events and years randomly. Let  $E_i(0 \le i \le 3)$  denote the event that the student gets exactly *i* correct answers. Then

(a) 
$$P(E_0) + P(E_3) = P(E_1)$$
 (b)  $P(E_0)P(E_1) = P(E_3)$  (c)  $P(E_0 \cap E_1) = P(E_2)$  (d)  $P(E_0) + P(E_1) + P(E_3) = 1$ 

**192.** Given that *A*, *B* and *C* are events such that P(A) = P(B) = P(C) = 1/5,  $P(A \cap B) = P(B \cap C) = 0$  and  $P(A \cap C) = 1/10$ .

The probability that at least one of the events A, B or C occurs is

- (a)  $\frac{1}{2}$  (b)  $\frac{1}{3}$  (c)  $\frac{1}{4}$  (d) 1
- **193.** Suppose that a die (with faces marked 1 to 6) is loaded in such a manner that for K = 1, 2, 3, ..., 6, the probability of the face marked K turning up when die is tossed is proportional to K. The probability of the event that the outcome of a toss of the die will be an even number is equal to
  - (a)  $\frac{1}{2}$  (b)  $\frac{4}{7}$  (c)  $\frac{2}{5}$  (d)  $\frac{1}{21}$
- **194.** An unbiased die is tossed until a number greater than 4 appears. The probability that an even number of tosses is needed is

[IIT Screening 1994]

**195.** For the three events A, B and C; P(exactly one of the events A or B occurs) = P(exactly one of the events B or <math>C occurs) = P(exactly one of the events C or A occurs) = p and P (all the three events occur simultaneously) =  $p^2$ , where 0 . Then the probability of at least one of the three events A, B and C occurring is [IIT 1996]

- (a)  $\frac{3p+2p^2}{2}$  (b)  $\frac{p+3p^2}{4}$  (c)  $\frac{p+3p^2}{2}$  (d)  $\frac{3p+2p^2}{4}$
- **196.** A man alternately tosses a coin and throws a dice beginning with the coin. The probability that he gets a head in the coin before he gets a 5 or 6 in the dice is
  - (a)  $\frac{3}{4}$  (b)  $\frac{1}{2}$  (c)  $\frac{1}{3}$  (d) None of these

**Conditional Probability** 

Basic Level

[UPSEAT 1999]

**197.** Two cards are drawn successively with replacement from a pack of 52 cards. The probability of drawing two aces is

[MNR 1988; UPSEAT 2000]

- (a)  $\frac{1}{169}$  (b)  $\frac{1}{221}$  (c)  $\frac{1}{2652}$  (d)  $\frac{4}{663}$
- **198.** A pack of cards contains 4 aces, 4 kings, 4 queens and 4 jacks. Two cards are drawn at random. The probability that at least one of these in an ace, is

(a) 
$$\frac{9}{20}$$
 (b)  $\frac{3}{16}$  (c)  $\frac{1}{6}$  (d)  $\frac{1}{9}$ 

**199.** From a pack of 52 cards, two cards are drawn one by one without replacement. The probability that first drawn card is king and second is queen, is

(a) 
$$\frac{2}{13}$$
 (b)  $\frac{8}{663}$   
(c)  $\frac{4}{663}$  (d)  $\frac{103}{663}$ 

| 200. | _                                                                   | ls two cards are drawn in succ<br><b>OR</b> the probability that both ar<br>• <b>PET 1994]</b> |                                            | replacement. The probability                        |
|------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|
|      | (a) 2/13                                                            | (b) 1/51                                                                                       | (c) 1/221                                  | (d) 2/21                                            |
| 201. | -                                                                   | tics is given to three students<br>1/4. Probability that the probl<br>EEE 2002]                |                                            | ve probability of solving the                       |
|      | (a) 3/4                                                             | (b) 1/2                                                                                        | (c) 2/3                                    | (d) 1/3                                             |
| 202. | A coin is tossed and a d                                            | ice is rolled. The probability th                                                              | at the coin shows the head a               | nd the dice shows 6 is                              |
|      | (a) 1/8                                                             | (b) 1/12                                                                                       | (c) 1/2                                    | (d) 1                                               |
| 203. | A coin is tossed until a l                                          | head appears or until the coin l<br>he probability that the coin will                          |                                            |                                                     |
|      | (a) $\frac{1}{2}$                                                   | (b) $\frac{3}{5}$                                                                              | (c) $\frac{1}{4}$                          | (d) $\frac{1}{3}$                                   |
| 04.  | A bag contains 5 white,<br>the probability that all a               | 7 red and 8 black balls. If four<br>are white                                                  | balls are drawn one by one                 | without replacement, what is                        |
|      | (a) $\frac{1}{969}$                                                 | (b) $\frac{1}{380}$                                                                            | (c) $\frac{5}{20}$                         | (d) None of these                                   |
| 205. | -                                                                   | ts numbered from 1 to 19. A t<br>bility that both the tickets will                             |                                            | other ticket is drawn without                       |
|      | (a) $\frac{9}{19}$                                                  | (b) $\frac{8}{18}$                                                                             | (c) $\frac{9}{18}$                         | (d) $\frac{4}{19}$                                  |
| 206. | For two events A and B,                                             | if $P(A) = P\left(\frac{A}{B}\right) = \frac{1}{4}$ and $P\left(\frac{B}{A}\right) =$          | $\frac{1}{2}$ , then                       |                                                     |
|      | (a) A and B are indepen                                             | ident (b)                                                                                      | $P\left(\frac{A'}{B}\right) = \frac{3}{4}$ | (c) $P\left(\frac{B'}{A'}\right) = \frac{1}{2}$ (d) |
| 207. | If $P(A) = \frac{1}{2}$ , $P(B) = \frac{1}{3}$ and                  | $P(A \cap B) = \frac{1}{4}$ , then $P\left(\frac{B}{A}\right) =$                               |                                            |                                                     |
|      | (a) 1                                                               | (b) O                                                                                          | (c) 1/2                                    | (d) 1/3                                             |
| 208. | From a pack of 52 card second is a king is                          | s two are drawn with replace                                                                   | ment. The probability that t               |                                                     |
|      |                                                                     |                                                                                                |                                            | [MNR 1979]                                          |
|      | (a) 1/26                                                            | (b) 17/2704                                                                                    | (c) 1/52                                   | (d) None of these                                   |
| 209. |                                                                     | teacher will give an unannour<br>probability that the student wil                              |                                            | neeting is 1/5. If a student is                     |
|      | (a) 1/5                                                             | (b) 2/5                                                                                        | (c) 7/5                                    | (d) 9/25                                            |
| 210. | If <i>E</i> and <i>F</i> are independed                             | ent events such that $0 < P(E) < 1$                                                            | and $0 < P(F) < 1$ , then                  | [IIT 1989]                                          |
|      | (a) <i>E</i> and <i>F</i> <sup>c</sup> (the compl independent       | ement of the event <i>F</i> ) are indep                                                        | pendent                                    | (b) $E^c$ and $F^c$ are                             |
|      | (c) $P\left(\frac{E}{F}\right) + P\left(\frac{E^c}{F^c}\right) = 1$ |                                                                                                | (d) All of these                           |                                                     |
| 211. | The probability of gettin<br>[MNR 1983; Kurukshetra                 | ng at least one tail in 4 throws (<br>CEE 1998]                                                | of a coin is                               |                                                     |
|      | (a) 15/16                                                           | (b) 1/16                                                                                       | (c) 1/4                                    | (d) None of these                                   |
| 212. | If any four numbers are 7 is                                        | selected and they are multiplie                                                                | ed, then the probability that              | the last digit will be 1, 3, 5 or                   |
|      |                                                                     | (b) 10/62-                                                                                     | (a) 16/02-                                 | [Rajasthan PET 2002]                                |
|      | (a) 4/625                                                           | (b) 18/625                                                                                     | (c) 16/625                                 | (d) None of these                                   |

| 13.        | -                                                    | white balls and 2 black bal<br>bag, then the probability th |                                                                            | balls and 5 black balls. If one ball                                                 |
|------------|------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 14.        | -                                                    | -                                                           |                                                                            | (d) None of these bit appearing is $p$ and the errors $f$                            |
|            | (a) $p/16$                                           | ndependent of one another<br>(b) $p^{16}$                   | The probability of forming an (c) ${}^{16}C_1p^{16}$                       | (d) $1 - (1-p)^{16}$                                                                 |
| 15.        | The probabilities                                    | of winning the race by tw                                   | To athletes A and B are $\frac{1}{5}$ and                                  | d $\frac{1}{4}$ . The probability of winning b                                       |
|            | neither of them, is                                  |                                                             | 5                                                                          | 7                                                                                    |
|            | (a) $\frac{3}{5}$                                    | (b) $\frac{3}{4}$                                           | (c) $\frac{2}{3}$                                                          | (d) $\frac{4}{5}$                                                                    |
| 16.        | Seven chits are nu<br>number on any sel              |                                                             | rawn one by one with replace                                               | ments. The probability that the lea                                                  |
|            | (a) $1 - \left(\frac{2}{7}\right)^4$                 | (b) $4\left(\frac{2}{7}\right)^4$                           | (c) $\left(\frac{3}{7}\right)^3$                                           | (d) None of these                                                                    |
| 17.        |                                                      |                                                             |                                                                            | en at random. It is given that th<br>iinimum number on them is 5 wit                 |
|            | (a) $\frac{1}{8}$                                    | (b) $\frac{13}{15}$                                         | (c) $\frac{1}{9}$                                                          | (d) None of these                                                                    |
| <b>18.</b> |                                                      |                                                             | —                                                                          | and the other 10 have the letter '<br>me order, the probability of makir             |
|            | (a) $\frac{4}{27}$                                   | (b) $\frac{5}{38}$                                          | (c) $\frac{1}{8}$                                                          | (d) $\frac{9}{80}$                                                                   |
| 9.         | Let $A = \{2,3,4,\ldots,20\}$<br>probability that it |                                                             | random from the set A and it                                               | is found to be a prime number. The                                                   |
|            | (a) $\frac{9}{10}$                                   | (b) $\frac{1}{10}$                                          | (c) $\frac{1}{5}$                                                          | (d) $\frac{1}{2}$                                                                    |
| 20.        |                                                      |                                                             |                                                                            | umber a man will laugh if product or obability that he will laugh at lea             |
|            | (a) $1 - \left(\frac{3}{5}\right)^3$                 | (b) $\left(\frac{43}{45}\right)^3$                          | (c) $1 - \left(\frac{4}{25}\right)^3$                                      | (d) $1 - \left(\frac{43}{45}\right)^3$                                               |
| 21.        | woman watches th                                     | ne show is 0.5. The probab<br>ty that a wife watches the    |                                                                            | and the probability that a marrie<br>now, given that his wife does, is 0.<br>does is |
|            | (a) $\frac{7}{8}$                                    | (b) $\frac{3}{5}$                                           | (c) $\frac{2}{7}$                                                          | (d) 1                                                                                |
| 22.        | A pair of fair dice<br>before 7 is                   | is rolled together till a su<br>[IIT 1989]                  | um of either 5 or 7 is obtained                                            | l. Then the probability that 5 com                                                   |
|            | (a) $\frac{1}{5}$                                    | (b) $\frac{2}{5}$                                           | (c) $\frac{4}{5}$                                                          | (d) None of these                                                                    |
| 3.         | -                                                    | ed and 5 black balls and a<br>pability that one is red and  | -                                                                          | d 4 black balls. A ball is drawn fro                                                 |
|            | (a) $\frac{3}{20}$                                   | (b) $\frac{21}{40}$                                         | (c) $\frac{3}{8}$                                                          | (d) All of these                                                                     |
| 24.        |                                                      |                                                             | a pair of dice. The first person<br>probability that <i>B</i> wins the gam | n to through 9 from both dice will h<br>e is                                         |
|            | (a) $\frac{9}{17}$                                   | (b) $\frac{8}{17}$                                          | (c) $\frac{8}{9}$                                                          | (d) $\frac{1}{9}$                                                                    |
|            |                                                      |                                                             |                                                                            |                                                                                      |
|            |                                                      |                                                             | Advance Level                                                              |                                                                                      |

