Chapter 8

Algebraic Expressions

Exercise 8.1

Ouestion 1.

From the algebraic expressions using variables, constants, and arithmetic operations:

- (i) 6 more than thrice a number x.
- (ii) 5 times x is subtracted from 13.
- (iii) The numbers x and y both squared and added.
- (iv) Number 7 is added to 3 times the product of p and q.
- (v) Three times of x is subtracted from the product of x with itself.
- (vi) Sum of the numbers m and n is subtracted from their product. Solution:
- (i) 6 more than thrice a number x = 3x + 6
- (ii) 5 times x is subtracted from 13 = 13 5x
- (iii) The numbers x and y both squared and added = $x^2 + y^2$
- (iv) Number 7 is added to 3 times the product of p and q = 3pq + 1
- (v) Three times of x is subtracted from the product of x with itself = $x^2 3x$
- (vi) Sum of the numbers m and n is subtracted from their product = mn (m + n)

Question 2.

A taxi charges $\stackrel{?}{\stackrel{?}{?}}$ 9 per km and a fixed charge of $\stackrel{?}{\stackrel{?}{?}}$ 50. If the taxi is hired for x km, write an algebraic expression for this situation.

Solution:

```
Charges of a taxi = ₹ 9 per km
Fixed charges = ₹ 50
and taxi is hired for x km = (9x + 50) rupees
```

Question 3.

Write down the algebraic expression whose terms are:

- (i) 5a, -3b, c
- (ii) x^2 , -5x, 6
- (iii) x²y, xy, -xy²

(i)
$$5a - 3b + c$$

(ii)
$$x^2 - 5x + 6$$

(iii)
$$x^2y + xy - xy^2$$

Question 4.

Write all the terms of each of the following algebraic expressions:

(i)
$$3 - 7x$$

(ii)
$$2 - 5a + 12b$$

(iii)
$$3x^5 + 4y^3 - 7xy^2 + 3$$

Solution:

(i)
$$3 - 7x = 3, -7x$$

(ii)
$$2 - 5a + \frac{3}{2}b = 2, -5a, \frac{3}{2}b$$

(iii)
$$3x^5 + 4y^3 - 7xy^2 + 3 = 3x^5, 4y^3, -7xy^2, 3$$

Question 5.

Identify the terms and their factors in the algebraic expressions given below:

(i)
$$-4x + 5y$$

(ii)
$$xy + 2x^2y^2$$

(iii)
$$1.2ab - 2.4b + 3.6a$$

Solution:

(i)
$$-4x + 5y$$

$$-4x = -4, x$$

$$5y = 5, y$$

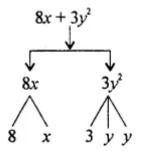
(ii)
$$xy + 2x^2y^2$$

$$xy = x, y$$

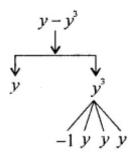
$$2x^2y^2 = 2$$
, x, x, y, y

$$-2.4b = -2.4$$
, b

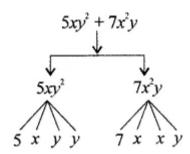
Question 6.

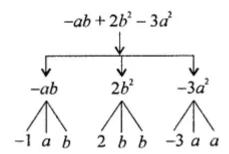

Show the terms and their factors by tree diagrams of the following algebraic expressions:

$$(i) 8x + 3y^2$$


(iii)
$$5xy^2 + 7x^2y$$

(iv)
$$-ab + 2b^2 - 3a^2$$


(i)
$$8x + 3y^2$$


(ii)
$$y-y^3$$

$$(iii)\ 5xy^2+7x^2y$$

$$(iv) -ab + 2b^2 - 3a^2$$

Question 7.

Write down the numerical coefficient of each of the following:

- (i) -7x
- (ii) $-2x^3y^2$
- (iii) 6abcd²
- (iv) 2/3 pq²

Solution:

Numerical co-efficient

- (i) -7x numerical co-efficient is -7
- (ii) -2x3y2 numerical co-efficient is -2
- (iii) 6abcd2 numerical co-efficient is 6
- (iv) $\frac{2}{3}$ pq² numerical co-efficient is $\frac{2}{3}$

Question 8.

Write down the coefficient of x in the following:

- (i) -4bx
- (ii) 5xyz
- (iii) -x
- (iv) $-3x^2y$

Solution:

coefficient of x

- (i) -4bx -4b
- (ii) 5xyz 5yz
- (iii) -x -1
- (iv) $-3x^2y -3xy$

Question 9.

In -7xy2z3, write down the coefficient of:

- (i) 7x
- (ii) -xy²
- (iii) xyz
- (iv) 7yz²

- $In -7xy^2z^3$
- (i) Co-efficient of $7x = -y^2z^3$
- (ii) Co-efficient of $-xy^2 = 7z^3$
- (iii) Co-efficient of $xyz = -7yz^2$
- (iv) Co-efficient of $7yz^2 = -xyz$

Question 10.

Identify the terms (other than constants) and write their numerical coefficients in each of the following algebraic expressions:

(i)
$$3 - 7x$$

(ii)
$$1 + 2x - 3x^2$$

(iii)
$$1.2a + 0.8b$$

Solution:

Expression	Non-constant terms	Numerical co-efficient
(i) $3-7x$	-7 <i>x</i>	-7
(ii) $1 + 2x - 3x^2$	2x	2
	$-3x^{2}$	-3
(iii) $1.2a + 0.8b$	1.2 <i>a</i>	1.2
	0.8 <i>b</i>	0.8

Question 11.

Identify the terms which contain x and write the coefficient of x in each of the following expressions:

(i)
$$13y^2 - 8xy$$

(ii)
$$7x - xy^2$$

(iii) $5 - 7xyz + 4x^2y$

Solution:

Expression	Term(s) Containing	Co-efficient of
	x	x
(i) $13y^2 - 8xy$	-8xy	-8 <i>y</i>
(ii) $7x - xy^2$	7 <i>x</i>	7
	$-xy^2$	-y ²
$(iii) 5 - 7xyz + 4x^2y$	-7xyz	−7 <i>yz</i> 4 <i>xy</i>
	$4x^2y$	4xy

Question 12.

Identify the term which contain y2 and write the coefficient of y2 in each of the following expressions:

(i)
$$8 - xy^2$$

(ii)
$$5y^2 + 7x - 3xy^2$$

(iii)
$$2x^2y - 15xy^2 + 7y^2$$

Expression	Term(s) Containing y^2	Co-efficient of y^2
(i) $8 - xy^2$	-xy²	-x
(ii) $5y^2 + 7x - 3xy^2$	$5y^2$	5
	$-3xy^2$	-3x
(iii) $2x^2y - 15xy^2 + 7y^2$	$-15xy^{2}$	-15x
	$7y^{2}$	7

Question 13.

Classify into monomials, binomials and trinomials:

- (i) 4y 7z
- (ii) -5xy²
- (iii) x + y xy
- (iv) $ab^2 5b 3a$
- (v) $4p^2q 5pq^2$
- (vi) 2017
- (vii) $1 + x + x^2$
- (viii) $5x^2 7 + 3x + 4$

Solution:

Expression	Number of terms	Kind
(i) $4y - 7z$	Two terms	Bionomial
(ii) $-5xy^2$	One term	Monomial
(iii) $x + y - xy$	Three terms	Trinomial
(iv) $ab^2 - 5b - 3a$	Three terms	Trinomial
$(v) 4p^2q - 5pq^2$	Two terms	Bionomial
(vi) 2017	One term	Monomial
$(vii) 1 + x + x^2$	Three terms	Trinomial
$(viii)5x^2 - 7 + 3x + 4$	Three terms	Trinomial
$=5x^2+3x-3$		

Question 14.

