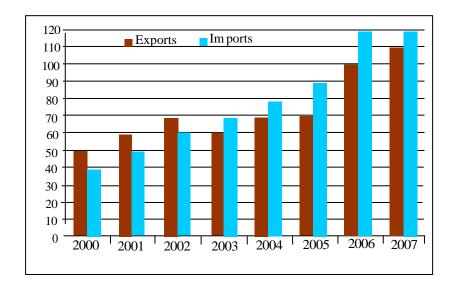
GENERAL APTITUDE

Q. No. 1 - 5 Carry One Mark Each

1. Choose the most appropriate phrase from the options given below to complete the following sentence							following se	ntence.	
	The	aircraft	_ take off	as soon as its f	light plan w	as filed.			
	(A)	is allowed to			(B)	will be allo	wed to		
	(C)	was allowed	to		(D)	has been al	lowed to		
Ans	wer:	(C)							
2.	Reac	l the statements	s:						
	•	All women as	re entrepre	neurs.					
	•	Some women	are doctor	rs					
	Whi	ch of the follow	ving conclu	isions can be l	ogically infe	rred from the	e above states	ments?	
	(A)	All women as	re doctors						
	(B)	All doctors as	re entrepre	neurs					
	(C)	All entrepren	eurs are w	omen					
	(D)	Some entrepr	eneurs are	doctors					
Ans	wer:	(D)							
3.	Choo	ose the most ap	propriate v	vord from the	options give	n below to co	omplete the f	ollowing sen	tence.
	"Ma	any ancient cult	ures attribu	ited disease to	supernatura	l causes. Ho	wever, moder	rn science ha	s largely
	helpe	eds	such notior	ıs."					
	(A)	impel	(B)	dispel	(C)	propel	(D)	repel	
Ans	wer:	(B)							
3.	Choo "Ma helpo (A)	ose the most ap any ancient cult eds impel	propriate vures attribusuch notion (B)	word from the outed disease to	options give supernatura (C)	n below to co l causes. Ho propel	omplete the fawever, modern (D)	following sen rn science ha repel	tence. s largely

4. The statistics of runs scored in a series by four batsmen are provided in the following table, Who is the most <u>consistent</u> batsman of these four?


Batsman	Average	Standard deviation
K	31.2	5.21
L	46.0	6.35
M	54.4	6.22
N	17.9	5.90

	(A)	K		(B)	L		(C)	M		(D)	N
Ans	wer:	(A)									
5.	Wha	t is the ne	ext number	in the	series?						
	12,	35, 81	, 173, 357	7,	-						
Ans	wer:	(725)									
					Q. No. 6	<u>– 10 Car</u>	ry One	e Mark I	<u>Each</u>		
6.	Find	the odd o	one from th	e follo	owing gro	up:					
			I,Q,W,A			N,V,B,D					
	(A)	W,E,K,			I,Q,W,A		(B)	F,N,T,2	X	(D)	N,V,B,D
Ans	wer:	(D)									
7.	For s	submitting	g tax returr	ıs, all ı	resident m	nales with	annua	l income	below Rs	10 lak	h should fill up Form P
	and a	all resider	nt females	with in	ncome bel	ow Rs 81	akh sh	ould fill	up Form	All peo	ple with incomes above
	Rs 1	0 lakh sho	ould fill up	Form	R, except	t non resi	dents v	vith incor	me above	Rs 151	akhs, who should fill up
	Forn	n S. All o	thers shoul	d fill I	Form T. A	ın exampl	e of a	person w	ho should	fill Fo	rm T is
	(A)	a reside	nt male wi	th ann	ual incom	ne Rs 9 la	kh				
	(B)	a reside	ent female	with a	nnual inco	ome Rs 9	lakh				
	(C)	a non-re	esident mal	le with	annual ir	ncome Rs	16 lak	:h			
	(D)	a non-re	esident fen	nale w	ith annual	income I	Rs 161	akh			
Ans	wer:	(B)									
8.	A tra	nin that is	280 metre	s long	travelling	g at a unit	form si	need cros	sses a plat	form in	60 seconds and passes

a man standing on the platform in 20 seconds. What is the length of the platform in metres?