| 225. |                                                                                                                                                   | e at the fi                                        | irst, secor                                                                                   |                                                        |                                                                |                                               |                                                                                                     | away from it. The probability of<br>l 0.1 respectively. The probability                                                                  |                  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|      | -                                                                                                                                                 | , the pian                                         |                                                                                               |                                                        |                                                                |                                               | - 10                                                                                                |                                                                                                                                          |                  |
|      | (a) 0.25                                                                                                                                          |                                                    | (b) 0.21                                                                                      |                                                        |                                                                |                                               | 0.16                                                                                                | (d) 0.6976                                                                                                                               |                  |
| 226. | If A and B are tw                                                                                                                                 | vo events                                          |                                                                                               |                                                        | = P(A' / B')                                                   | = p and                                       | P(B) = 0.05, then va                                                                                | alue of p so that $P(B/A) = 0.5$ is                                                                                                      |                  |
|      | (a) 0.75                                                                                                                                          |                                                    | (b) 0.85                                                                                      |                                                        |                                                                |                                               | 0.95                                                                                                | (d) 1                                                                                                                                    |                  |
| 227. | bag at random. L<br>"the third digit is                                                                                                           | Let A, B an<br>s O". then                          | nd C denot<br>1 A, B and (                                                                    | te the foll<br>C are                                   | lowing eve                                                     | ents: A –                                     | "the first digit is 0'                                                                              | bag. One ticket is drawn from the<br>" <i>B</i> - "the second digit is 0" and <i>C</i> -                                                 |                  |
| 228. | (a) Independent<br>A die is rolled tl                                                                                                             |                                                    |                                                                                               | ually excl<br>denote f                                 |                                                                |                                               | -                                                                                                   | lusive(d) Not independent<br>r than the previous number each                                                                             | L                |
|      | time and $E_2$ dem                                                                                                                                | iote the e                                         | event that                                                                                    | the num                                                | bers form                                                      | ı an incr                                     | easing A.P., then                                                                                   |                                                                                                                                          |                  |
|      | (a) $P(E_2) \le P(E_1)$                                                                                                                           | )                                                  | (b) <i>P</i> ( <i>E</i> <sub>2</sub>                                                          | $\cap E_1) = 1/$                                       | '36                                                            | (c)                                           | $P(E_2 \mid E_1) = 3/10$                                                                            | (d) $P(E_1) = (10/3)P(E_2)$                                                                                                              |                  |
| 229. | A reputed coac                                                                                                                                    | ching en                                           | _                                                                                             | -                                                      |                                                                | he staff                                      | . Their respective                                                                                  | e probabilities of remaining in                                                                                                          |                  |
|      | employment for                                                                                                                                    | three y                                            | ears are                                                                                      | $\frac{2}{10}, \frac{3}{10}, \frac{4}{10}$             | $(,\frac{5}{10},\frac{6}{10},\frac{7}{10})$                    | $\frac{1}{0}, \frac{8}{10}, \frac{9}{10}$     | . The probability                                                                                   | that after 3 years at least six of                                                                                                       |                  |
|      | these still work                                                                                                                                  | in the co                                          | -                                                                                             |                                                        |                                                                |                                               |                                                                                                     |                                                                                                                                          |                  |
|      | (a) 0.15                                                                                                                                          |                                                    | (b) 0.19                                                                                      |                                                        |                                                                |                                               | 0.3                                                                                                 | (d) None of these                                                                                                                        |                  |
| 230. |                                                                                                                                                   | -                                                  |                                                                                               |                                                        |                                                                |                                               | ip are given below                                                                                  |                                                                                                                                          |                  |
|      | Face:                                                                                                                                             | 1                                                  | 2                                                                                             | 3                                                      | 4                                                              | 5                                             | 6                                                                                                   |                                                                                                                                          |                  |
|      | Probability:                                                                                                                                      | .1<br>d and you                                    | .32                                                                                           | .21                                                    | .15<br>er face 1 c                                             | .05                                           | .17<br>turned up. Then th                                                                           | a mahahility that it is face 1 is [T                                                                                                     | ۰ <b>۳ 1</b> 001 |
|      | (a) $5/21$                                                                                                                                        | l and you                                          | (b) 5/22                                                                                      |                                                        | er face i o                                                    |                                               | 4/21                                                                                                | e probability that it is face 1, is[II<br>(d) None of these                                                                              | 1 1981           |
| 221  |                                                                                                                                                   | occed an                                           |                                                                                               |                                                        | obabilitie                                                     |                                               |                                                                                                     | up are given below                                                                                                                       |                  |
| 231. | Face:                                                                                                                                             | 1                                                  | 2 2                                                                                           | 3                                                      | 4                                                              | 5 101 vai                                     | 6                                                                                                   | up are given below                                                                                                                       |                  |
|      | Probability:                                                                                                                                      | .1                                                 | .24                                                                                           | .19                                                    | .18                                                            | .15                                           | .14                                                                                                 |                                                                                                                                          |                  |
|      | 5                                                                                                                                                 |                                                    |                                                                                               |                                                        |                                                                |                                               | face 2 or face 4, is                                                                                | [MNR 1992]                                                                                                                               | l                |
|      | (a) 0.25                                                                                                                                          |                                                    | (b) 0.42                                                                                      | -                                                      | -                                                              |                                               | 0.75                                                                                                | (d) 0.9                                                                                                                                  |                  |
| 232. | A bag X contains                                                                                                                                  | s 2 white                                          | e and 3 b                                                                                     | lack balls                                             | and ano                                                        | ther bag                                      | , Y contains 4 whi                                                                                  | te and 2 black balls. One bag is                                                                                                         | ,                |
|      | selected at rand                                                                                                                                  | om and a                                           | ı ball is dr                                                                                  | awn fror                                               | n it. Then                                                     | the pro                                       | bability for the bal                                                                                | ll chosen to be white is                                                                                                                 |                  |
|      | (a) 2/15                                                                                                                                          |                                                    | (b) 7/15                                                                                      |                                                        |                                                                |                                               | 8/15                                                                                                | (d) 14/15                                                                                                                                |                  |
| 233. |                                                                                                                                                   |                                                    | -                                                                                             | -                                                      |                                                                |                                               |                                                                                                     | fles the pack. He continues this                                                                                                         |                  |
|      | -                                                                                                                                                 | ne gets a                                          | -                                                                                             | -                                                      | probabil                                                       | -                                             | he will fail the firs                                                                               |                                                                                                                                          |                  |
|      | (a) 9/16                                                                                                                                          |                                                    | (b) 1/16                                                                                      |                                                        |                                                                | (c)                                           | 9/64                                                                                                | (d) None of these                                                                                                                        | -                |
| 234. | For any two ever                                                                                                                                  |                                                    |                                                                                               |                                                        |                                                                |                                               |                                                                                                     | [IIT 1991]                                                                                                                               |                  |
|      | (a) $P\left(\frac{A}{B}\right) \ge \frac{P(A)}{B}$                                                                                                | $\frac{+P(B)-1}{P(B)}$                             | $, P(B) \neq 0$ i                                                                             | s always                                               | true                                                           | (b)                                           | $P(A \cap B) = P(A) - P(A)$                                                                         | $(A \cap B)$ does not hold                                                                                                               |                  |
|      | (c) $P(A \cup B) = 1 - 1$                                                                                                                         | $-P(\overline{A})P(\overline{B})$                  | ), if A and                                                                                   | <i>B</i> are di                                        | sjoint                                                         | (d)                                           | None of these                                                                                       |                                                                                                                                          |                  |
| 235. | Three groups A.                                                                                                                                   |                                                    |                                                                                               | c                                                      | citions of                                                     | a the Bo                                      | ard of Directors of                                                                                 | f a company. The probabilities of                                                                                                        |                  |
|      | o- o,                                                                                                                                             | B, C are                                           | e competil                                                                                    | ng for po                                              | SILIOIIS OI                                                    | i the bo                                      |                                                                                                     |                                                                                                                                          | •                |
|      |                                                                                                                                                   |                                                    | -                                                                                             |                                                        |                                                                |                                               |                                                                                                     | y of introducing a new product is                                                                                                        |                  |
|      | their winning ar                                                                                                                                  | re 0.5, 0.                                         | 3, 0.2 res                                                                                    | pectively                                              | . If the gr                                                    | roup A w                                      | vins, the probabilit                                                                                | y of introducing a new product is<br>bectively. The probability that the                                                                 | ;                |
|      | their winning ar                                                                                                                                  | re 0.5, 0.<br>respondin                            | .3, 0.2 resj<br>ng probabi                                                                    | pectively<br>ilities for                               | . If the gr                                                    | roup A w                                      | vins, the probabilit                                                                                |                                                                                                                                          | ;                |
|      | their winning ar<br>0.7 and the corr<br>new product wil<br>(a) 0.18                                                                               | re 0.5, 0.<br>respondin<br>ll be intro             | 3, 0.2 resp<br>ng probabi<br>oduced, is<br>(b) 0.35                                           | pectively<br>ilities for                               | . If the gr<br>group <i>B</i>                                  | roup A w<br>and C ar<br>(c)                   | vins, the probabilit<br>re 0.6 and 0.5 resp<br><b>[Roorkee 1994]</b><br>0.10                        | (d) 0.63                                                                                                                                 | ;                |
| 236. | their winning ar<br>0.7 and the corr<br>new product wil<br>(a) 0.18                                                                               | re 0.5, 0.<br>respondin<br>ll be intro             | 3, 0.2 resp<br>ng probabi<br>oduced, is<br>(b) 0.35                                           | pectively<br>ilities for                               | . If the gr<br>group <i>B</i>                                  | roup A w<br>and C ar<br>(c)                   | vins, the probabilit<br>re 0.6 and 0.5 resp<br>[Roorkee 1994]                                       | (d) 0.63                                                                                                                                 | ;                |
| 236. | their winning ar<br>0.7 and the corr<br>new product wil<br>(a) 0.18                                                                               | re 0.5, 0.<br>respondin<br>ll be intro<br>the comp | 3, 0.2 resp<br>ng probabi<br>oduced, is<br>(b) 0.35<br>plementar                              | pectively<br>ilities for<br>y events                   | . If the gr<br>group <i>B</i><br>of events                     | roup A w<br>and C an<br>(c)<br>E and F        | vins, the probabilit<br>re 0.6 and 0.5 resp<br><b>[Roorkee 1994]</b><br>0.10<br>respectively and if | (d) 0.63                                                                                                                                 | ;                |
|      | their winning ar<br>0.7 and the corr<br>new product wil<br>(a) 0.18<br>If $\overline{E}$ and $\overline{F}$ are<br>(a) $P(E/F) + P(\overline{E})$ | the comp<br>F(F) = 1                               | 3, 0.2 resp<br>ng probabi<br>oduced, is<br>(b) 0.35<br>plementar<br>(b) <i>P</i> ( <i>E</i> / | pectively<br>ilities for<br>by events<br>F(F) + P(E/F) | If the gr<br>group <i>B</i><br>of events<br>$\overline{F} = 1$ | roup A w<br>and C an<br>(c)<br>E and F<br>(c) | vins, the probabilit<br>re 0.6 and 0.5 resp<br><b>[Roorkee 1994]</b><br>0.10<br>respectively and if | bectively. The probability that the<br>(d) 0.63<br>f $0 < P(F) < 1$ , then<br>(d) $P(E/\overline{F}) + P(\overline{E}/\overline{F}) = 1$ | ;                |