State whether the given pair of terms is of like or unlike terms:

- (i) -7x, 5/2x
- (ii) -29x, -29y

- (iii) 2xy, 2xyz
- (iv) 4m²p, 4mp²
- (v) 12xz, 12x²z²
- (vi) -5pq, 7qp

- (i) $-7x, \frac{5}{2}x Like$
- (ii) -29x, -29y Unlike
- (iii) 2xy, 2xyz Unlike
- (iv) 4m²p, 4mp² Unlike
- (v) 12xz, 12x²z² Unlike
- (vi) -5pq, 7qp Like

Question 15.

Identify like terms in the following:

- (i) x^2y , $3xy^2$, $-2x^2y$, $4x^2y^2$
- (ii) 3a2b, 2abc, -6a2b, 4abc
- (iii) 10pq, 7p, $8q p^2q^2$, -7qp, -100q, -23, $12q^2p^2$, $-5p^2$, 41, 2405p, 78qp, $13p^2q$, qp^2 , $701p^2$ Solution:
 - (i) x2y and -2x2y are like terms.
 - (ii) 3a2b, -6a2b and 2abc, 4abc are pairs of like terms.
 - (iii) 10pq, -7qp, 78qp and 7p, 2405p and 8q, -100q, and - p^2q^2 , 12 q^2p^2 and -23, 41 and -5 p^2 , 701 p^2
 - and 13p²q, qp² are groups of like terms.

Question 16.

Write down the degree of following polynomials in x:

- (i) $x^2 6x^7 + x^8$
- (ii) 3 2x
- (iii) -2
- (iv) $1 x^2$

Solution:

- (i) $x^2 6x^7 + x^8$; degree is 8
- (ii) 3 2x; degree is 1
- (iii) -2; degree is 0
- (iv) $1 x^2$; degree is 2

Ouestion 17.

Write the degree of the following polynomials:

(i) $3x^2 - 5xy^2 + 7$

(ii)
$$xy^2 - y^3 + 3y^4 - 2$$

(iii)
$$7 - 2x^3 - 5xy^3 + 9y^5$$

(i)
$$3x^2 - 5xy^2 + 1$$
; degree is $1 + 2 = 3$

(ii)
$$xy^2 - y^3 + 3y^4 - 2$$
; degree is 4

(iii)
$$7 - 2x^3 - 5xy^3 + 9y^5$$
; degree is 5

Question 18.

State true or false:

- (i) If 5 is constant andy is variable, then 5y and 5 + y are variables
- (ii) 7x has two terms, 7 and x
- (iii) 5 + xy is a trinomial
- (iv) $7a \times bc$ is a binomial
- (v) $7x^3 + 2x^2 + 3x 5$ is a polynomial
- (vi) $2x^2 3x$ is a polynomial
- (vii) Coefficient of x in -3xy is -3

- (i) True.
- (ii) False. Correct: 7x has one term.
- (iii) False. Correct: It is bionomial.
- (iv) False. Correct: It is 7abc monomial.
- (v) True.
- (vi) False. Correct: It is bionomial.
- (vii) False. Correct: It is -3y.

Exercise 8.2

Question 1.

Add:

- (i) 7x, -3x
- (ii) 6x, -11x
- (iii) 5x2, -9x2
- (iv) 3ab2, -5ab2
- (v) 1/2 pq, -1/3 pq
- (vi) $5x^3y$, $-23x^3y$

Solution:

- (i) 7x + (-3x) = 7x 3x = 4x
- (ii) 6x + (-11x) = 6x 11x = -5x
- (iii) $5x^2 + (-9x^2) = 5x^2 9x^2 = -4x^2$
- (iv) $3ab^2 + (-5ab^2) = 3ab^2 5ab^2 = -2ab^2$

$$(v) \frac{1}{2}pq + \left(-\frac{1}{3}pq\right) = \frac{1}{2}pq - \frac{1}{3}pq$$
$$= \frac{3pq - 2pq}{6} = \frac{pq}{6} = \frac{1}{6}pq$$

(vi)
$$5x^3y + \left(-\frac{2}{3}x^3y\right) = 5x^3y - \frac{2}{3}x^3y$$

$$=\frac{15x^3y-2x^3y}{3}=\frac{13x^3y}{3}$$

$$=\frac{13}{3}x^3y$$

Question 2.

Add:

- (i) 3x, -5x, 7x
- (ii) 7xy, 2xy, -8xy
- (iii) -2abc, 3abc, abc
- (iv) 3mn, -5mn, 8mn, -4mn
- (v) $2x^3$, $3x^3$, $-4x^3$, $-5x^3$

$$= 3x - 5x + 7x$$

$$=(3-5+7)x$$

$$=(10-5)x$$

$$= 7xy + 2xy - 8xy$$

$$= (7 + 2 - 8)xy$$

$$= (9 - 8)xy$$

$$= (-2 + 3 + 1)$$
 abc

$$= (4 - 2)$$
 abc

$$= (3 - 5 + 8 - 4) \text{ mn}$$

$$= (11 - 9) mn$$

(v)
$$2x^3$$
, $3x^3$, $-4x^3$, $-5x^3$

$$= 2x^3 + 3x^3 - 4x^3 - 5x^3$$

$$= (2 + 3 - 4 - 5) x^3$$

$$= (5 - 9) x^3$$

$$= -4x^3$$

Question 3.

Simplify the following combining like terms:

(i)
$$21b - 32 + 7b - 20b$$

(ii)
$$12m^2 - 9m + 5m - 4m^2 - 7m + 10$$

(iii)
$$-z^2 + 13z^2 - 5z + 7z^2 - 15z$$

(iv)
$$5x^2y - 5x^2 + 3yx^2 - 3y^2 + x^2 - y^2 + 8xy^2 - 3y^2$$

(v)
$$p - (p - q) - (q - p) - q$$

(vi)
$$3a - 2b - ab - (a - b + ab) + 3ab + b - a$$

(vii)
$$(3y^2 + 5y - 4) - (8y - y^2 - 4)$$

(i)
$$21b - 32 + 7b - 20b$$

$$= 21b + 7b - 20b - 32$$

$$=(21+7-20)b-32$$

$$=(28-20)b-32$$

$$= 8b - 32$$

(ii)
$$12m^2 - 9m + 5m - 4m^2 - 7m + 10$$

$$= 12m^2 - 4m^2 - 9m + 5m - 7m + 10$$

$$= (12 - 4)m^2 - (9 - 5 + 7)m + 10$$

$$= 18m^2 - 11m + 10$$

(iii)
$$-z^2 + 13z^2 - 5z + 7z^3 - 15z$$

$$= 77^3 - 7^2 + 137^2 - 57 - 157$$

$$= 7z^3 + 12z^2 - 20z$$

(iv)
$$5x^2y - 5x^2 + 3yx^2 - 3y^2 + x^2 - y^2 + 8xy^2 - 3y^2$$

$$= 5x^2y + 3x^2y + 8xy^2 - 5x^2 + x^2 - 3y^2 - y^2 - 3y^2$$

$$= (5+3) x^2y - (5-1) x^2 - (3+1+3) y^2 + 8xy^2$$

$$= 8x^2y - 4x^2 - 7y^2 + 8xy^2$$

$$= 8x^2y + 8xy^2 - 4x^2 - 7y^2$$

$$(v) p - (p - q) - (q - p) - q$$

$$= p - p + q - q + p - q$$

$$= p - p + p + q - q - q$$

$$= p - q$$

(vi)
$$3a - 2b - ab - (a - b + ab) + 3ab + b - a$$

$$= 3a - 2b - ab - a + b - ab + 3ab + b - a$$

$$= 3a - a - a - 2b + b + b - ab + 3ab$$

(vii)
$$(3y^2 + 5y - 4) - (8y - y^2 - 4)$$

$$= 3y^2 + 5y - 4 - 8y + y^2 + 4$$

$$= 3y^2 + y^2 + 5y - 8y + 4 - 4$$

$$= 4y^2 - 3y$$

Question 4.

Find the sum of the following algebraic expressions:

- (i) 5xy, -7xy, $3x^2$
- (ii) $4x^2y$, $-3xy^2$, $-5xy^2$, $5x^2y$
- (iii) -7mn + 5, 12mn + 2, 8mn 8, -2mn 3
- (iv) a + b 3, b a + 3, a b + 3
- (v) 14x + 10y 12xy 13, 18 7x 10y + 8xy, 4xy
- (vi) 5m 7n, 3n 4m + 2, 2m 3mn 5
- (vii) $3x^3 5x^2 + 2x + 1$, $3x 2x^2 x^3$, $2x^2 7x + 9$
- (viii) $7a^2 5a + 2$, $3a^2 7$, 2a + 9, $1 + 2a 5a^2$

- (i) 5xy, -7xy, 3x²
- $= 5xy 7xy + 3x^2$
- $= 3x^2 2xy$
- (ii) 4x²y, -3xy², -5xy², 5x²y
- $= 4x^2y + 5x^2y 3xy^2 5xy^2$
- $= 9x^2y 8xy^2$
- (iii) -7mn + 5, 12mn + 2, 8mn 8, -2mn 3
 - -7mn + 5
 - 12mn + 2
 - 8mn 8
 - -2mn 3
 - $\overline{11mn-4}$

- (iv) a + b 3, b a + 3, a b + 3
 - a + b 3
 - -a + b + 3
 - $\frac{a-b+3}{a+b+3}$
- a+b+3

$$\begin{array}{r}
 14x + 10y - 12xy - 13 \\
 -7x - 10y + 8xy + 18 \\
 \hline
 + 4xy \\
 \hline
 7x + 5
 \end{array}$$

$$7x + 5$$

$$5m - 7n$$

 $-4m + 3n + 2$
 $2m - 5 - 3mn$
 $3m - 4n - 3 - 3mn$

$$3m - 4n - 3mn - 3$$

(vii)
$$3x^3 - 5x^2 + 2x + 1$$
, $3x - 2x^2 - x^3$, $2x^2 - 7x + 9$

$$3x^{3} - 5x^{2} + 2x + 1$$

$$-x^{3} - 2x^{2} + 3x$$

$$2x^{2} - 7x + 9$$

$$2x^{3} - 5x^{2} - 2x + 10$$

$$2x^3 - 5x^2 - 2x + 10$$

(viii)
$$7a^2 - 5a + 2$$
, $3a^2 - 7$, $2a + 9$, $1 + 2a - 5a^2$

$$7a^{2} - 5a + 2$$

$$3a^{2} - 7$$

$$2a + 9$$

$$-5a^{2} + 2a + 1$$

$$5a^{2} - a + 5$$

Question 5.

Simplify the following:

(i)
$$2x^2 + 3y^2 - 5xy + 5x^2 - y^2 + 6xy - 3x^2$$

(ii)
$$3xy^2 - 5x^2y + 7xy - 8xy^2 - 4xy + 6x^2y$$

(iii)
$$5x^4 - 7x^2 + 8x - 1 + 3x^3 - 9x^2 + 7 - 3x^4 + 11x - 2 + 8x^2$$

(i)
$$2x^2 + 3y^2 - 5xy + 5x^2 - y^2 + 6xy - 3x^2$$

= $2x^2 + 5x^2 - 3x^2 + 3y^2 - y^2 - 5xy + 6xy$
= $4x^2 + 2y^2 + xy$
(ii) $3xy^2 - 5x^2y + 7xy - 8xy^2 - 4xy + 6x^2y$
= $3xy^2 - 8xy^2 - 5x^2y + 6x^2y + 7xy - 4xy$
= $-5xy^2 + x^2y + 3xy$
(iii) $5x^4 - 7x^2 + 8x - 1 + 3x^3 - 9x^2 + 7 - 3x^4 + 11x - 2 + 8x^2$
= $5x^4 - 3x^4 + 3x^3 - 7x^2 - 9x^2 + 8x^2 + 8x + 11x - 1 + 7 - 2$
= $2x^4 + 3x^3 - 8x^2 + 19x + 4$

Question 6.

Subtract:

- (i) $-5y^2$ from y^2
- (ii) -7xy from -2xy
- (iii) a(b 5) from b(5 a)
- (iv) $-m^2 + 5mn$ from $4m^2 3mn + 8$
- (v) $5a^2 7ab + 5b^2$ from $3ab 2b 2b^2$
- (vi) $4pq 5q^2 3p^2$ from $5p^2 + 3q^2 pq$
- (vii) $7xy + 5x^2 7y^2 + 3$ from $7x^2 8xy + 3y^2 5$
- (viii) $2x^4 7x^2 + 5x + 3$ from $x^4 3x^3 2x^2 + 3$