Answer: (560)

9. The exports and imports (in crores of Rs.) of a country from 2000 to 2007 are given in the following bar chart. If the trade deficit is defined as excess of imports over exports, in which year is the trade deficit 1/5th of the exports?

- (A) 2005
- (B) 2004
- (C) 2007
- (D) 2006

Answer: (D)

10. You are given three coins: one has heads on both faces, the second has tails on both faces, and the third has a head on one face and a tail on the other. You choose a coin at random and toss it, and it comes up heads. The probability that the other face is tails is

- (A) 1/4
- (B) 1/3
- (C) 1/2
- (D) 2/3

Answer:

(B)

MECHANICAL ENGINEERING

Q. No. 1 – 25 Carry One Mark Each

Given that the determinant of the matrix $\begin{bmatrix} 1 & 3 & 0 \\ 2 & 6 & 4 \\ -1 & 0 & 2 \end{bmatrix}$ is -12, the determinant of the matrix

$$\begin{bmatrix} 2 & 6 & 0 \\ 4 & 12 & 8 \\ -2 & 0 & 4 \end{bmatrix}$$
 is

- (A) -96
- (B) -24
- (C) 24
- (D) 96

Answer: (A)

- $Lt \frac{x \sin x}{1 \cos x} is$
 - (A) 0
- (B) 1
- (C) 3
- (D) not defined

Answer: (A)

The argument of the complex number $\frac{1+i}{1-i}$, where $i = \sqrt{-1}$, is

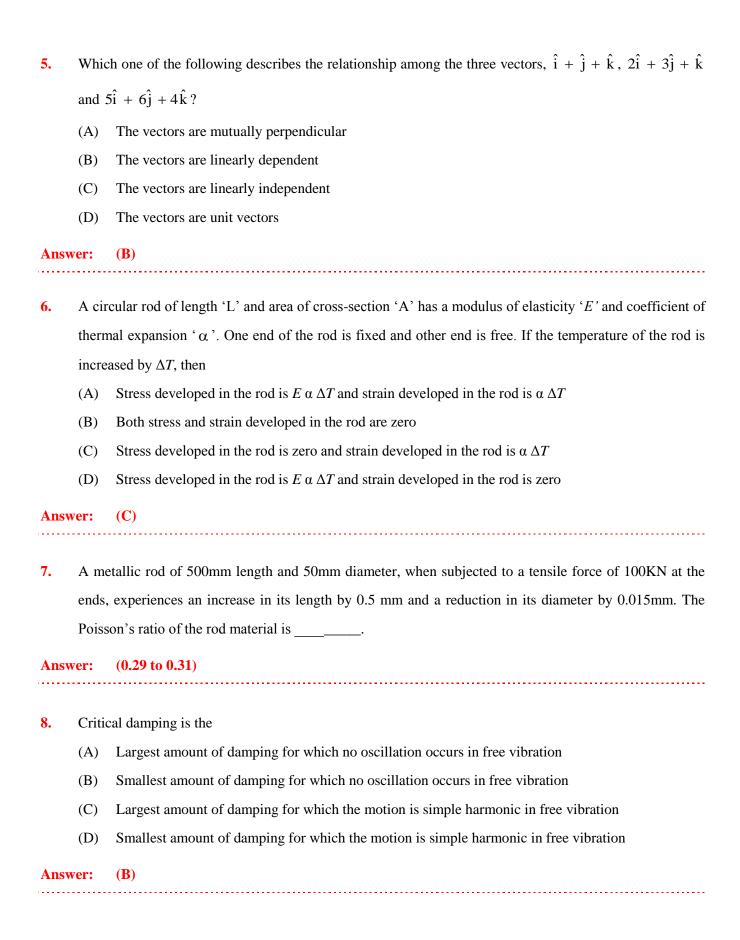
$$(A) - \pi$$

$$(B) -\frac{\pi}{2} \qquad (C) \frac{\pi}{2}$$

(C)
$$\frac{\pi}{2}$$

Answer: (C)