 $S_1: A$  and  $B \cup C$  are independent;  $S_2: A$  and  $B \cap C$  are independent

|                   | Then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [IIT Screening 199                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | (a) Both $S_1$ and $S_2$ are t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rue (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Only $S_1$ is true                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c) Only $S_2$ is true (                                                                                                                                                                                                                                                                                                                                                         |
| 8.                | and brown eyes. If a per<br>brown eyes, is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of the people have brown hair<br>son selected at random from th<br>[MNR 1988]                                                                                                                                                                                                                                                                                                                                                                                                               | ne town, has brown hair, th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e probability that he also h                                                                                                                                                                                                                                                                                                                                                     |
| _                 | (a) 1/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (b) 3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (c) 1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) 2/3                                                                                                                                                                                                                                                                                                                                                                          |
| 9.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and $P(A \cup B) = P(A) + P(B) - P(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [IIT 199                                                                                                                                                                                                                                                                                                                                                                         |
|                   | (a) $P(B / A) = P(B) - P(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>(b)</b> $P(A^c \cup B^c) = P(A^c) + (B^c)$                                                                                                                                                                                                                                                                                                                                                                                                                                               | (c) $P(A \cup B)^c = P(A^c)P(B^c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) $P(A / B) = P(A)$                                                                                                                                                                                                                                                                                                                                                            |
| 0.                | and B take part in a serie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A and B play a game 12 times<br>es of 3 games. The probability t                                                                                                                                                                                                                                                                                                                                                                                                                            | hat they will win alternatel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | (a) $\frac{5}{72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) $\frac{5}{36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) $\frac{19}{27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (d) None of these                                                                                                                                                                                                                                                                                                                                                                |
| 1.                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | after the other. The probability                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | st is smaller than the numb                                                                                                                                                                                                                                                                                                                                                      |
|                   | (a) 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (b) 7/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c) 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) 5/12                                                                                                                                                                                                                                                                                                                                                                         |
| 2.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>B</i> have equal number of daug<br>aughters of <i>A</i> and <i>B</i> . The pro<br>s each of them have is<br>(b) 5                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                  |
| з.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oins. It is known that <i>n</i> of thes                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                  |
| .ر                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | coin is picked up at random fi                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | results in a head is 31/42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the bug and tobbed. If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the probability that the t                                                                                                                                                                                                                                                                                                                                                       |
|                   | (a) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (c) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d) 25                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.                | The letters of the word F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ROBABILITY are written down                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | at random in a row. Let $E_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | denote the event that two                                                                                                                                                                                                                                                                                                                                                        |
| 4.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ROBABILITY are written down ote the event that two <i>B</i> 's are t                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | denote the event that two                                                                                                                                                                                                                                                                                                                                                        |
| 4.                | are together and $E_2$ den                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ote the event that two B's are t                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ogether, then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ote the event that two B's are t                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.                | are together and $E_2$ den                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ote the event that two B's are t                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (c) $P(E_1 \cup E_2) = 18/55$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) $P(E_2 / E_1) = 1/5$                                                                                                                                                                                                                                                                                                                                                         |
| 4.                | are together and $E_2$ den                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ote the event that two B's are t                                                                                                                                                                                                                                                                                                                                                                                                                                                            | together, then<br>(c) $P(E_1 \cup E_2) = 18/55$<br><b>Baye's ru</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (d) $P(E_2 / E_1) = 1/5$                                                                                                                                                                                                                                                                                                                                                         |
|                   | are together and $E_2$ den<br>(a) $P(E_1) = P(E_2)$<br>In an entrance test ther<br>which one is correct. The<br>correct answer to a question of the second secon | ote the event that two <i>B</i> 's are t<br>(b) $P(E_1 \cap E_2) = 2/55$<br>Basic Le<br>re are multiple choice question<br>the probability that a student b<br>tion, then the probability that b                                                                                                                                                                                                                                                                                            | together, then<br>(c) $P(E_1 \cup E_2) = 18/55$<br><b>Baye's ru</b><br><b>evel</b><br>as. There are four possible<br>knows the answer to a que<br>he was guessing, is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d) $P(E_2/E_1) = 1/5$<br>le and Total probability<br>answers to each question<br>estion is 90%. If he gets t                                                                                                                                                                                                                                                                    |
|                   | are together and $E_2$ den<br>(a) $P(E_1) = P(E_2)$<br>In an entrance test ther<br>which one is correct. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ote the event that two <i>B</i> 's are t<br>(b) $P(E_1 \cap E_2) = 2/55$<br>Basic Le<br>re are multiple choice question<br>the probability that a student b                                                                                                                                                                                                                                                                                                                                 | together, then<br>(c) $P(E_1 \cup E_2) = 18/55$<br><b>Baye's ru</b><br><b>evel</b><br>as. There are four possible<br>knows the answer to a que                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (d) $P(E_2 / E_1) = 1/5$<br><i>le and Total probability</i><br>answers to each question                                                                                                                                                                                                                                                                                          |
| 5.                | are together and $E_2$ den<br>(a) $P(E_1) = P(E_2)$<br>In an entrance test ther<br>which one is correct. The<br>correct answer to a question<br>(a) $\frac{37}{40}$<br>Three urns contain 6 references                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ote the event that two <i>B</i> 's are t<br>(b) $P(E_1 \cap E_2) = 2/55$<br>Basic Le<br>re are multiple choice question<br>the probability that a student b<br>tion, then the probability that b                                                                                                                                                                                                                                                                                            | together, then<br>(c) $P(E_1 \cup E_2) = 18/55$<br><b>Baye's ru</b><br><b>evel</b><br>as. There are four possible<br>knows the answer to a que<br>he was guessing, is<br>(c) $\frac{36}{37}$<br>d 5 red, 5 black balls resp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (d) $P(E_2/E_1) = 1/5$<br><i>le and Total probability</i><br>answers to each question<br>estion is 90%. If he gets t<br>(d) $\frac{1}{9}$<br>pectively. One of the urns                                                                                                                                                                                                          |
| 5.                | are together and $E_2$ den<br>(a) $P(E_1) = P(E_2)$<br>In an entrance test ther<br>which one is correct. The<br>correct answer to a question<br>(a) $\frac{37}{40}$<br>Three urns contain 6 residues the selected at random and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the event that two <i>B</i> 's are to<br>(b) $P(E_1 \cap E_2) = 2/55$<br><b>Basic Le</b><br>The are multiple choice question<br>the probability that a student la<br>the probability that a student la<br>(b) $\frac{1}{37}$<br>ed, 4 black; 4 red, 6 black an                                                                                                                                                                                                                              | together, then<br>(c) $P(E_1 \cup E_2) = 18/55$<br><b>Baye's ru</b><br><b>evel</b><br>as. There are four possible<br>knows the answer to a que<br>he was guessing, is<br>(c) $\frac{36}{37}$<br>d 5 red, 5 black balls resp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (d) $P(E_2/E_1) = 1/5$<br><i>le and Total probability</i><br>answers to each question<br>estion is 90%. If he gets t<br>(d) $\frac{1}{9}$<br>pectively. One of the urns                                                                                                                                                                                                          |
| 5.                | are together and $E_2$ den<br>(a) $P(E_1) = P(E_2)$<br>In an entrance test ther<br>which one is correct. The<br>correct answer to a quest<br>(a) $\frac{37}{40}$<br>Three urns contain 6 reselected at random and<br>the first urn is<br>(a) $\frac{1}{3}$<br>There are 3 bags, each contained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to the event that two <i>B</i> 's are to<br>(b) $P(E_1 \cap E_2) = 2/55$<br><b>Basic Le</b><br>The are multiple choice question<br>the probability that a student le<br>to the probability that a student le<br>to b) $\frac{1}{37}$<br>ed, 4 black; 4 red, 6 black and<br>a ball is drawn from it. If the                                                                                                                                                                                  | together, then<br>(c) $P(E_1 \cup E_2) = 18/55$<br><b>Baye's ru</b><br><b>evel</b><br>As. There are four possible<br>knows the answer to a que<br>he was guessing, is<br>(c) $\frac{36}{37}$<br>(c) $\frac{2}{5}$<br>lack balls. Also there are 2 b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (d) $P(E_2/E_1) = 1/5$<br><b>le and Total probability</b><br>answers to each question<br>estion is 90%. If he gets the<br>(d) $\frac{1}{9}$<br>poectively. One of the urns<br>bability that it is drawn from<br>(d) $\frac{2}{3}$<br>pags, each containing 2 wh                                                                                                                  |
| 5.<br>6.          | are together and $E_2$ den<br>(a) $P(E_1) = P(E_2)$<br>In an entrance test ther<br>which one is correct. The<br>correct answer to a quest<br>(a) $\frac{37}{40}$<br>Three urns contain 6 reselected at random and<br>the first urn is<br>(a) $\frac{1}{3}$<br>There are 3 bags, each constaints and 4 black balls. A<br>first group, is<br>(a) $2/63$<br>A card from a pack of 52<br>to be hearts. Find the pro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the event that two <i>B</i> 's are to<br>(b) $P(E_1 \cap E_2) = 2/55$<br><b>Basic Le</b><br>The are multiple choice question<br>the probability that a student level<br>the probability that a student level<br>(b) $\frac{1}{37}$<br>ed, 4 black; 4 red, 6 black and<br>a ball is drawn from it. If the<br>(b) $\frac{1}{2}$<br>containing 5 white balls and 3 bits<br>white ball is drawn at random<br>(b) 45/61<br>cards is lost. From the remaining<br>obability of the missing card to | together, then<br>(c) $P(E_1 \cup E_2) = 18/55$<br><b>Baye's ru</b><br><b>evel</b><br>As. There are four possible<br>knows the answer to a que<br>he was guessing, is<br>(c) $\frac{36}{37}$<br>(c) $\frac{36}{37}$<br>(c) $\frac{2}{5}$<br>lack balls. Also there are 2 the<br>h. The probability that this w<br>(c) $2/49$<br>ing cards of the pack, two car<br>be a heart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) $P(E_2/E_1) = 1/5$<br><b>le and Total probability</b><br>answers to each question<br>estion is 90%. If he gets t<br>(d) $\frac{1}{9}$<br>pectively. One of the urns<br>bability that it is drawn from<br>(d) $\frac{2}{3}$<br>pags, each containing 2 which<br>white ball is from a bag of t<br>(d) None of these<br>ards are drawn and are fou                              |
| .5.<br>.6.<br>.7. | are together and $E_2$ den<br>(a) $P(E_1) = P(E_2)$<br>In an entrance test ther<br>which one is correct. The<br>correct answer to a quest<br>(a) $\frac{37}{40}$<br>Three urns contain 6 reselected at random and<br>the first urn is<br>(a) $\frac{1}{3}$<br>There are 3 bags, each constaints and 4 black balls. A<br>first group, is<br>(a) $2/63$<br>A card from a pack of 52<br>to be hearts. Find the pro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the event that two <i>B</i> 's are to<br>(b) $P(E_1 \cap E_2) = 2/55$<br><b>Basic Le</b><br>The are multiple choice question<br>the probability that a student level<br>the probability that a student level<br>(b) $\frac{1}{37}$<br>ed, 4 black; 4 red, 6 black and<br>a ball is drawn from it. If the<br>(b) $\frac{1}{2}$<br>containing 5 white balls and 3 bits<br>white ball is drawn at random<br>(b) 45/61<br>cards is lost. From the remaining<br>obability of the missing card to | together, then<br>(c) $P(E_1 \cup E_2) = 18/55$<br><b>Baye's ru</b><br><b>evel</b><br>As. There are four possible<br>knows the answer to a que<br>he was guessing, is<br>(c) $\frac{36}{37}$<br>(c) $\frac{36}{37}$<br>(c) $\frac{2}{5}$<br>lack balls. Also there are 2 the<br>h. The probability that this w<br>(c) $2/49$<br>ing cards of the pack, two car<br>be a heart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) $P(E_2/E_1) = 1/5$<br><b>le and Total probability</b><br>answers to each question<br>estion is 90%. If he gets t<br>(d) $\frac{1}{9}$<br>poetively. One of the urns<br>bability that it is drawn from<br>(d) $\frac{2}{3}$<br>pags, each containing 2 which<br>white ball is from a bag of t<br>(d) None of these                                                            |
| .5.<br>.6.<br>.7. | are together and $E_2$ den<br>(a) $P(E_1) = P(E_2)$<br>In an entrance test ther<br>which one is correct. The<br>correct answer to a quest<br>(a) $\frac{37}{40}$<br>Three urns contain 6 reselected at random and<br>the first urn is<br>(a) $\frac{1}{3}$<br>There are 3 bags, each constaints<br>(a) $\frac{1}{3}$<br>There are 3 bags, each constaints<br>(balls and 4 black balls. A<br>first group, is<br>(a) $2/63$<br>A card from a pack of 52<br>to be hearts. Find the pro-<br>(a) $\frac{5}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ote the event that two <i>B</i> 's are t<br>(b) $P(E_1 \cap E_2) = 2/55$<br><b>Basic Le</b><br>re are multiple choice question<br>the probability that a student l<br>tion, then the probability that l<br>(b) $\frac{1}{37}$<br>ed, 4 black; 4 red, 6 black an<br>a ball is drawn from it. If the<br>(b) $\frac{1}{2}$<br>ontaining 5 white balls and 3 bits<br>white ball is drawn at random<br>(b) 45/61<br>cards is lost. From the remaining                                            | together, then<br>(c) $P(E_1 \cup E_2) = 18/55$<br><b>Baye's ru</b><br><b>Evel</b><br>as. There are four possible<br>knows the answer to a que<br>he was guessing, is<br>(c) $\frac{36}{37}$<br>(c) $\frac{36}{37}$<br>(c) $\frac{2}{5}$<br>lack balls. Also there are 2 the<br>here are four possible<br>(c) $\frac{2}{5}$<br>lack balls. Also there are 2 the<br>here are four possible<br>(c) $\frac{2}{5}$<br>lack balls. Also there are 2 the<br>here are four possible<br>(c) $\frac{2}{5}$<br>lack balls. Also there are 2 the<br>here are four possible<br>(c) $\frac{2}{5}$<br>lack balls. Also there are 2 the<br>here are four possible<br>(c) $\frac{2}{5}$<br>lack balls. Also there are 2 the<br>here are four possible<br>(c) $\frac{2}{5}$<br>lack balls. Also there are 2 the<br>here are four possible<br>(c) $\frac{2}{5}$<br>(c) $2$ | (d) $P(E_2/E_1) = 1/5$<br><b>le and Total probability</b><br>answers to each question<br>estion is 90%. If he gets the<br>(d) $\frac{1}{9}$<br>poectively. One of the urns<br>pability that it is drawn from<br>(d) $\frac{2}{3}$<br>pags, each containing 2 which<br>white ball is from a bag of the<br>(d) None of these<br>ards are drawn and are four<br>(d) $\frac{13}{31}$ |

| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1) 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sim$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) $\frac{38}{65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (b) $\frac{38}{63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (c) $\frac{17}{65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (d) $\frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| house. If 40% o<br>specific home if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of these homes are usually le<br>he selects three master keys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eft unlocked, the probability that<br>is at random before leaving the o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | one master key will open any giv<br>at the real estate man can get int<br>office is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (a) $\frac{3}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) $\frac{7}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (c) $\frac{5}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (a) 3/8<br><b>2.</b> A bag <i>x</i> contains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (b) 1/9<br>3 white balls and 2 black ba<br>it are picked at random. Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s the probability that both get eq<br>(c) 5/16<br>lls and another bag <i>y</i> contains 2<br>e probability that the ball is whi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d) None of these<br>2 white balls and 4 black balls. A l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (a) $\frac{3}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) $\frac{7}{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (c) $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (a) 3/28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (b) 2/28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tury chosen at random there wil<br>(c) 7/28<br>nat the head comes odd times is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (d) 5/28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (a) 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (b) $1/2^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (c) $1/2^{n-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Advance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| output 5, 4 and<br>bolt drawn is fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 percent respectively are of and to be defective, the prob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | defective bolts. A bolt is drawn<br>bability that it is manufactured t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | at random from the product. If<br>by the machine <i>B</i> is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| output 5, 4 and<br>bolt drawn is for<br>(a) $\frac{28}{69}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 percent respectively are of<br>und to be defective, the prob<br>(b) $\frac{7}{69}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | defective bolts. A bolt is drawn<br>bability that it is manufactured to<br>(c) $\frac{32}{69}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and 40% of the total bolts. Of the at random from the product. If by the machine <i>B</i> is (d) $\frac{11}{69}$ 6000 truck drivers. The probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| output 5, 4 and<br>bolt drawn is for<br>(a) $\frac{28}{69}$<br>6. An insurance co<br>of an accident in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 percent respectively are of<br>und to be defective, the prob<br>(b) $\frac{7}{69}$<br>mpany insured 2000 scooter<br>nvolving a scooter driver, ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | defective bolts. A bolt is drawn<br>pability that it is manufactured to<br>(c) $\frac{32}{69}$<br>or drivers, 4000 car drivers and<br>or driver and a truck driver is 0                                                                                                                                                                                                                                                                                                                                                                                                                                                          | at random from the product. If<br>by the machine <i>B</i> is<br>(d) $\frac{11}{69}$<br>6000 truck drivers. The probabilition of the probabilition of the probabilities of the                          |
| output 5, 4 and<br>bolt drawn is for<br>(a) $\frac{28}{69}$<br>6. An insurance co<br>of an accident in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 percent respectively are of<br>und to be defective, the prob<br>(b) $\frac{7}{69}$<br>mpany insured 2000 scooter<br>nvolving a scooter driver, ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | defective bolts. A bolt is drawn<br>pability that it is manufactured to<br>(c) $\frac{32}{69}$<br>r drivers, 4000 car drivers and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | at random from the product. If<br>by the machine <i>B</i> is<br>(d) $\frac{11}{69}$<br>6000 truck drivers. The probabilition of the probabilition of the probabilities of the                          |
| output 5, 4 and<br>bolt drawn is for<br>(a) $\frac{28}{69}$<br>6. An insurance co<br>of an accident in<br>of the insured po<br>(a) $\frac{1}{52}$<br>7. From an urn co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 percent respectively are of<br>und to be defective, the prob<br>(b) $\frac{7}{69}$<br>mpany insured 2000 scooter<br>nvolving a scooter driver, cas<br>ersons meets with an accider<br>(b) $\frac{1}{62}$<br>ntaining 3 white and 5 black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | defective bolts. A bolt is drawn<br>pability that it is manufactured to<br>(c) $\frac{32}{69}$<br>or drivers, 4000 car drivers and<br>ar driver and a truck driver is o<br>nt. What is the probability that is<br>(c) $\frac{2}{51}$<br>k balls, 4 balls are transferred                                                                                                                                                                                                                                                                                                                                                         | at random from the product. If<br>by the machine <i>B</i> is<br>(d) $\frac{11}{69}$<br>6000 truck drivers. The probabil<br>.01, 0.03 and 0.15 respectively. On<br>the is a scooter driver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>output 5, 4 and bolt drawn is for (a) 28/69</li> <li>6. An insurance co of an accident in of the insured period (a) 1/52</li> <li>7. From an urn comball is drawn and the term of ter</li></ul> | 2 percent respectively are of<br>und to be defective, the prob<br>(b) $\frac{7}{69}$<br>mpany insured 2000 scooter<br>nvolving a scooter driver, cas<br>ersons meets with an accider<br>(b) $\frac{1}{62}$<br>ntaining 3 white and 5 black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | defective bolts. A bolt is drawn<br>pability that it is manufactured to<br>(c) $\frac{32}{69}$<br>or drivers, 4000 car drivers and<br>ar driver and a truck driver is o<br>nt. What is the probability that is<br>(c) $\frac{2}{51}$<br>k balls, 4 balls are transferred                                                                                                                                                                                                                                                                                                                                                         | at random from the product. If<br>by the machine <i>B</i> is<br>(d) $\frac{11}{69}$<br>6000 truck drivers. The probabilition of the probabilition of the probabilition of the driver of the                          |
| <ul> <li>output 5, 4 and bolt drawn is for (a) 28/69</li> <li>6. An insurance co of an accident in of the insured period (a) 1/52</li> <li>7. From an urn comball is drawn and black is (a) 1/4</li> <li>8. In a test, an example choices. The propability that</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 percent respectively are of<br>und to be defective, the prob<br>(b) $\frac{7}{69}$<br>mpany insured 2000 scooter<br>nvolving a scooter driver, case<br>ersons meets with an accider<br>(b) $\frac{1}{62}$<br>ntaining 3 white and 5 black<br>ind is found to be white. The<br>(b) $\frac{1}{5}$<br>aminee either guesses or co<br>obability that he makes a gu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | defective bolts. A bolt is drawn<br>pability that it is manufactured to<br>(c) $\frac{32}{69}$<br>r drivers, 4000 car drivers and<br>a truck driver is o<br>nt. What is the probability that is<br>(c) $\frac{2}{51}$<br>k balls, 4 balls are transferred<br>probability that out of the four<br>(c) $\frac{1}{6}$<br>pies or knows the answer to a<br>ess is 1/3 and the probability the<br>n that he copied it, is 1/8. The p                                                                                                                                                                                                  | at random from the product. If<br>by the machine <i>B</i> is<br>(d) $\frac{11}{69}$<br>6000 truck drivers. The probabilition of the second                          |
| <ul> <li>output 5, 4 and bolt drawn is for (a) 28/69</li> <li>6. An insurance co of an accident in of the insured period (a) 1/52</li> <li>7. From an urn comball is drawn and black is (a) 1/4</li> <li>8. In a test, an example choices. The probability that</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 percent respectively are of<br>und to be defective, the prob<br>(b) $\frac{7}{69}$<br>mpany insured 2000 scooter<br>nvolving a scooter driver, case<br>ersons meets with an accider<br>(b) $\frac{1}{62}$<br>Intaining 3 white and 5 black<br>id is found to be white. The<br>(b) $\frac{1}{5}$<br>aminee either guesses or coordinate of the store of the | defective bolts. A bolt is drawn<br>pability that it is manufactured to<br>(c) $\frac{32}{69}$<br>r drivers, 4000 car drivers and<br>a truck driver is o<br>nt. What is the probability that is<br>(c) $\frac{2}{51}$<br>k balls, 4 balls are transferred<br>probability that out of the four<br>(c) $\frac{1}{6}$<br>pies or knows the answer to a<br>ess is 1/3 and the probability the<br>n that he copied it, is 1/8. The p                                                                                                                                                                                                  | at random from the product. If<br>by the machine <i>B</i> is<br>(d) $\frac{11}{69}$<br>6000 truck drivers. The probabilition, 0.03 and 0.15 respectively. On<br>the is a scooter driver<br>(d) 1<br>into an empty urn. From this urn<br>balls transferred, 3 are white an<br>(d) $\frac{1}{7}$<br>multiple choice question with for<br>the the copies the answer is 1/6. The second s |
| <ul> <li>output 5, 4 and bolt drawn is for (a) 28/69</li> <li>6. An insurance co of an accident in of the insured period (a) 1/52</li> <li>7. From an urn comball is drawn and black is (a) 1/4</li> <li>8. In a test, an example choices. The propability that to the question, (a) 24/27</li> <li>9. A company man the total produce at plane is produced at plane is plane is plane is plane is plane.</li> </ul>                                                                                                                        | 2 percent respectively are of<br>und to be defective, the prob<br>(b) $\frac{7}{69}$<br>mpany insured 2000 scooter<br>nvolving a scooter driver, case<br>ersons meets with an accider<br>(b) $\frac{1}{62}$<br>ntaining 3 white and 5 black<br>id is found to be white. The<br>(b) $\frac{1}{5}$<br>aminee either guesses or co<br>bability that he makes a gu<br>his answer is correct, given<br>given that he correctly answ<br>(b) $\frac{24}{29}$<br>ufactures T.Vs at two different<br>tion. 85 out of 100 T.Vs proc<br>and a meet the quality standar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | defective bolts. A bolt is drawn<br>pability that it is manufactured b<br>(c) $\frac{32}{69}$<br>r drivers, 4000 car drivers and<br>ar driver and a truck driver is 0<br>nt. What is the probability that b<br>(c) $\frac{2}{51}$<br>k balls, 4 balls are transferred<br>probability that out of the four<br>(c) $\frac{1}{6}$<br>pies or knows the answer to a<br>ess is 1/3 and the probability the<br>that he copied it, is 1/8. The pro-<br>vered it, is<br>(c) $\frac{24}{31}$<br>ent plants <i>A</i> and <i>B</i> . Plant ' <i>A</i> ' pro-<br>fuced at plant <i>A</i> meet the quality<br>rd. A T.V. produced by the comp | at random from the product. If<br>by the machine <i>B</i> is<br>(d) $\frac{11}{69}$<br>6000 truck drivers. The probabilition, 0.03 and 0.15 respectively. On<br>the is a scooter driver<br>(d) 1<br>into an empty urn. From this urn<br>balls transferred, 3 are white an<br>(d) $\frac{1}{7}$<br>multiple choice question with for<br>the copies the answer is 1/6. To<br>probability that he knew the answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Basic Level