$$-5y^2$$
 from y^2

$$= y^2 - (-5y^2)$$

$$= y^2 + 5y^2$$

$$= 6y^2$$

$$= -2xy - (-7xy)$$

$$= -2xy + 7xy$$

(iii)
$$a(b - 5)$$
 from $b(5 - a)$

$$= b(5 - a) - a(b - 5)$$

(iv)
$$-m^2 + 5mn$$
 from $4m^2 - 3mn + 8$
 $= 4m^2 - 3mn + 8 - (-m^2 + 5mn)$
 $= 4m^2 - 3mn + 8 + m^2 - 5mn$
 $= 5m^2 - 8mn + 8$
(v) $5a^2 - 7ab + 5b^2$ from $3ab - 2a^2 - 2b^2$
 $= (3ab - 2a^2 - 2b^2) - (5a^2 - 7ab + 5b^2)$
 $= 3ab - 2a^2 - 2b^2 - 5a^2 + 7ab - 5b^2$
 $= -7a^2 - 7b^2 + 10ab$
 $= 10ab - 7a^2 - 7b^2$
(vi) $4pq$, $-5q^2 - 3p^2$ from $5p^2 + 3q^2 - pq$
 $= (5p^2 + 3q^2 - pq) - (4pq - 5q^2 - 3p^2)$
 $= 5p^2 + 3q^2 - pq - 4pq + 5q^2 + 3p^2$
 $= 5p^2 + 3p^2 + 3q^2 + 5q^2 - pq - 4pq$
 $= 8p^2 + 8q^2 - 5pq$
(vii) $7xy + 5x^2 - 7y^2 + 3$ from $7x^2 - 8xy + 3y^2 - 5$
 $= (7x^2 + 3y^2 - 8xy - 5) - (7xy + 5x^2 - 7y^2 + 3)$
 $= 7x^2 + 3y^2 - 8xy - 5 - 7xy - 5x^2 + 7y^2 - 3$
 $= 7x^2 - 5x^2 + 3y^2 + 7y^2 - 8xy - 7xy - 5 - 3$
 $= 2x^2 + 10y^2 - 15xy - 8$
(viii) $2x^4 - 7x^2 + 5x + 3$ from $x^4 - 3x^3 - 2x^2 + 3$
 $= (x^4 - 3x^3 - 2x^2 + 3) - (2x^4 - 7x^2 + 5x + 3)$
 $= x^4 - 3x^3 - 2x^2 + 3 - 2x^4 + 7x^2 - 5x - 3$
 $= x^4 - 3x^3 + 5x^2 - 5x$

Question 7.

Subtract p - 2q + r from the sum of 10p - r and 5p + 2q. Solution:

Subtract p - 2q + r from the sum of 10p - r and 5p + 2q
By adding 10p - r + 5p + 2q and 5p + 2q, we get
=
$$10p - r + 5p + 2q$$

= $15p + 2q - r$

Now,
$$(15p + 2q - r) - (p - 2q + r)$$

= $15p + 2q - r - p + 2q - r$
= $14p + 4q - 2r$

Question 8.

From the sum of 4 + 3x and $5 - 4x + 2x^2$, subtract the sum of $3x^2 - 5x$ and $-x^2 + 2x + 5$. Solution:

Sum of
$$(4 + 3x) + (5 - 4x + 2x^2)$$

= $4 + 3x + 5 - 4x + 2x^2$
= $2x^2 - x + 9$
and sum of $3x^2 - 5x - x^2 + 2x + 5$
= $2x^2 - 3x + 5$
Now, $(2x^2 - x + 9) - (2x^2 - 3x + 5)$
= $2x^2 - x + 9 - 2x^2 + 3x - 5$
= $2x + 4$

Question 9.

What should be added to $x^2 - y^2 + 2xy$ to obtain $x^2 + y^2 + 5xy$? Solution:

Let the term added = Z term i.e., Z term + $x^2 - y^2 + 2xy = x^2 + y^2 + 5xy$ Z term = $(x^2 + y^2 + 5xy) - (x^2 - y^2 + 2xy)$ = $x^2 + y^2 + 5xy - x^2 + y^2 - 2xy$ = $2y^2 + 3xy$ The required term is $2y^2 + 3xy$

Question 10.

What should be subtracted from $-7mn + 2m^2 + 3n^2$ to get $m^2 + 2mn + n^2$? Solution:

Let the term subtracted = Z term $-7mn + 2m^2 + 3n^2 - Z$ term = $m^2 + 2mn + n^2$ Z term = $(-7mn + 2mn + 3n^2) - (m^2 + 2mn + n^2)$ = $(-7mn + 2m^2 + 3n^2) - (m^2 + 2mn + n^2)$

$$= -7mn + 2m^2 + 3n^2 - m^2 - 2mn - n^2$$

$$= m^2 + 2n^2 - 9mn$$

The required term is $m^2 + 2n^2 - 9mn$

Question 11.

How much is $y^4 - 12y^2 + y + 14$ greater than $17y^3 + 34y^2 - 51y + 68$? Solution:

The required expression

$$= (y^4 - 12y^2 + y + 14) - (17y^3 + 34y^2 - 51y + 68)$$

$$= y^4 - 12y^2 + y + 14 - 17y^3 - 34y^2 + 51y - 68$$

$$= y^4 - 17y^3 - 46y^2 + 52y - 54$$

Question 12.

How much does $93p^2 - 55p + 4$ exceed $13p^3 - 5p^2 + 17p - 90$? Solution:

The required expression

$$= (93p^2 - 55p + 4) - (13p^3 - 5p^2 + 17p - 90)$$

$$= 93p^2 - 55p + 4 - 13p^3 - 5p^2 - 17p + 90$$

$$= -13p^3 + 98p^2 - 72p + 94$$

Question 13.

What should be taken away from $3x^2 - 4y^2 + 5xy + 20$ to obtain $-x^2 - y^2 + 6xy + 20$? Solution:

The required expression

$$= (3x^2 - 4y^2 + 5xy + 20) - (-x^2 - y^2 + 6xy + 20)$$

$$= 3x^2 - 4y^2 + 5xy + 20 + x^2 + y^2 - 6xy - 20$$

$$= 4x^2 - 3y - xy$$

Question 14.

From the sum of $2y^2 + 3yz$, $-y^2 - yz - z^2$ and $yz + 2z^2$, subtract the sum of $3y^2 - z^2$ and $-y^2 + yz + z^2$.

Sum of
$$2y^2 + 3yz$$
, $-y^2 - yz - z^2$ and $yz + 2z^2$
= $2y^2 + 3yz - y^2 - yz - z^2 + yz + 2z^2$
= $y^2 + z^2 + 3yz$
and sum = $3y^2 - z^2 + (-y^2 + yz + z^2)$
= $3y^2 - z^2 - y^2 + yz + z^2$
= $2y^2 + yz$
Now, $(y^2 + z^2 + 3yz) - (2y^2 + yz)$
= $y^2 + z^2 + 3yz - 2y^2 - yz$
= $-y^2 + z^2 + 2yz$
= $-y^2 + 2yz + z^2$

Exercise 8.3

Question 1.

If m = 2, find the value of:

- (i) 3m 5
- (ii) 9 5m
- (iii) $3m^2 2m 1$
- (iv) 5/2 m 4

Solution:

- (i) $3m 5 = 3 \times 2 5 = 6 5 = 1$
- (ii) $9 5m = 9 5 \times 2 = 9 10 = -1$
- (iii) $3m^2 2m 7$
- $=3(2)^2-2\times2-7$
- = 12 4 7
- = 12 11
- = 1
- (iv) $\frac{5}{2}$ m 4 = $\frac{5}{2}$ × 2 4 = 5 4 = 1

Question 2.

If p = -2, find the value of:

- (1) 4p + 7
- (ii) $-3p^2 + 4p + 7$
- (iii) $-2p^3 3p^2 + 4p + 7$

- p = -2
- (i) 4p + 7
- $= 4 \times (-2) + 7$
- = -8 + 7
- = -1
- (ii) $-3p^2 + 4p + 7$
- $= -3(-2)^2 + 4(-2) + 7$
- = -12 8 + 7
- = -20 + 7
- = -13

(iii)
$$-2p^3 - 3p^2 + 4p + 7$$

$$= -2(-2)^3 - 3(-2)^2 + 4(-2) + 7$$

$$= 16 - 12 - 8 + 7$$

= 3

Question 3.