The matrix form of the linear system $\frac{dx}{dt} = 3x - 5y$ and $\frac{dy}{dt} = 4x + 8y$ is


$$(A) \quad \frac{d}{dt} \begin{Bmatrix} x \\ y \end{Bmatrix} = \begin{bmatrix} 3 & -5 \\ 4 & 8 \end{bmatrix} \begin{Bmatrix} x \\ y \end{Bmatrix}$$

(B)
$$\frac{d}{dt} \begin{cases} x \\ y \end{cases} = \begin{bmatrix} 3 & 8 \\ 4 & -5 \end{bmatrix} \begin{cases} x \\ y \end{cases}$$

(C)
$$\frac{d}{dt} \begin{Bmatrix} x \\ y \end{Bmatrix} = \begin{bmatrix} 4 & -5 \\ 3 & 8 \end{bmatrix} \begin{Bmatrix} x \\ y \end{Bmatrix}$$

(D)
$$\frac{d}{dt} \begin{Bmatrix} x \\ y \end{Bmatrix} = \begin{bmatrix} 4 & 8 \\ 3 & -5 \end{bmatrix} \begin{Bmatrix} x \\ y \end{Bmatrix}$$

Answer: (A)

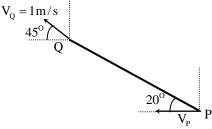
- **9.** A circular object of radius 'r' rolls without slipping on a horizontal level floor with the center having velocity V. The velocity at the point of contact between the object and the floor is
 - (A) Zero
 - (B) V in the direction of motion
 - (C) V opposite to the direction of motion
 - (D) V vertically upward from the floor

Answer: (A)

- **10.** For the given statements:
 - I. Mating spur gear teeth is an example of higher pair
 - II. A revolute joint is an example of lower pair

Indicate the correct answer.

(A) Both I and II are false


(B) I is true and II is false

(C) I is false and II is true

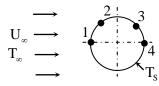
(D) Both I and II are true

Answer: (D)

11. A rigid link PQ is 2 m long and oriented at 20° to the horizontal as shown in the figure. The magnitude and direction of velocity $V_{\rm P}$ are given. The magnitude of $V_{\rm P}$ (in m/s) at this instant is

- (A) 2.14
- (B) 1.89
- (C) 1.21
- (D) 0.96

Answer: (D)


- 12. Biot number signifies the ratio of
 - (A) Convective resistance in the fluid to conductive resistance in the sold
 - (B) Conductive resistance in the solid to convective resistance in the fluid
 - (C) Inertia force to viscous force in the fluid
 - (D) Buoyancy force to viscous force in the fluid

Answer: (B)

- **13.** The maximum theoretical work obtainable, when a system interacts to equilibrium with a reference environment, is called
 - (A) Entropy
- (B) Enthalpy
- (C) Exergy
- (D) Rothalpy

Answer: (C)

14. Consider a two-dimensional laminar flow over a long cylinder as shown in the figure below.

The free stream velocity is U_{∞} and the free stream temperature T_{∞} is lower than the cylinder surface temperature T_s . The local heat transfer coefficient is minimum at point

- (A) 1
- (B) 2
- (C) 3

.....