260. A coin is tossed 3 times (OR Three coins are tossed all together). The probability of getting at least two heads is [MP PET 1995] (a)  $\frac{1}{0}$ (c)  $\frac{1}{2}$ (b)  $\frac{3}{2}$ (d) 261. The probability of having at least one head in 3 throws with a coin is (a) 7/8 (b) 3/8 (c) 1/8 (d) None of these **262.** A fair coin is tossed *n* time. If the probability that head occurs 6 times is equal to the probability that head occurs 8 times, then *n* is equal to [Kurukshetra CEE 1998; AMU 2000] (a) 15(b) 14 (c) 12 (d) 7 **263.** The mean and variance of a binomial distribution are 4 and 3 respectively, then the probability of getting exactly six successes in this distribution is (a)  ${}^{16}C_6\left(\frac{1}{4}\right)^{10}\left(\frac{3}{4}\right)^6$  (b)  ${}^{16}C_6\left(\frac{1}{4}\right)^6\left(\frac{3}{4}\right)^{10}$  (c)  ${}^{12}C_6\left(\frac{1}{4}\right)^{10}\left(\frac{3}{4}\right)^6$  (d)  ${}^{12}C_6\left(\frac{1}{4}\right)^6\left(\frac{3}{4}\right)^6$ **264.** In a binomial probability distribution, mean is 3 and standard deviation is  $\frac{3}{2}$ . Then the probability distribution is [AISSE 1979] (c)  $\left(\frac{1}{4} + \frac{3}{4}\right)^9$  (d)  $\left(\frac{3}{4} + \frac{1}{4}\right)^9$ (a)  $\left(\frac{3}{4} + \frac{1}{4}\right)^{12}$ (b)  $\left(\frac{1}{4} + \frac{3}{4}\right)^{12}$ **265.** If *X* follows a binomial distribution with parameters n = 6 and *p* and 4(P(X = 4)) = P(X = 2), then p = P(X = 2), then p = P(X = 2). (b) 1/4 (a) 1/2(c) 1/6 (d) 1/3 **266.** The mean and variance of a binomial distribution are 6 and 4. The parameter *n* is [MP PET 2000] (a) 18 (b) 12 (c) 10 (d) 9 **267.** Suppose X follows a binomial distribution with parameters n and p, where  $0 . If <math>\frac{P(X = r)}{P(X = n - r)}$  is independent of n and r, then (a)  $p = \frac{1}{2}$ (b)  $p = \frac{1}{3}$ (c)  $p = \frac{1}{\Lambda}$ (d) None of these **268.** If *x* denotes the number of sixes in four consecutive throws of a dice, then P(x = 4) is (b) 4/6 (d) 1295/1296 (a) 1/1296 (c) 1 **269.** The probability that an event will fail to happen is 0.05. The probability that the event will take place on 4 consecutive occasions is [Roorkee 1990] (c) 0.00001875 (a) 0.00000625 (b) 0.18543125 (d) 0.81450625 270. A die is thrown three times. Getting a 3 or a 6 is considered success. Then the probability of at least two [DSSE 1981] successes is (a)  $\frac{2}{0}$ (b)  $\frac{7}{27}$ (c)  $\frac{1}{27}$ (d) None of these **271.** Let *p* be the probability of happening an event and *q* its failure, then the total chance of *r* successes in *n* trials is [MP PET 1999] (b)  ${}^{n}C_{r}p^{r-1}q^{r+1}$ (d)  ${}^{n}C_{r}p^{r+1}q^{r-1}$ (a)  ${}^{n}C_{n+r}p^{r}q^{n-r}$ (c)  ${}^{n}C_{r}q^{n-r}p^{r}$ 272. In tossing 10 coins, the probability of getting exactly 5 heads is (a)  $\frac{9}{128}$  (b)  $\frac{63}{256}$  (c)  $\frac{1}{2}$ (d)  $\frac{193}{256}$ 273. Assuming that for a husband-wife couple the chances of their child being a boy or a girl are the same, the probability of their two children being a boy and a girl is (a)  $\frac{1}{4}$ (c)  $\frac{1}{2}$ (d)  $\frac{1}{2}$ (b) 1