If a = 2, b = -2, find the value of:

- (i) $a^2 + b^2$
- (ii) $a^2 + ab + b^2$
- (iii) $a^2 b^2$

Solution:

$$a = 2, b = -2$$

(i)
$$a^2 + b^2$$

$$=(2)^2+(-2)^2$$

$$= 4 + 4$$

(ii)
$$a^2 + ab + b^2$$

$$= (2)^2 + 2 \times (-2) + (-2)^2$$

$$= 4 - 4 + 4$$

$$= 8 - 4$$

(iii)
$$a^2 - b^2$$

$$=(2)^2-(-2)^2$$

$$= 4 - 4$$

= 0

Question 4.

When a = 0, b = -1, find the value of the given expressions:

(i)
$$2a^2 + b^2 + 1$$

(ii)
$$a^2 + ab + 2$$

(iii)
$$2a^2b + 2ab^2 + ab$$

$$a = 0, b = -1$$
(i) $2a^{2} + b^{2} + 1$

$$= 2(0)^{2} + (-1)^{2} + 1$$

$$= 0 + 1 + 1$$

$$= 2$$
(ii) $a^{2} + ab + 2$

$$= (0)^{2} + 0 \times (-1) + 2$$

$$= 0 + 0 + 2$$

$$= 2$$
(iii) $2a^{2}b + 2ab^{2} + ab$

$$= 2(0)^{2}(-1) + 2(0)(-1)^{2} + 0 \times (-1)$$

$$= 0 + 0 + 0$$

$$= 0$$

Question 5.

If p = -10, find the value of $p^2 - 2p - 100$. Solution:

$$p = -10,$$

$$p^{2} - 2p - 100$$

$$= (-10)^{2} - 2(-10) - 100$$

$$= 100 + 20 - 100$$

$$= 20$$

Question 6.

If z = 10, find the value of $z^3 - 3(z - 10)$. Solution:

$$z = 10$$

$$z^{3} - 3(z - 10)$$

$$= (10)^{3} - 3(10 - 10)$$

$$= 1000 - 3 \times 0$$

$$= 1000 - 0$$

$$= 1000$$

Question 7.

Simplify the following expressions and find their values when x = 2:

(i)
$$x + 7 + 4(x - 5)$$

(ii)
$$3(x + 2) + 5x - 7$$

(iii)
$$6x + 5(x - 2)$$

(iv)
$$4(2x-1) + 3x + 11$$

Solution:

$$x = 2$$

(i)
$$x + 7 + 4(x - 5)$$

$$= x + 7 + 4x - 20$$

$$= 5x - 13$$

$$= 5 \times 2 - 13$$

$$= 10 - 13$$

(ii)
$$3(x + 2) + 5x - 7$$

$$= 3x + 6 + 5x - 7$$

$$= 8x - 1$$

$$= 8(2) - 1$$

$$= 16 - 1$$

(iii)
$$6x + 5(x - 2)$$

$$= 6x + 5x - 10$$

$$= 11x - 10$$

$$= 11 \times 2 - 10$$

$$= 22 - 10$$

(iv)
$$4(2x - 1) + 3x + 11$$

$$= 8x - 4 + 3x + 11$$

$$= 11x + 7$$

$$= 11 \times 2 + 7$$

$$= 22 + 7$$

= 29

Question 8.

Simplify the following expressions and find their values when a = -1, b = -2:

(i)
$$2a - 2b - 4 - 5 + a$$

(ii) $2(a^2 + ab) + 3 - ab$
Solution:

$$a = -1, b = -2$$

(i)
$$2a - 2b - 4 - 5 + a$$

(ii)
$$2(a^2 + ab) + 3 - ab$$

$$= 2a^2 + 2ab + 3 - ab$$

$$= 2a^2 + ab + 3$$

$$= 2(-1)^2 + (-1)(-2) + 3$$

$$= 2 \times 1 + 2 + 3$$

$$= 2 + 2 + 3$$

Exercise 8.4

Question 1.

If m = 2, find the value of:

- (i) 3m 5
- (ii) 9 5m
- (iii) $3m^2 2m 1$
- (iv) 52 m 4

Solution:

- (i) $3m 5 = 3 \times 2 5 = 6 5 = 1$
- (ii) $9 5m = 9 5 \times 2 = 9 10 = -1$
- (iii) $3m^2 2m 7$
- $=3(2)^2-2\times2-7$
- = 12 4 7
- = 12 11
- = 1
- (iv) $\frac{5}{2}$ m 4 = $\frac{5}{2}$ × 2 4 = 5 4 = 1

Question 2.

If p = -2, find the value of:

- (1) 4p + 7
- (ii) $-3p^2 + 4p + 7$
- (iii) $-2p^3 3p^2 + 4p + 7$

$$p = -2$$

- (i) 4p + 7
- $= 4 \times (-2) + 7$
- = -8 + 7
- = -1
- (ii) $-3p^2 + 4p + 7$
- $= -3(-2)^2 + 4(-2) + 7$
- = -12 8 + 7
- = -20 + 7
- = -13

(iii)
$$-2p^3 - 3p^2 + 4p + 7$$

$$= -2(-2)^3 - 3(-2)^2 + 4(-2) + 7$$

$$= 16 - 12 - 8 + 7$$

= 3

Question 3.

If a = 2, b = -2, find the value of:

- (i) $a^2 + b^2$
- (ii) $a^2 + ab + b^2$
- (iii) $a^2 b^2$

Solution:

$$a = 2, b = -2$$

(i)
$$a^2 + b^2$$

$$=(2)^2+(-2)^2$$

$$= 4 + 4$$

(ii)
$$a^2 + ab + b^2$$

$$= (2)^2 + 2 \times (-2) + (-2)^2$$

$$= 4 - 4 + 4$$

$$= 8 - 4$$

(iii)
$$a^2 - b^2$$

$$=(2)^2-(-2)^2$$

$$= 4 - 4$$

= 0

Question 4.

When a = 0, b = -1, find the value of the given expressions:

(i)
$$2a^2 + b^2 + 1$$

(ii)
$$a^2 + ab + 2$$

(iii)
$$2a^2b + 2ab^2 + ab$$

$$a = 0, b = -1$$
(i) $2a^{2} + b^{2} + 1$

$$= 2(0)^{2} + (-1)^{2} + 1$$

$$= 0 + 1 + 1$$

$$= 2$$
(ii) $a^{2} + ab + 2$

$$= (0)^{2} + 0 \times (-1) + 2$$

$$= 0 + 0 + 2$$

$$= 2$$
(iii) $2a^{2}b + 2ab^{2} + ab$

$$= 2(0)^{2}(-1) + 2(0)(-1)^{2} + 0 \times (-1)$$

$$= 0 + 0 + 0$$

$$= 0$$

Question 5.

If p = -10, find the value of $p^2 - 2p - 100$. Solution:

$$p = -10,$$

$$p^{2} - 2p - 100$$

$$= (-10)^{2} - 2(-10) - 100$$

$$= 100 + 20 - 100$$

$$= 20$$

Question 6.

If z = 10, find the value of $z^3 - 3(z - 10)$. Solution:

$$z = 10$$

$$z^{3} - 3(z - 10)$$

$$= (10)^{3} - 3(10 - 10)$$

$$= 1000 - 3 \times 0$$

$$= 1000 - 0$$

$$= 1000$$

Question 7.