(D) 4

Answer:

(B)

- **15.** For a completely submerged body with centre of gravity 'G' and centre of buoyancy 'B', the condition of stability will be
 - (A) G is located below B
 - (B) G is located above B

	(C)	G and B are coinc	ident						
	(D)	independent of the	e locat	ions of G and B					
Ansv	ver:	(A)							
					2				
16.		power plant, water			_	-			
		ropic efficiency of		-	e tempe	rature of the	water remain	is the same, the sp	ecific
		(in kJ/kg) supplied							
	(A)	0.34	(B)	2.48	(C)	2.92	(D)	3.43	
Ansv	ver:	(D)							
17.	Whic	ch one of the follow	ing is	a CFC refrigerant	?				
	(A)	R744	(B)	R290	(C)	R502	(D)	R718	
Ansv	ver:	(C)							
18.	The	jobs arrive at a fac	ility, f	or service, in a ra	andom r	nanner. The	probability d	istribution of numb	er of
		als of jobs in a fixed	•				,		
	(A)	Normal	(B)	Poisson	(C)	Erlang	(D)	Beta	
Ansv	ver:	(B)							
19.	In ex	ponential smoothen	ing m	ethod, which one	of the fo	ollowing is tr	ue?		
	(A)	$0 \le \alpha \le 1$ and high	value	of α is used for s	table de	mand			
	(B)	$0 \le \alpha \le 1$ and high	value	of α is used for u	nstable	demand			
	(C)	$\alpha \ge 1$ and high va	lue of	α is used for stab	le dema	nd			
	(D)	$\alpha \le 0$ and high va	lue of	α is used for unst	able der	mand			
Ansv	ver:	(B)							

20.	For n	nachining a rectang	ular isl	and repres	sented by	coord	inates P(0,	0), Q(100),0), R	(100,50) and (0,50) on a
	castii	ng using CNC milli	ng mac	chine, an e	nd mill w	ith a c	liameter of	16 mm i	s used	
	The t	rajectory of the cut	ter cen	tre to mach	nine the is	sland l	PQRS is			
	(A)	(-8, -8), (108, -8)	8), (108	3,58), (-8,5	58), (-8,	-8)				
	(B)	(8,8), (94,8), (94,	44), (8	,44), (8,8)						
	(C)	(-8,8), (94,0), (94,0)	4,44), (8,44), (-8,	,8)					
	(D)	(0,0), (100,0), (10	00,50),	(50,0), (0,	0)					
Ansv	ver:	(A)								
21.	Whic	ch one of the follo	wing	instrument	s is wide	ely us	ed to chec	ck and ca	alibrat	e geometric features of
	mach	ine tools during the	eir asse	mbly?						
	(A)	Ultrasonic probe								
	(B)	Coordinate Measu	iring M	Iachine (C	MM)					
	(C)	Laser interferome	ter							
	(D)	Vernier callipers								
Ansv	ver:	(C)								
22.	The 1	najor difficulty dur	ing we	lding of al	uminium	is due	to its			
	(A)	High tendency of	oxidati	on		(B)	high ther	mal cond	uctivit	у
	(C)	Low melting poin	t			(D)	low dens	ity		
Ansv	ver:	(A)								
23.	The 1	nain cutting force a	acting o	on a tool d	uring the	turnir	ıg (orthogo	nal cuttii	ng) op	eration of a metal is 400
	N. T	he turning was per	formed	using 2 r	nm depth	of cu	it and 0.1	mm/rev	feed ra	ate. The specific cutting
	press	ure (in N/mm²) is								
	(A)	1000	(B)	2000		(C)	3000		(D)	4000
Ansv	ver:	(B)								

- The process of reheating the martensitic steel to reduce its brittleness without any significant loss in its 24. hardness is
 - (A) Normalising
- (B) annealing
- (C) quenching
- (D) tempering

Answer:

(A)

- 25. In solid-state welding, the contamination layers between the surfaces to be welded are removed by
 - Alcohol (A)

plastic deformation (B)

(C) water jet (D) sand blasting

Answer: (B)

Q. No. 26 – 55 Carry Two Marks Each

- The integral $\oint (ydx xdy)$ is evaluated along the circle $x^2 + y^2 = \frac{1}{4}$ traversed in counter clockwise **26.** direction. The integral is equal to
 - (A) 0

- (B) $-\frac{\pi}{4}$ (C) $-\frac{\pi}{2}$

.....