274. The probability that a student is not a swimmer is 1/5. What is the probability that out of 5 students, 4 are swimmers [DCE 1999]

| 40  | Trobability                                              |                                                                  |                                                                   |                                 |
|-----|----------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|
|     | (a) ${}^{5}C_{4}\left(\frac{4}{5}\right)^{4}\frac{1}{5}$ | (b) $\left(\frac{4}{5}\right)^4 \frac{1}{5}$                     | (c) ${}^{5}C_{1}\frac{1}{5}\left(\frac{4}{5}\right)^{4}^{5}C_{4}$ | (d) None of these               |
| 75. | Three coins are tossed to (a) 1/2                        | ogether, then the probability of g<br>(b) 3/4                    | getting at least one head is<br>(c) 1/8                           | [Rajasthan PET 2001]<br>(d) 7/8 |
| 6.  |                                                          | nd 4 black balls. A ball is drawn                                |                                                                   |                                 |
|     | (a) $\frac{8}{141}$                                      | (b) $\frac{10}{243}$                                             | (c) $\frac{11}{243}$                                              | (d) $\frac{8}{41}$              |
| 7.  | A die is tossed 5 times.<br>success is                   | Getting an odd number is cons<br>[AIEEE 2002]                    | sidered a success. Then the                                       | e variance of distribution of   |
|     | (a) 8/3                                                  | (b) 3/8                                                          | (c) 4/5                                                           | (d) 5/4                         |
| 8.  | A coin is tossed 10 times                                | . The probability of getting exac                                | tly six heads is                                                  |                                 |
|     | (a) 512/513                                              | (b) 105/512                                                      | (c) 100/153                                                       | (d) ${}^{10}C_6$                |
| 9.  | An experiment succeeds                                   | twice as often as it fails. Find the                             | he probability that in 4 trial                                    | s there will be at least three  |
|     | success                                                  | [AMU 1999]                                                       |                                                                   |                                 |
|     | (a) 4/27                                                 | (b) 8/27                                                         | (c) 16/27                                                         | (d) 24/27                       |
| о.  |                                                          | al show that 10% of the cases one probability that only three wi |                                                                   | l. If 6 patients are suffering  |
|     | (a) 1458 × 10 <sup>-5</sup>                              | <b>(b)</b> 1458 ×10 <sup>-6</sup>                                | (c) $41 \times 10^{-6}$                                           | (d) $8748 \times 10^{-5}$       |
| 31. | If the probabilities of bo<br>least one girl, is         | by and girl to be born are same                                  | , then in a 4 children famil                                      | y the probability of being at   |
|     | (a) $\frac{14}{16}$                                      | (b) $\frac{15}{16}$                                              | (c) $\frac{1}{8}$                                                 | (d) $\frac{3}{8}$               |
| 2.  | present in committee, is                                 |                                                                  | _                                                                 |                                 |
|     | (a) $\frac{1}{42}$                                       | (b) $\frac{41}{42}$                                              | (c) $\frac{2}{63}$                                                | (d) $\frac{1}{7}$               |
| 3.  |                                                          | success is getting 1 or 6 on a tos                               |                                                                   | e of number of successes[AI     |
|     | (a) $\mu = 1, \sigma^2 = 2/3$                            | (b) $\mu = 2/3, \sigma^2 = 1$                                    | (c) $\mu = 2, \sigma^2 = 2/3$                                     | (d) None of these               |
| 4.  | A coin is tossed 4 times.                                | The probability that at least on                                 | e head turns up is                                                | [MP PET 2000]                   |
|     | (a) 1/16                                                 | (b) 2/16                                                         | (c) 14/16                                                         | (d) 15/16                       |
| 5٠  | If a dice is thrown twice                                | , the probability of occurrence o                                | f 4 at least once is                                              | [UPSEAT 2003]                   |
|     | (a) 11/36                                                | (b) 7/12                                                         | (c) 35/36                                                         | (d) None of these               |
| 6.  |                                                          | on the probability of getting a su                               | access is 1/4 and standard d                                      | eviation is 3, then its mean    |
|     | is [EAMCET 2002]                                         |                                                                  |                                                                   |                                 |
| _   | (a) 6                                                    | (b) 8<br>times then the probability of a                         | (c) 12                                                            | (d) 10                          |
| 7.  |                                                          | times, then the probability of g                                 |                                                                   | AMU 2002]                       |
|     | (a) $\frac{63}{256}$                                     | (b) $\frac{1}{1024}$                                             | (c) $\frac{2}{205}$                                               | (d) $\frac{9}{64}$              |
| ~   | 230                                                      | 1024                                                             | 205                                                               | 04                              |
| б.  | -                                                        | d. The probability that at least h                               |                                                                   | ST 3 1S                         |
|     | (a) $41 \times \frac{2^4}{3^6}$                          | (b) $\frac{2^4}{3^6}$                                            | (c) $20 \times \frac{2^4}{3^6}$                                   | (d) None of these               |
| 9.  | A fair die is tossed eight                               | times. Probability that on the e                                 | ighth throw a third six is ob                                     | served is                       |
|     | (a) ${}^{8}C_{3}\frac{5^{5}}{6^{8}}$                     | (b) $\frac{{}^{7}C_{2}.5^{5}}{6^{8}}$                            | (c) $\frac{{}^{7}C_{2}.5^{5}}{6^{7}}$                             | (d) None of these               |
| 0.  |                                                          | ked number of times. If the prob<br>ity of getting two heads is  | ability of getting seven hea                                      | ds is equal to that of getting  |
|     | (a) $15/2^8$                                             | (b) 2/15                                                         | (c) $15/2^{13}$                                                   | (d) None of these               |
| 1   |                                                          | candidate secures a seat in Eng                                  |                                                                   |                                 |
| 1.  |                                                          | a centre. The probability that e                                 |                                                                   | i is 1/10. / calluluates are    |
|     |                                                          |                                                                  |                                                                   |                                 |