Simplify the following expressions and find their values when x = 2:

(i)
$$x + 7 + 4(x - 5)$$

(ii)
$$3(x + 2) + 5x - 7$$

(iii)
$$6x + 5(x - 2)$$

(iv)
$$4(2x-1) + 3x + 11$$

Solution:

$$x = 2$$

(i)
$$x + 7 + 4(x - 5)$$

$$= x + 7 + 4x - 20$$

$$= 5x - 13$$

$$= 5 \times 2 - 13$$

$$= 10 - 13$$

(ii)
$$3(x + 2) + 5x - 7$$

$$= 3x + 6 + 5x - 7$$

$$= 8x - 1$$

$$= 8(2) - 1$$

$$= 16 - 1$$

(iii)
$$6x + 5(x - 2)$$

$$= 6x + 5x - 10$$

$$= 11x - 10$$

$$= 11 \times 2 - 10$$

$$= 22 - 10$$

(iv)
$$4(2x - 1) + 3x + 11$$

$$= 8x - 4 + 3x + 11$$

$$= 11x + 7$$

$$= 11 \times 2 + 7$$

$$= 22 + 7$$

Question 8.

Simplify the following expressions and find their values when a=-1, b=-2:

(i)
$$2a - 2b - 4 - 5 + a$$

(ii) $2(a^2 + ab) + 3 - ab$
Solution:

$$a = -1, b = -2$$

(i)
$$2a - 2b - 4 - 5 + a$$

(ii)
$$2(a^2 + ab) + 3 - ab$$

$$= 2a^2 + 2ab + 3 - ab$$

$$= 2a^2 + ab + 3$$

$$= 2(-1)^2 + (-1)(-2) + 3$$

$$= 2 \times 1 + 2 + 3$$

$$= 2 + 2 + 3$$

Objective Type Questions

Question 1.

Fill in the blanks:

- (i) The terms with different algebraic factors are called
- (ii) The number of terms in a monomial is
- (iii) An algebraic expression having two unlike terms is called a
- (iv) 3a2b and -7ba2 are terms.
- (v) $-6a^2b$ and $-6ab^2$ are terms.
- (vi) The number of unlike terms in the algebraic expression $3x^2 2xy + 5x^2$ is
- (vii) The factors of the term -3p2q2 are
- (viii) The perimeter of a triangle whose sides measure 2a, b and a + b is
- (ix) The value of the expression $2x^3 7x^2 + 5x 3$ when x = 1 is
- (x) In the term -7a2bc, the coefficient of a is
- (xi) The degree of the polynomial $3 5x^2 + 7x^3 x^4$ is
- (xii) The degree of the polynomial $3x^2 2xy^2 + 5$ is

- (i) The terms with different algebraic factors are called unlike terms.
- (ii) The number of terms in a monomial is one.
- (iii) An algebraic expression having two unlike terms is called a bionomial.
- (iv) 3a2b and -7ba2 are like terms.
- (v) -6a2b and -6ab2 are unlike terms.
- (vi) The number of unlike terms in the algebraic expression $3x^2 2xy + 5x^2$ is 2.
- (vii) The factors of the term -3p2q2 are -3, p, p, q, q.
- (viii) The perimeter of a triangle whose sides measure
- 2a, b and a + b is 2a + b + a + b = 3a + 2b.
- (ix) The value of the expression $2x^3 7x^2 + 5x 3$

when
$$x = 1$$
 is -3.

$$2(1)^3 - 7(1)^2 + 5(1) - 3$$

$$= 2 - 7 + 5 - 3$$

- (x) In the term -7a2bc, the coefficient of a is -7abc.
- (xi) The degree of the polynomial $3 5x^2 + 7x^3 x^4$ is 4.

$$3 - 5x^2 + 7x^3 - x^4$$
 is 4

(xii) The degree of the polynomial $3x^2 - 2xy^2 + 5$ is 3.

$$3x^2 - 2xy^2 + 5$$
 is $1 + 2 = 3$

Question 2.

State whether the following statements are true (T) or false (F).

- (i) The expression 5x + 7 2x is a trinomial.
- (ii) (7x 10) (3x 5) = 4x 15.
- (iii) The coefficient of 3x in $-3x^3y$ is -xy.
- (iv) The constant term in the expression $2x^2 3xy 7$ is 7.
- (v) If x = 3 and y = 13 then the value of $xy (x^2 + y^2)$ is 919.
- (vi) (3x y + 5) (x + y) is a binomial.
- (vii) Sum of 2 and p is 2p.
- (viii) Sum of $x^2 + x$ and $y^2 + y$ is $2x^2 + 2y^2$.
- (ix) In like terms, variables and their powers are the same.
- (x) Every polynomial is a monomial.
- (xi) If we add a monomial and a binomial, then answer can never be a monomial.
- (xii) If we subtract a monomial from a binomial, then the answer is at least a binomial.
- (xiii) if we add a monomial and a trinomial, then the answer can be a monomial.
- (xiv) If we add a monomial and a binomial, then the answer can be a trinomial. Solution:
 - (i) The expression 5x + 7 2x is a trinomial. (False)

Correct:

As 5x + 7 - 2x = 3x + 7 which has two terms.

(ii)
$$(7x - 10) - (3x - 5) = 4x - 15$$
. (False)

Correct:

$$(7x - 10) - (3x - 5) = 4x - 5$$

(iii) The coefficient of 3x in -3x3y is -xy. (False)

Correct:

As co-efficient of 3x is -x2y

(iv) The constant term in the expression

$$2x^2 - 3xy - 7$$
 is 7. (False)

Correct:

$$2x^2 - 3xy - 7$$
 is -7

(v) If x = 3 and y =
$$\frac{1}{3}$$

(v) If x = 3 and y =
$$\frac{1}{3}$$

then the value of $xy(x^2 + y^2)$ is $9\frac{1}{9}$. (True)

$$xy(x^2 + y^2) = 3 \times \frac{1}{3} \left[(3)^2 + \left(\frac{1}{3}\right)^2 \right]$$

$$=1\left(9+\frac{1}{9}\right)=9\frac{1}{9}$$

(vi) (3x - y + 5) - (x + y) is a binomial. (False)

Correct:

$$= 3x - y + 5 - x + y$$

$$= 2x - 2y + 5$$

It is trinomial.

(vii) Sum of 2 and p is 2p. (False)

Correct:

Sum of 2 and p is 2 + p not 2p.

(viii) Sum of $x^2 + x$ and $y^2 + y$ is $2x^2 + 2y^2$. (False)

Correct:

Sum of $x^2 + x$ and $y^2 + y = x^2 + y^2 + x + y$ not $2x^2 + 2y^2$

- (ix) In like terms, variables and their powers are same. (True)
- (x) Every polynomial is a monomial. (False)

It could be binomial, trinomial or polynomial.

(xi) If we add a monomial and a binomial,

then answer can never be a monomial. (False)

Correct:

It can be monomial.

For example:

3x + (5 - 3x) = 3x + 5 - 3x = 5 which is monomial.

(xii) If we subtract a monomial from a binomial,

then the answer is at least a binomial. (False)

Correct:

It can be monomial also, for example

$$2x - (7 + 2x) = 2x - 2 - 2x = -7$$
 which is a monomial.

(xiii) if we add a monomial and a trinomial,

then the answer can be a monomial. (False)

Correct:

It can be binomial also.

(xiv) If we add a monomial and a binomial,

then the answer can be a trinomial. (True)

Multiple Choice Questions

Choose the correct answer from the given four options (3 to 16): Question 3.