Answer: (C)

27. If y = f(x) is solution of $\frac{d^2y}{dx^2} = 0$ with the boundary conditions y = 5 at x = 0, and $\frac{dy}{dx} = 2$ at x = 10, f(15) =_____

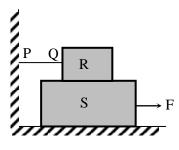
Answer: (34 to 36)

In the following table, x is a discrete random variable and p(x) is the probability density. The standard 28. deviation of x is

X	1	2	3
p(x)	0.3	0.6	0.1

(A)	0.10
(A)	0.18
(1)	0.10

Answer: (D)


29. Using the trapezoidal role, and dividing the interval of integration into three equal subintervals, the definite integral $\int_{-1}^{+1} |x| dx$ is ______.

Answer: (1.10 to 1.12)

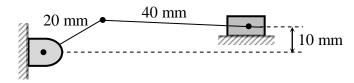
30. The state of stress at a point is given by $\sigma_x = -6$ MPa, $\sigma_y = 4$ MPa, and $\tau_{xy} = -8$ MPa. The maximum tensile stress (in MPa) at the point is ______.

Answer: (8.4 to 8.5)

31. A block R of mass 100 kg is placed on a block S of mass 150kg as shown in the figure. Block R is tied to the wall by a mass less and inextensible string PQ. If the coefficient of static friction for all surfaces is 0.4 the minimum force F (in KN) needed to move the block S is

- (A) 0.69
- (B) 0.88
- (C) 0.98
- (D) 1.37

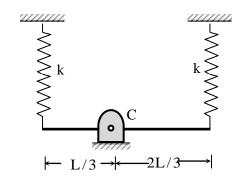
Answer: (D)


32. A pair of spur gears with module 5 mm and a centre distance of 450 mm is used for a speed reduction of 5:1. The number of teeth on pinion is ______.

Answer: (29 to 31)

Consider a cantilever beam, having negligible mass and uniform flexural rigidity, with length 0.01 m. The frequency of vibration of the beam, with a 0.5 kg mass attached at the free tip, is 100 Hz. The flexural rigidity (in N.m²) of the beam is
wer: (0.064 to 0.067)
An ideal water jet with volume flow rate of $0.05 \text{ m}^3/\text{s}$ strikes a flat plate placed normal to its path and exerts a force of 1000 N. Considering the density of water as 1000 Kg/m ³ , the diameter (in mm) of the water jet is
wer: (56 to 57)
A block weighing 200 N is in contact with a level plane whose coefficients of static and kinetic friction
are 0.4 and 0.2, respectively. The block is acted upon by a horizontal force (in Newton) $P=10t$, where t denotes the time in seconds. The velocity (in m/s) of the block attained after 10 seconds is
wer: (4.8 to 5.0)
A slider crank mechanism has slider of mass 10 kg, stroke of 0.2 m and rotates with a uniform angular
velocity of 10 rad/s. The primary inertia forces of the slider are partially balanced by a revolving mass of 6 kg at the crank, placed at a distance equal to crank radius. Neglect the mass of connecting rod and crank.
When the crank angle (with respect to slider axis) is 30°, the unbalanced force (in Newton) normal to the
slider axis is

Answer: (29 to 31)


37. An offset slider-crank mechanism is shown in the figure at an instant. Conventionally, the Quick Return Ratio (QRR) is considered to be greater than one.

The value of QRR is _____.