|                   | (a) $15(0.1)^2(0.9)^5$                                                                                                                                                                                                                                                                                                                                                                                                        | <b>(b)</b> $20(0.1)^2(0.9)^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (c) $21(0.1)^2(0.9)^5$                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) $23(0.1)^2(0.9)^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 92.               | The probability that<br>least three times is                                                                                                                                                                                                                                                                                                                                                                                  | a man can hit a target is $3/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4. He tries 5 times. The proba                                                                                                                                                                                                                                                                                                                                                                                                                  | bility that he will hit the target at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [MNR 1994]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | (a) 291/364                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) 371/464                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | (c) 471/502                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (d) 459/512                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.                | A fair coin is tossed                                                                                                                                                                                                                                                                                                                                                                                                         | 100 times. The probability of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f getting tails an odd number                                                                                                                                                                                                                                                                                                                                                                                                                   | of times is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | (a) 1/2                                                                                                                                                                                                                                                                                                                                                                                                                       | (b) 1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (c) 3/8                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.                | A coin is tossed 7 tin                                                                                                                                                                                                                                                                                                                                                                                                        | nes. Each time a man calls he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ead. The probability that he w                                                                                                                                                                                                                                                                                                                                                                                                                  | ins the toss on more occasions is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | (a) $\frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                             | (b) $\frac{5}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (c) $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5.                |                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                               | ffling the pack, he again draws a<br>eart for the first time in the third                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | (a) $\frac{9}{64}$                                                                                                                                                                                                                                                                                                                                                                                                            | (b) $\frac{27}{64}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (c) $\frac{1}{4} \times \frac{{}^{39}C_2}{{}^{52}C_2}$                                                                                                                                                                                                                                                                                                                                                                                          | (d) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                               | Ada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vance Level                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.                | A fair coin is tossed                                                                                                                                                                                                                                                                                                                                                                                                         | n times. Let X be the number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r of times head is observed. If                                                                                                                                                                                                                                                                                                                                                                                                                 | P(X = 4), P(X = 5) and $P(X = 6)$ are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | in H.P., then <i>n</i> is equ                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | (a) 7                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (c) 14                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -                 |                                                                                                                                                                                                                                                                                                                                                                                                                               | es are marked 2, 3 are tosse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| /•                |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | (a) $\frac{1}{32}$                                                                                                                                                                                                                                                                                                                                                                                                            | (b) $\frac{1}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) $\frac{3}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                              | (d) $\frac{5}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | (a) $\frac{1}{32}$<br>A coin is tossed 2 <i>n</i>                                                                                                                                                                                                                                                                                                                                                                             | (b) $\frac{1}{16}$ times. The chance that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (c) $\frac{3}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | (a) $\frac{1}{32}$                                                                                                                                                                                                                                                                                                                                                                                                            | (b) $\frac{1}{16}$ times. The chance that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (c) $\frac{3}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                              | (d) $\frac{5}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | (a) $\frac{1}{32}$<br>A coin is tossed 2 <i>n</i>                                                                                                                                                                                                                                                                                                                                                                             | (b) $\frac{1}{16}$ times. The chance that the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (c) $\frac{3}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                              | (d) $\frac{5}{16}$ ad is not equal to the number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8.                | (a) $\frac{1}{32}$<br>A coin is tossed 2 <i>n</i> times one gets tail is<br>(a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$                                                                                                                                                                                                                                                                                          | (b) $\frac{1}{16}$<br>times. The chance that the solution (b) $1 - \frac{(2n!)}{(n!)^2}$<br>nes. The probability of gettir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) $\frac{3}{16}$<br>number of times one gets he<br>(c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$                                                                                                                                                                                                                                                                                                                                         | (d) $\frac{5}{16}$<br>ad is not equal to the number of<br>[DCE 2002]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8.                | (a) $\frac{1}{32}$<br>A coin is tossed 2 <i>n</i> times one gets tail is<br>(a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$<br>A coin is tossed <i>n</i> times                                                                                                                                                                                                                                                       | (b) $\frac{1}{16}$<br>times. The chance that the solution (b) $1 - \frac{(2n!)}{(n!)^2}$<br>mes. The probability of gettin <b>[EAMCET 2003]</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (c) $\frac{3}{16}$<br>number of times one gets he<br>(c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$                                                                                                                                                                                                                                                                                                                                         | <ul> <li>(d) <sup>5</sup>/<sub>16</sub></li> <li>ad is not equal to the number of [DCE 2002]</li> <li>(d) None of these</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8.<br>9.          | (a) $\frac{1}{32}$<br>A coin is tossed 2 <i>n</i> times one gets tail is<br>(a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$<br>A coin is tossed <i>n</i> tim<br><i>n</i> is<br>(a) 2<br>A box contains 24 id<br>the box one at a tim                                                                                                                                                                                 | (b) $\frac{1}{16}$<br>times. The chance that the formula (b) $1 - \frac{(2n!)}{(n!)^2}$<br>nes. The probability of gettin<br>[EAMCET 2003]<br>(b) 3<br>lentical balls, of which 12 ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (c) $\frac{3}{16}$<br>number of times one gets he<br>(c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$<br>ng head at least once is greate<br>(c) 4<br>re white and 12 are black. The<br>obability that a white ball is                                                                                                                                                                                                                         | <ul> <li>(d) <sup>5</sup>/<sub>16</sub></li> <li>ad is not equal to the number of [DCE 2002]</li> <li>(d) None of these</li> <li>ar than 0.8, then the least value of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.<br>9.          | (a) $\frac{1}{32}$<br>A coin is tossed 2 <i>n</i> times one gets tail is<br>(a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$<br>A coin is tossed <i>n</i> tim<br><i>n</i> is<br>(a) 2<br>A box contains 24 id<br>the box one at a tim<br>draw is                                                                                                                                                                      | (b) $\frac{1}{16}$<br>times. The chance that the formula the formula to | (c) $\frac{3}{16}$<br>number of times one gets he<br>(c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$<br>ng head at least once is greate<br>(c) 4<br>re white and 12 are black. The<br>obability that a white ball is<br><b>[IIT Screening 1994]</b>                                                                                                                                                                                          | <ul> <li>(d) <sup>5</sup>/<sub>16</sub></li> <li>ad is not equal to the number of [DCE 2002]</li> <li>(d) None of these</li> <li>ar than 0.8, then the least value of (d) 5</li> <li>balls are drawn at random from drawn for the 4<sup>th</sup> time on the 7<sup>th</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8.<br>9.          | (a) $\frac{1}{32}$<br>A coin is tossed 2 <i>n</i> times one gets tail is<br>(a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$<br>A coin is tossed <i>n</i> tim<br><i>n</i> is<br>(a) 2<br>A box contains 24 id<br>the box one at a tim<br>draw is<br>(a) 5/64<br>A die is tossed twice                                                                                                                                 | (b) $\frac{1}{16}$<br>times. The chance that the formula in the formula | (c) $\frac{3}{16}$<br>number of times one gets he<br>(c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$<br>ng head at least once is greate<br>(c) 4<br>re white and 12 are black. The<br>obability that a white ball is<br>[IIT Screening 1994]<br>(c) 5/32<br>er than 4 is considered a su                                                                                                                                                     | <ul> <li>(d) <sup>5</sup>/<sub>16</sub></li> <li>ad is not equal to the number of [DCE 2002]</li> <li>(d) None of these</li> <li>ar than 0.8, then the least value of (d) 5</li> <li>balls are drawn at random from</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8.<br>9.          | (a) $\frac{1}{32}$<br>A coin is tossed 2 <i>n</i> times one gets tail is<br>(a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$<br>A coin is tossed <i>n</i> tim<br><i>n</i> is<br>(a) 2<br>A box contains 24 id<br>the box one at a tim<br>draw is<br>(a) 5/64<br>A die is tossed twid<br>probability distribut                                                                                                         | (b) $\frac{1}{16}$<br>times. The chance that the<br>(b) $1 - \frac{(2n!)}{(n!)^2}$<br>mes. The probability of gettir<br>[EAMCET 2003]<br>(b) 3<br>lentical balls, of which 12 ar<br>he with replacement. The pro-<br>(b) 27/32<br>ce. Getting a number great<br>ion of the number of success                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (c) $\frac{3}{16}$<br>number of times one gets he<br>(c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$<br>ng head at least once is greate<br>(c) 4<br>re white and 12 are black. The<br>obability that a white ball is<br>[IIT Screening 1994]<br>(c) 5/32<br>er than 4 is considered a su<br>es is                                                                                                                                            | <ul> <li>(d) <sup>5</sup>/<sub>16</sub></li> <li>ad is not equal to the number of [DCE 2002]</li> <li>(d) None of these</li> <li>(d) None of these</li> <li>(e) 5</li> <li>(f) 5</li> <li>(f) 5</li> <li>(f) 5</li> <li>(g) 5</li> <li>(h) 5</li> <li>(h) 1/2</li> <li>(h) 1/2</li> <li>(h) 1/2</li> <li>(h) 1/2</li> <li>(h) 1/2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8.<br>9.          | (a) $\frac{1}{32}$<br>A coin is tossed 2 <i>n</i> times one gets tail is<br>(a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$<br>A coin is tossed <i>n</i> tim<br><i>n</i> is<br>(a) 2<br>A box contains 24 id<br>the box one at a tim<br>draw is<br>(a) 5/64<br>A die is tossed twice                                                                                                                                 | (b) $\frac{1}{16}$<br>times. The chance that the formula in the formula | (c) $\frac{3}{16}$<br>number of times one gets he<br>(c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$<br>ng head at least once is greate<br>(c) 4<br>re white and 12 are black. The<br>obability that a white ball is<br>[IIT Screening 1994]<br>(c) 5/32<br>er than 4 is considered a su                                                                                                                                                     | <ul> <li>(d) <sup>5</sup>/<sub>16</sub></li> <li>ad is not equal to the number of [DCE 2002]</li> <li>(d) None of these</li> <li>(d) None of these</li> <li>(e) 5</li> <li>(f) 5</li> <li>(f) 5</li> <li>(f) 5</li> <li>(g) 5</li> <li>(g) 5</li> <li>(g) 5</li> <li>(g) 5</li> <li>(g) 1/2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8.<br>9.<br>1.    | (a) $\frac{1}{32}$<br>A coin is tossed 2 <i>n</i> times one gets tail is<br>(a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$<br>A coin is tossed <i>n</i> times<br><i>n</i> is<br>(a) 2<br>A box contains 24 id<br>the box one at a times<br>draw is<br>(a) 5/64<br>A die is tossed twice<br>probability distribut<br>(a) $\frac{2}{9}$<br>In order to get at lease                                                   | (b) $\frac{1}{16}$<br>times. The chance that the formula (b) $1 - \frac{(2n!)}{(n!)^2}$<br>mes. The probability of gettim<br><b>[EAMCET 2003]</b><br>(b) 3<br>lentical balls, of which 12 are<br>ne with replacement. The pro-<br>(b) 27/32<br>ce. Getting a number great<br>ion of the number of success<br>(b) $\frac{4}{9}$<br>est once a head with probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) $\frac{3}{16}$<br>number of times one gets he<br>(c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$<br>ng head at least once is greate<br>(c) 4<br>re white and 12 are black. The<br>obability that a white ball is<br><b>[IIT Screening 1994]</b><br>(c) 5/32<br>er than 4 is considered a su<br>es is<br>(c) $\frac{1}{3}$<br>ity $\ge 0.9$ , the number of times                                                                         | <ul> <li>(d) <sup>5</sup>/<sub>16</sub></li> <li>ad is not equal to the number of [DCE 2002]</li> <li>(d) None of these</li> <li>(d) None of these</li> <li>(e) 5</li> <li>(f) 5</li> <li>(f) 5</li> <li>(f) 5</li> <li>(f) 5</li> <li>(g) 5</li> <li>(h) 6</li> <li>(h) 1/2</li> <li>(h) 1/</li></ul> |
| 8.<br>9.<br>1.    | (a) $\frac{1}{32}$<br>A coin is tossed 2 <i>n</i> times one gets tail is<br>(a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$<br>A coin is tossed <i>n</i> times<br><i>n</i> is<br>(a) 2<br>A box contains 24 id<br>the box one at a times<br>draw is<br>(a) 5/64<br>A die is tossed twick<br>probability distribut<br>(a) $\frac{2}{9}$<br>In order to get at lead<br>(a) 3                                           | (b) $\frac{1}{16}$<br>times. The chance that the formula in the formula | (c) $\frac{3}{16}$<br>number of times one gets he<br>(c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$<br>ng head at least once is greate<br>(c) 4<br>re white and 12 are black. The<br>obability that a white ball is<br><b>[IIT Screening 1994]</b><br>(c) 5/32<br>re than 4 is considered a su<br>es is<br>(c) $\frac{1}{3}$<br>ity $\ge 0.9$ , the number of times<br>(c) 5                                                                | <ul> <li>(d) <sup>5</sup>/<sub>16</sub></li> <li>ad is not equal to the number of [DCE 2002]</li> <li>(d) None of these</li> <li>(d) None of these</li> <li>(e) 5</li> <li>(f) 5</li> <li>(f) 5</li> <li>(f) 5</li> <li>(g) 5</li> <li>(h) 1/2</li> <li>(h) 1/2</li></ul>     |
| 8.<br>9.<br>1.    | (a) $\frac{1}{32}$<br>A coin is tossed 2 <i>n</i> times one gets tail is<br>(a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$<br>A coin is tossed <i>n</i> tim<br><i>n</i> is<br>(a) 2<br>A box contains 24 id<br>the box one at a tim<br>draw is<br>(a) 5/64<br>A die is tossed twide<br>probability distribut<br>(a) $\frac{2}{9}$<br>In order to get at lead<br>(a) 3<br>India plays two mat<br>point 0, 1 and 2 an | (b) $\frac{1}{16}$<br>times. The chance that the formula in the formula | (c) $\frac{3}{16}$<br>number of times one gets he<br>(c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$<br>ng head at least once is greate<br>(c) 4<br>re white and 12 are black. The<br>obability that a white ball is<br><b>[IIT Screening 1994]</b><br>(c) 5/32<br>er than 4 is considered a su<br>es is<br>(c) $\frac{1}{3}$<br>ity $\ge 0.9$ , the number of times<br>(c) 5<br>and Australia. In any match<br>pectively. Assuming that the | <ul> <li>(d) <sup>5</sup>/<sub>16</sub></li> <li>ad is not equal to the number of [DCE 2002]</li> <li>(d) None of these</li> <li>(d) None of these</li> <li>(e) 5</li> <li>(f) 5</li> <li>(f) 5</li> <li>(f) 5</li> <li>(f) 5</li> <li>(g) 5</li> <li>(h) 6</li> <li>(h) 1/2</li> <li>(h) 1/</li></ul> |
| )8.<br>)9.<br>)0. | (a) $\frac{1}{32}$<br>A coin is tossed 2 <i>n</i> times one gets tail is<br>(a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$<br>A coin is tossed <i>n</i> tim<br><i>n</i> is<br>(a) 2<br>A box contains 24 id<br>the box one at a tim<br>draw is<br>(a) 5/64<br>A die is tossed twide<br>probability distribut<br>(a) $\frac{2}{9}$<br>In order to get at lead<br>(a) 3<br>India plays two mat<br>point 0, 1 and 2 an | (b) $\frac{1}{16}$<br>times. The chance that the formula in the formula | (c) $\frac{3}{16}$<br>number of times one gets he<br>(c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$<br>ng head at least once is greate<br>(c) 4<br>re white and 12 are black. The<br>obability that a white ball is<br><b>[IIT Screening 1994]</b><br>(c) $5/32$<br>er than 4 is considered a su<br>es is<br>(c) $\frac{1}{3}$<br>ity $\ge 0.9$ , the number of times<br>(c) 5<br>and Australia. In any match                               | <ul> <li>(d) <sup>5</sup>/<sub>16</sub></li> <li>ad is not equal to the number of [DCE 2002]</li> <li>(d) None of these</li> <li>(d) None of these</li> <li>(e) than 0.8, then the least value of (d) 5</li> <li>(f) balls are drawn at random from drawn for the 4<sup>th</sup> time on the 7<sup>th</sup> (d) 1/2</li> <li>(d) 1/2</li> <li>(e) I/2</li> <li>(d) None of these</li> <li>(e) None of these</li> <li>(f) None of these</li> <li>(f) None of these</li> <li>(f) None of these</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