The algebraic expression for the statement 'Thrice square of a number x subtracted from five times the sum of y and 2' is

(a)
$$5y + 2 - 3x^2$$

(b)
$$3x^2 - (5y + 2)$$

(c)
$$5(y+2) - 3x^2$$

(d)
$$5(y+2) - (3x)^2$$

Solution:

For the statement, thrice square of a number x

subtracted from five times the sum of y and 2 is $5(y + 2) - 3x^{2}(c)$

Question 4.

The expression $7x - 5(x^2 + y^2)$ is a

- (a) monomial
- (b) binomial
- (c) trinomial
- (d) none of these

Solution:

$$7x - 5(x^2 + y^2) = 7x - 5x^2 - 5y^2$$

It is trinomial. (c)

Question 5.

The coefficient of 5a² in -5a³bc is

- (a) -bc
- (b) a2bc
- (c) -a2bc
- (d) -abc

Co-efficient of 5a2 in -5a3bc is -abc (d)

Question 6.

Which of the following is a pair of like terms?

- (a) -5xy, 5x
- (b) -5xy, 3yz
- (c) -5xy, -5y
- (d) -5xy, 7yx

Solution:

-5xy, 7yx is a pair of like terms. (d)

Question 7.

The like terms is the expressions 3x(3-2y) and $2(xy+x^2)$ are

- (a) 9x and 2x²
- (b) -6xy and 2xy
- (c) 9x and 2xy
- (d) -6xy and $2x^2$

Solution:

Like terms in the expression

$$3x(3 - 2y) = 9x - 6xy$$
 and $2(xy + x^2) = 2xy + 2x^2$ are -6xy and $2xy$ (b)

Question 8.

Identify the binomial out of the following:

- (a) $3xy^2 + 5y x^2y$
- (b) $2x^2y 5y 2x^2y$
- (c) $3xy^2 + 5y xy^2$
- (d) xy + yz + zx

- (a) $3xy^2 + 5y x^2y$ trinomial
- (b) $2x^2y 5y 2x^2y = -5y$ monomial
- (c) $3xy^2 + 5y xy^2 = 2xy^2 + 5y$ binomial (c)

Question 9.

The number of (unlike) terms in the expression $3xy^2 + 2y^2z - y^2x + y(xz + yz) - 5$

- (a) 3
- (b) 4
- (c)5
- (d) 6

Solution:

The number of unlike terms in the expression

$$= 3xy^2 + 2y^2z - y^2x + y(xz + yz) - 5$$

$$= 3xy^2 + 2y^2z - y^2x + xyz + y^2z - 5$$

$$= 2xy^2 + 3y^2z^2 + xyz - 5$$

= 4 (b)

Question 10.

The value of the expression $x^3 + y^3$ when x = 2 and y = -2 is

- (a) 0
- (b) 8
- (c) 16
- (d) 16

Solution:

Value of
$$x^3 + y^3 = (2)^3 + (-2)^3 = 8 - 8 = 0$$
 (a)

Question 11.

- -xy (-5xy) is equal to
- (a) -6xy
- (b) 6xy
- (c) -4xy
- (d) 4xy

Solution:

$$-xy - (-5xy) = -xy + 5xy = 4xy (d)$$

Question 12.

On subtracting 7x + 5y - 3 from 5y - 3x - 9, we get

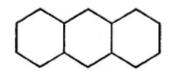
- (a) 10x + 6
- (b) -10x 6
- (c) 10x + 10y 12
- (d) -10x 12

$$(5y - 3x - 9) - (7x + 5y - 3)$$

= $5y - 3x - 9 - 7x - 5y + 3$
= $-10x - 6$ (b)

Question 13.

The value of the expression $53 x^2 + 1$ when x = -2 is


- (a) -173
- (b) -73
- (c) 213
- (d) 233

Solution:

$$\frac{5}{3}x^2 + 1 = \frac{5}{3}(-2)^2 + 1 = \frac{5}{3} \times 4 + 1$$
$$= \frac{20}{3} + 1 = \frac{23}{3} \tag{d}$$

Question 14.

The number of sides in a pattern having 3 hexagons arranged in a row as shown in the given figure is

- (a) 18
- (b) 17
- (c) 16
- (d) 15

Solution:

Number of sides are = 16 (c)

Question 15.

The degree of the polynomial $3x^3y - 5xy^4 - 2x + 1$ is

- (a) 5
- (b) 4
- (c) 3
- (d) 2

The degree of the polynomial

$$3x^3y - 5xy^4 - 2x + 1$$
 is of

$$-5xy^4 = 1 + 4 = 5$$
 (a)

Higher Order Thinking Skills (HOTS)

Question 1.

The length of a rectangle is 3x - 4y + 6z and the perimeter is 7x + 8y + 17z, find the breadth of the rectangle.

Solution:

Length of rectangle =
$$3x - 4y + 6z$$

$$2 \times length = 6x - 8y + 12z$$

and perimeter =
$$7x + 8y + 17z = 2(Length + Breadth)$$

$$2 \times Breadth = 7x + 8y + 17z - 6x + 8y - 12z = x + 5z + 16y$$

Breadth =
$$\frac{x}{2}$$
 + 8y + $\frac{5}{2}$ z

Question 2.

Simplify:
$$\frac{3x}{5} + \frac{2x}{3} - \left(\frac{x}{2} + \frac{2x}{5}\right)$$
.

$$\frac{3x}{5} + \frac{2x}{3} - \left(\frac{x}{2} + \frac{2x}{5}\right)$$

$$\frac{3x}{5} + \frac{2x}{3} - \frac{x}{2} - \frac{2x}{5}$$

$$=\frac{18x+20x-15x-12x}{30}$$

$$=\frac{38x-27x}{30}=\frac{11x}{30}$$

$$=\frac{11}{30}x$$

Question 3.

If a = 3, b = -1, then find the value of each of the following:

(i)
$$a^b$$

$$(iii) (ab)^b$$

$$(iv) (a+b)^b$$

$$(v) \left(\frac{b}{a}\right)^b$$

$$(vi) \left(\frac{a}{b} + \frac{b}{a}\right)^b$$

$$a = 3, b = -1$$

(i)
$$a^b = 3^{-1} = \frac{1}{3}$$

(ii)
$$b^a = (-1)^3 = -1$$

(iii)
$$(ab)^b = [3 \times (-1)]^{-1} = (-3)^{-1} = \frac{1}{-3}$$

$$(iv) (a + b)^b = (3 - 1)^{-1} = (2)^{-1} = \frac{1}{2}$$

$$(v)$$
 $\left(\frac{b}{a}\right)^b = \left(\frac{-1}{3}\right)^{-1} = \frac{3}{-1} = -3$

$$(vi) \left(\frac{a}{b} + \frac{b}{a}\right)^b = \left(\frac{3}{-1} + \frac{-1}{3}\right)^{-1} = \left(-3 - \frac{1}{3}\right)^{-1}$$
$$= \left(\frac{-10}{3}\right)^{-1} = \frac{-3}{10}$$

Check Your Progress

uestion 1.

Consider the expression $32 x^2y - 12 xy^2 + 6x^2y^2$.