Answer: (1.2 to 1.3)

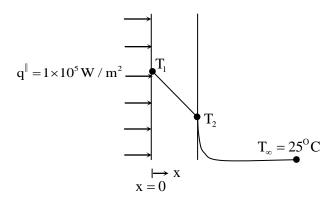
38. A rigid uniform rod AB of length L and mass m is hinged at C such that AC = L/3, CB = 2L/3. Ends A and B are supported by springs of spring constant k. The natural frequency of the system is given by

- (A) $\sqrt{\frac{k}{2m}}$
- (B) $\sqrt{\frac{k}{m}}$
- (C) $\sqrt{\frac{2k}{m}}$
- (D) $\sqrt{\frac{5k}{m}}$

Answer: (D)

39. A hydrodynamic journal bearing is subject to 2000 N load at a rotational speed of 2000 rpm. Both bearing bore diameter and length are 40 mm. If radial clearance is 20 µm and bearing is lubricated with an oil having viscosity 0.03 Pa.s, the Sommerfeld number of the bearing is

Answer: (0.75 to 0.85)


40. A 200 mm long, stress free rod at room temperature is held between two immovable rigid walls. The temperature of the rod is uniformly raised by 250°C. If the Young's modulus and coefficient of thermal expansion are 200 GPa and 1×10⁻⁵ /°C, respectively, the magnitude of the longitudinal stress (in MPa) developed in the rod is _____.

Answer: (499 to 501)

41. 1.5 kg of water is in saturated liquid state at 2 bar ($vf = 0.001061 \text{ m}^3/\text{kg}$, $u_f = 504.0 \text{ kJ/kg}$, hf = 505 kJ/kg). Heat is added in a constant pressure process till the temperature of water reaches 400°C ($v = 1.5493 \text{ m}^3 / \text{Kg}$, u = 2967.0 kJ/kg, h = 3277.0 kJ/kg). The heat added (in kJ) in the process is ______

Answer: (4155 to 4160)

42. Consider one dimensional steady state heat conduction across a wall (as shown in figure below) of thickness 30 mm and thermal conductivity 15 W/m.K. At x = 0, a constant heat flux, $q'' = 1 \times 10^5$ W/m² is applied. On the other side of the wall, heat is removed from the wall by convection with a fluid at 25°C and heat transfer coefficient of 250 W/m².K. The temperature (in °C), at x = 0 is _____.

Answer: (620 to 630)

43. Water flows through a pipe having an inner radius of 10 mm at the rate of 36 kg/hr at 25°C. The viscosity of water at 25°C is 0.001 kg/m.s. The Reynolds number of the flow is _____.

Answer: (635 to 638)

44. For a fully developed flow of water in a pipe having diameter 10 cm, velocity 0.1 m/s and kinematic viscosity 10^{-5} m²/s, the value of Darcy friction factor is

Answer: (0.06 to 0.07)

45. In a simple concentric shaft-bearing arrangement, the lubricant flows in the 2 mm gap between the shaft and the bearing. The flow may be assumed to be a plane Couette flow with zero pressure gradient. The diameter of the shaft is 100 mm and its tangential speed is 10 m/s. The dynamic viscosity of the lubricant is 0.1 kg/m.s. The frictional resisting force (in Newton) per 100 mm length of the bearing is ______.

Answer: (15 to 16)

46. The non-dimensional fluid temperature profile near the surface of a convectively cooled flat plate is given by $\frac{T_W-T}{T_W-T_\infty}=a+b\frac{y}{L}+c\left(\frac{y}{L}\right)^2$, where y is measured perpendicular to the plate, L is the plate length, and a, b and c are arbitrary constants. T_W and T_∞ are wall and ambient temperatures, respectively. If the thermal conductivity of the fluid is k and the wall heat flux is q'', the Nusselt number $Nu=\frac{q''}{T_w-T_\infty}\frac{L}{k}$ is equal to

(A) a

- (B) b
- (C) 2c
- (D) (b+2c)

Answer: (B)

47. In an air-standard Otto cycle, air is supplied at 0.1 MPa and 308 K. The ratio of the specific heats (γ) and the specific gas constant (*R*) of air are 1.4 and 288.8 J/kg.K, respectively. If the compression ratio is 8 and the maximum temperature in the cycle is 2660 K, the heat (in kJ/kg) supplied to the engine is _____.