304. In a box of 10 electric bulbs, two are defective. Two bulbs are selected at random one after the other from the box. The first bulb after selection being put back in the box before making the second selection. The probability that both the bulbs are without defect is [MP PET 1987] (a) 9/25 (b) 16/25 (c) 4/5 (d) 8/25 305. If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1, is (a)  $\frac{2}{3}$ (c)  $\frac{7}{8}$ (d)  $\frac{15}{16}$ (b)  $\frac{4}{5}$ 306. A die is tossed thrice. If getting a four is considered a success, then the mean and variance of the probability distribution of the number of successes are (a)  $\frac{1}{2}, \frac{1}{12}$ (b)  $\frac{1}{6}, \frac{5}{12}$ (c)  $\frac{5}{6}, \frac{1}{2}$ (d) None of these **307.** Suppose A and B shoot independently until each hits his target. They have probabilities 3/5, 5/7 of hitting the targets at each shot. The probability that *B* will require more shots than *A* is (a) 6/31 (d) None of these (b) 7/31 (c) 8/31 **308.** A fair coin is tossed *n* times. Let *X* be the number of times head occurs. If P(X = 4), P(X = 5) and P(X = 6) are in A.P., then value of *n* is (a) 7 (b) 10 (c) 12 (d) 14 **309.** In a precision bombing attack there is a 50% chance that any one bomb will strike the target. Two direct hits are required to destroy the target completely. The minimum number of bombs which should be dropped to give a 99% chance or better of completely destroying the target is (a) 10 (b) 11 (d) None of these (c) 12 310. If the mean of a binomial distribution is 25, then its standard deviation lies in the interval given below (a) [0, 5)(c) [0, 25) (d) (0, 25](b) (0, 5] **311.** If *n* integers taken at random are multiplied together, then the probability that the last digit of the product is 1, 3, 7 or 9 is (a)  $\frac{2^n}{5^n}$ (b)  $\frac{8^n - 2^n}{5^n}$ (c)  $\frac{4^n - 2^n}{5^n}$ (d) None of these 312. A bag contains 14 balls of two colours, the number of balls of each colour being the same. 7 balls are drawn at random one by one. The ball in hand is returned to the bag before each new draw. If the probability that at least 3 balls of each colour are drawn is p then (b)  $p = \frac{1}{2}$ (d)  $p < \frac{1}{2}$ (a)  $p > \frac{1}{2}$ (c) *p* < 1 313. An ordinary dice is rolled a certain number of times. The probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times. Then the probability of getting an odd number an odd number of times is (a)  $\frac{1}{32}$ (c)  $\frac{1}{2}$ (b)  $\frac{5}{16}$ (d) None of these **314.** The probability of a bomb hitting a bridge is  $\frac{1}{2}$  and two direct hits are needed to destroy it. The least number of bombs required so that the probability of the bridge being destroyed is greater than 0.9, is (c) 6 (a) 8 (d) 9 (b) 7

- **315.** All the spades are taken out from a pack of cards. From these cards, cards are drawn one by one without replacement till the ace of spade comes. The probability that the ace comes in the 4<sup>th</sup> draw is
  - (a)  $\frac{1}{13}$  (b)  $\frac{12}{13}$  (c)  $\frac{4}{13}$  (d) None of these



| Pro | Probability Assignment (Basic and Advance Level) |     |             |     |     |     |             |     |     |             |     |           |             |             |     |           |     |     |     |
|-----|--------------------------------------------------|-----|-------------|-----|-----|-----|-------------|-----|-----|-------------|-----|-----------|-------------|-------------|-----|-----------|-----|-----|-----|
| 1   | 2                                                | 3   | 4           | 5   | 6   | 7   | 8           | 9   | 10  | 11          | 12  | 13        | 14          | 15          | 16  | 17        | 18  | 19  | 20  |
| d   | с                                                | b   | b           | b   | с   | d   | b           | d   | b   | a           | d   | a         | b           | b           | с   | d         | a   | a   | b   |
| 21  | 22                                               | 23  | 24          | 25  | 26  | 27  | 28          | 29  | 30  | 31          | 32  | 33        | 34          | 35          | 36  | 37        | 38  | 39  | 40  |
| d   | b                                                | с   | с           | с   | b   | a   | с           | с   | с   | b           | b   | d         | b           | с           | b   | b         | с   | b   | b   |
| 41  | 42                                               | 43  | 44          | 45  | 46  | 47  | 48          | 49  | 50  | 51          | 52  | 53        | 54          | 55          | 56  | 57        | 58  | 59  | 60  |
| a   | d                                                | b   | a           | с   | b   | b   | b           | d   | с   | b           | b   | b         | a           | b           | с   | b         | с   | b   | b   |
| 61  | 62                                               | 63  | 64          | 65  | 66  | 67  | 68          | 69  | 70  | 71          | 72  | 73        | 74          | 75          | 76  | 77        | 78  | 79  | 80  |
| a   | a                                                | с   | a           | a   | a   | a   | a           | с   | d   | b           | b   | a         | a           | b           | b   | d         | a   | с   | b   |
| 81  | 82                                               | 83  | 84          | 85  | 86  | 87  | 88          | 89  | 90  | 91          | 92  | 93        | 94          | 95          | 96  | 97        | 98  | 99  | 100 |
| a,b | b                                                | с   | b           | с   | d   | a   | b           | b   | a   | b           | d   | a,b,<br>c | a,b,<br>c,d | a,b,<br>c,d | a,c | b         | d   | с   | b   |
| 101 | 102                                              | 103 | 104         | 105 | 106 | 107 | 108         | 109 | 110 | 111         | 112 | 113       | 114         | 115         | 116 | 117       | 118 | 119 | 120 |
| a   | a                                                | a   | a,c         | b   | b   | b   | b           | с   | d   | a           | с   | d         | с           | a           | b   | с         | b   | b   | с   |
| 121 | 122                                              | 123 | 124         | 125 | 126 | 127 | 128         | 129 | 130 | 131         | 132 | 133       | 134         | 135         | 136 | 137       | 138 | 139 | 140 |
| с   | с                                                | b   | b           | d   | b   | с   | с           | a   | с   | a           | d   | b         | d           | b           | b   | a         | b   | b   | a   |
| 141 | 142                                              | 143 | 144         | 145 | 146 | 147 | 148         | 149 | 150 | 151         | 152 | 153       | 154         | 155         | 156 | 157       | 158 | 159 | 160 |
| b   | с                                                | b   | с           | d   | с   | d   | с           | с   | d   | a           | с   | d         | b           | с           | a   | b         | с   | с   | a   |
| 161 | 162                                              | 163 | 164         | 165 | 166 | 167 | 168         | 169 | 170 | 171         | 172 | 173       | 174         | 175         | 176 | 177       | 178 | 179 | 180 |
| с   | d                                                | d   | а           | а   | а   | b   | а           | c,d | d   | b           | а   | d         | с           | b           | d   | a,b,<br>c | с   | d   | d   |
| 181 | 182                                              | 183 | 184         | 185 | 186 | 187 | 188         | 189 | 190 | 191         | 192 | 193       | 194         | 195         | 196 | 197       | 198 | 199 | 200 |
| а   | b                                                | d   | a           | d   | с   | b   | a           | с   | a   | a,b,c,<br>d | a   | b         | b           | a           | a   | a         | a   | с   | с   |
| 201 | 202                                              | 203 | 204         | 205 | 206 | 207 | 208         | 209 | 210 | 211         | 212 | 213       | 214         | 215         | 216 | 217       | 218 | 219 | 220 |
| a   | b                                                | с   | a           | d   | d   | с   | с           | d   | d   | a           | с   | a         | d           | a           | с   | С         | b   | d   | d   |
| 221 | 222                                              | 223 | 224         | 225 | 226 | 227 | 228         | 229 | 230 | 231         | 232 | 233       | 234         | 235         | 236 | 237       | 238 | 239 | 240 |
| а   | b                                                | b   | a           | d   | с   | a   | a,b,c,<br>d | b   | a   | с           | с   | с         | a           | d           | a,d | а         | b   | c,d | d   |
| 241 | 242                                              | 243 | 244         | 245 | 246 | 247 | 248         | 249 | 250 | 251         | 252 | 253       | 254         | 255         | 256 | 257       | 258 | 259 | 260 |
| d   | d                                                | a   | a,b,c,<br>d | b   | с   | b   | с           | b   | с   | с           | b   | d         | a           | a           | a   | d         | b   | b   | с   |
| 261 | 262                                              | 263 | 264         | 265 | 266 | 267 | 268         | 269 | 270 | 271         | 272 | 273       | 274         | 275         | 276 | 277       | 278 | 279 | 280 |
| a   | b                                                | b   | a           | d   | a   | a   | a           | d   | b   | с           | b   | с         | a           | d           | с   | d         | b   | с   | a   |
| 281 | 282                                              | 283 | 284         | 285 | 286 | 287 | 288         | 289 | 290 | 291         | 292 | 293       | 294         | 295         | 296 | 297       | 298 | 299 | 300 |
| b   | b                                                | a   | d           | a   | с   | a   | a           | b   | с   | с           | d   | a         | с           | a           | d   | d         | с   | b   | с   |
| 301 | 302                                              | 303 | 304         | 305 | 306 | 307 | 308         | 309 | 310 | 311         | 312 | 313       | 314         | 315         |     |           |     |     |     |
| b   | b                                                | b   | b           | d   | d   | a   | а           | b   | a   | a           | а   | с         | a           | a           |     |           |     |     |     |