- (i) How many terms are there? What do you call such an expression?
- (ii) List out the terms.
- (iii) In the term -12 xy^2 , write down the numerical coefficient and the literal coefficient.
- (iv) In the term -12 xy^2 , what is the coefficient of x? Solution:

$\frac{3}{2}x^2y - \frac{1}{2}xy^2 + 6x^2y^2$

- (i) It has 3 terms: Trinomial
- (ii) $\frac{3}{2}$ x²y, $\frac{-1}{2}$ xy², 6x²y²
- (iii) $\ln \frac{-1}{2} xy^2$,

numerical coefficient = $\frac{-1}{2}$

Literal coefficient = xy²

(iv) In the term $\frac{-1}{2}\,\text{xy}^2$

coefficient of $x = \frac{-1}{2}y^2$

Question 2.

Write the Degree of the following polynomials:

- (i) $25 x^3 7x^2 12 x + 3$
- (ii) $23 xy^2 5xy + 35 y^2x^2 + 2x$

Solution:

(i)
$$\frac{2}{5}x^3 - 7x^2 - \frac{1}{2}x + 3$$

Degree is 3.

(ii)
$$\frac{2}{3}xy^2 - 5xy + \frac{3}{5}y^2x^2 + 2x$$

Degree is
$$2 + 2 = 4$$

Question 3.

Identify monomials, binomials and trinomials from the following algebraic expressions:

- (i) $5x \times y$
- (ii) 3 5x
- (iii) 12(7x 3y + 5z)
- (iv) $3x^2 1.2xy$
- $(v)^{-3}x^{3}y^{4}z^{5}$
- (vi) $5x(2x 3y) + 7x^2$

(i)
$$5x \times y = 5xy$$
 Monomial

(ii)
$$3-5x$$
 Binomial

(iii)
$$\frac{1}{2}(7x - 3y + 5z)$$
 Trinomial

(iv)
$$3x^2 - 1.2xy$$
 Binomial

$$(v) -3x^3y^4z^5$$
 Monomial

(vi)
$$5x(2x-3y) + 7x^2$$

= $10x^2 - 15xy + 7x^2$
= $17x^2 - 15xy$ Binomial

Question 4.

Using horizontal method:

(i) Add
$$x^2 + y^2 - 2xy$$
, $-2x^2 - y^2 - 2xy$ and $3x^2 + y^2 + xy$

(ii) Subtract
$$-x^2 + y^2 + 2xy$$
 from $2x^2 - 3y^2$.

Solution:

(i)
$$x^2 + y^2 - 2xy - 2x^2 - y^2 - 2xy + 3x^2 + y^2 + xy$$

= $x^2 - 2x^2 + 3x^2 + y^2 - y^2 + y^2 - 2xy - 2xy + xy$
= $2x^2 + y^2 - 3xy$
(ii) $(2x^2 - 3y^2) - (-x^2 + y^2 + 2xy)$
= $2x^2 - 3y^2 + x^2 - y^2 - 2xy$
= $3x^2 - 4y^2 - 2xy$

Question 5.

Using column method, add ab + 2bc - ca and 2ab - bc - ca and subtract 4ab + 5bc - 3ca. Solution:

$$ab + 2bc - ca$$

 $2ab - bc - ca$
 $3ab + bc - 2ca$
 $4ab + 5bc - 3ca$
 $- - +$
 $-ab - 4bc + ca$

Question 6.

The sides fo a triangle are 5a - 3b, 3a + 2b and 5b - 2a, find its perimeter.

Sides of a triangle are 5a - 3b, 3a + 2b and 5b - 2a Perimeter = 5a - 3b + 3a + 2b + 5b - 2a = 8a - 2a + 4b = 6a + 4b

Question 7.

If two adjacent sides of a rectangle are 4x + 7y and 3y - x, find its perimeter. Solution:

Two adjacent sides of a rectangle are 4x + 7y and 3y - xPerimeter = 2(4x + 7y + 3y - x) = 2(3x + 10y) = 6x + 20y

Question 8.

Subtract the sum of $3x^2 + 2xy - 2y^2$ and $5y^2 - 7xy$ from $5x^2 + 2y^2 - 3xy$. Solution:

Sum of
$$3x^2 + 2xy - 2y^2$$
 and $5y^2 - 7xy$
= $3x^2 + 2xy - 2y^2 + 5y^2 - 7xy$
= $3x^2 - 5xy + 3y^2$
Now,

Question 9.

What must be added to $5x^3 - 2x^2 + 3x + 7$ to get $7x^3 + 7x - 5$? Solution:

Required expression

$$= 7x^{3} + 7x - 5 - (5x^{3} - 2x^{2} + 3x + 7)$$

$$= 7x^{3} + 7x - 5 - 5x^{3} + 2x^{2} - 3x - 7$$

$$= 2x^{3} + 2x^{2} + 4x - 12$$

Question 10.

How much is 3p - 4q + r less than 4p + 3q - 5r?

Required expression

$$= (4p + 3q - 5r) - (3p - 4q + r)$$

$$= 4p + 3q - 5r - 3p + 4q - r$$

$$= p + 7q - 6r$$

Question 11.

How much is $3a^2 - 5ab + 7b^2 + 3$ greater than $2a^2 + 2ab + 5$? Solution:

Required expression

$$3a^{2} - 5ab + 7b^{2} + 3$$

$$2a^{2} + 2ab + 5$$

$$- - -$$

$$a^{2} - 7ab + 7b^{2} - 2$$

Question 12.

How much should $5x^3 + 3x^2 - 2x + 1$ be increased to get $6x^2 + 7$? Solution:

Required expression

$$= 6x^2 + 7 - (5x^3 + 3x^2 - 2x + 1)$$

$$= 6x^2 + 7 - 5x^3 - 3x^2 + 2x - 1$$

$$= -5x^3 + 3x^2 + 2x + 6$$

Question 13.

Subtract the sum of $12ab - 10b^2 - 18a^2$ and $9ab + 12b^2 + 14a^2$ from the sum of $ab + 2b^2$ and $3b^2 - a^2$.

Solution:

and 9ab +
$$12b^2 + 14a^2$$

$$\begin{array}{r}
 12ab - 10b^2 - 18a^2 \\
 \underline{9ab + 12b^2 + 14a^2} \\
 \underline{21ab + 2b^2 - 4a^2}
 \end{array}$$

$$21ab + 2b^2 -$$

Now,

Question 14.

when a = 3, b = 0, c = -2, find the values of:

(i)
$$ab + 2bc + 3ca + 4abc$$

(ii)
$$a^3 + b^3 + c^3 - 3abc$$

Solution:

$$a = 3, b = 0, c = -2$$

$$= 3 \times 0 + 2 \times 0 \times (-2) + 3(-2)(3) + 4(3)(0)(-2)$$

$$= 0 + 0 - 18 + 0$$

(ii)
$$a^3 + b^3 + c^3 - 3abc$$

$$= (3)^3 + (0)^3 + (-2)^3 - 3 \times 3 \times 0 \times (-2)$$

$$= 27 + 0 - 8 - 0$$

= 19

Question 15.

$$13 = 10 \times 1 + 3$$

$$23 = 10 \times 2 + 3$$

$$33 = 10 \times 3 + 3$$

$$43 = 10 \times 4 + 3$$

$$10 \times n + 3 = 10n + 3$$

Where n is a natural number.