Answer: (1400 to 1420)

48. A reversible heat engine receives 2 kJ of heat from a reservoir at 1000 K and a certain amount of heat from a reservoir at 800 K. It rejects 1 kJ of heat to a reservoir at 400 K. The net work output (in kJ) of the cycle is

(A) 0.8

- (B) 1.0
- (C) 1.4
- (D) 2.0

Answer: (C)

49. An ideal reheat Rankine cycle operates between the pressure limits of 10 KPa and 8 MPa, with reheat being done at 4 MPa. The temperature of steam at the inlets of both turbines is 500°C and the enthalpy of steam is 3185 kJ/kg at the exit of the high pressure turbine and 2247 kJ/kg at the exit of low pressure turbine. The enthalpy of water at the exit from the pump is 191 kJ/kg. Use the following table for relevant data.

Superheated steam temperature	Pressure (MPa)	$\left(m^3 / kg\right)$	h (kJ/kg)	s (kJ/kg.K)
(°C)	4	0.08644	3446	7.0922
500	4	0.04177	3399	6.7266

Г	Disregarding	the num	n work t	ha cycla	afficiancy	(in	narcantaga	ic	
L	nsiegarung	me pum	o work, u	ne cycle	criticiency	(111	percentage	, 19	·

Answ	er:	(40 to 42)				
50.	distri	bution. The ave	rage service time of	a job on the facility is	40 minutes. The service	
	(A)	<u>5</u> 7	(B) $\frac{14}{3}$	(C) $\frac{7}{5}$	(D) $\frac{10}{3}$	
Answ	er:	(B)				
51.	giver the e	n by the expressind of one minute (0.9 to 1.1)	on, $L(t) = L_o(1 + t^2)$ e is	where t is the time in mi	nutes. The true strain rate	e (in min ⁻¹) at
52.	chip produ	be arrive at a facility at an average rate of 5 in an 8 hour shift. The arrival of the jobs follows Poisson stribution. The average service time of a job on the facility is 40 minutes. The service time follows ponential distribution. Idle time (in hours) at the facility per shift will be (a) $\frac{5}{7}$ (b) $\frac{14}{3}$ (c) $\frac{7}{5}$ (d) $\frac{10}{3}$ (b) $\frac{10}{3}$ (c) $\frac{10}{3}$ (d) $\frac{10}{3}$ (e) $\frac{10}{3}$ (e) $\frac{10}{3}$ (g) $\frac{10}{3}$				

53. For the given assembly: 25 H7/g8, match Group A with Group B:

Group A	Group B
(P) H	(I) Shaft Type
(Q) IT8	(II) Hole Type
(R) IT7	(III) Hole Tolerance Grade
(S) g	(IV) Shaft Tolerance Grade

(A)	P-I	O-III	R-IV,	S-II
(11)	1 1,	V 111,	1/ 1/	0 11

(B) P-I, Q-IV, R-III, S-II

(C) P-II, Q-III, R-IV, S-I

(D) P-II, Q-IV, R-III, S-I

Answer:	(D)	

54. If the Taylor's tool life exponent *n* is 0.2, and the tool changing time is 1.5 min, then the tool life (in min) for maximum production rate is _____.

Answer: (5.9 to 6.1)

55. An aluminium alloy (density 2600 kg/m³) casting is to be produced. A cylindrical hole of 100 mm diameter and 100 mm length is made in the casting using sand core (density 1600 kg/m³). The net buoyancy force (in Newton) acting on the core is _____.

Answer: (7 to 8)

 $\star\star\star$ END OF THE PAPER $\star\star\star$