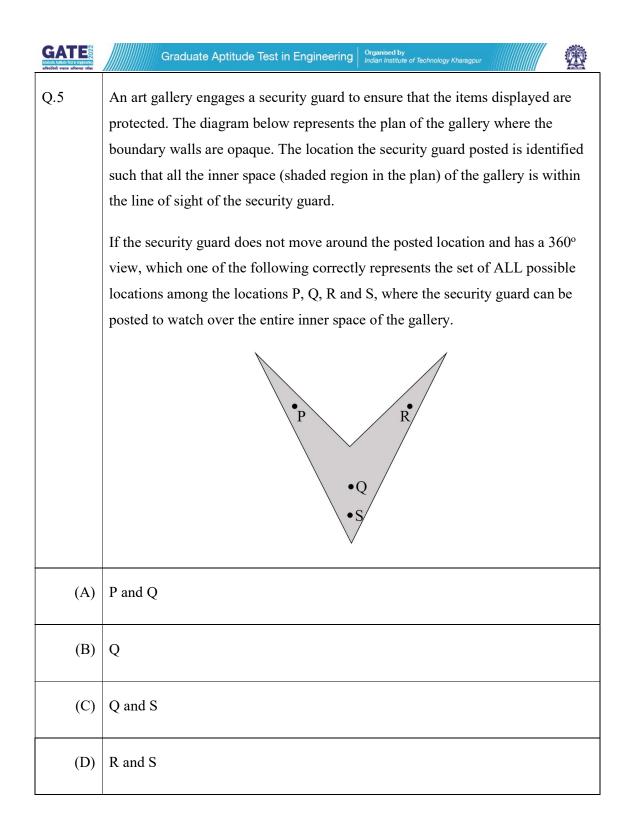


GATE 2022 General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark each.

Q.1	Mr. X speaks Japanese Chinese.
(A)	neither / or
(B)	either / nor
(C)	neither / nor
(D)	also / but


Q.2	A sum of money is to be distributed among P, Q, R, and S in the proportion 5 : 2 : 4 : 3, respectively. If R gets ₹ 1000 more than S, what is the share of Q (in ₹)?
(A)	500
(B)	1000
(C)	1500
(D)	2000

GATE जनवार्यः Açtilada Tierd in Erginasaring वनिषाविधनी स्थानक वनिवनना स्टीस	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
Q.3	A trapezium has vertices marked as P, Q, R and S (in that order anticlockwise). The side PQ is parallel to side SR.
	Further, it is given that, $PQ = 11$ cm, $QR = 4$ cm, $RS = 6$ cm and $SP = 3$ cm.
	What is the shortest distance between PQ and SR (in cm)?
(A)	1.80
(B)	2.40
(C)	4.20
(D)	5.76

Q.4	The figure shows a grid formed by a collection of unit squares. The unshaded
	unit square in the grid represents a hole.
	\leftarrow \rightarrow What is the maximum number of squares without a "hole in the interior" that can be formed within the 4 × 4 grid using the unit squares as building blocks?
(A)	15
(B)	20
(C)	21
(D)	26

Т

Г

Q. 6 – Q. 10 Carry TWO marks each.

Q.6	Mosquitoes pose a threat to human health. Controlling mosquitoes using chemicals may have undesired consequences. In Florida, authorities have used genetically modified mosquitoes to control the overall mosquito population. It remains to be seen if this novel approach has unforeseen consequences. Which one of the following is the correct logical inference based on the information in the above passage?
(A)	Using chemicals to kill mosquitoes is better than using genetically modified mosquitoes because genetic engineering is dangerous
(B)	Using genetically modified mosquitoes is better than using chemicals to kill mosquitoes because they do not have any side effects
(C)	Both using genetically modified mosquitoes and chemicals have undesired consequences and can be dangerous
(D)	Using chemicals to kill mosquitoes may have undesired consequences but it is not clear if using genetically modified mosquitoes has any negative consequence

Q.7	Consider the following inequalities. (i) $2x - 1 > 7$ (ii) $2x - 9 < 1$ Which one of the following expressions below satisfies the above two inequalities?
(A)	$x \leq -4$
(B)	$-4 < x \le 4$
(C)	4 < x < 5
(D)	$x \ge 5$

Q.8	Four points P(0, 1), Q(0, -3), R(-2 , -1), and S(2 , -1) represent the vertices of a quadrilateral.
	What is the area enclosed by the quadrilateral?
(A)	4
(B)	$4\sqrt{2}$
(C)	8
(D)	8√2

Q.9	In a class of five students P, Q, R, S and T, only one student is known to have copied in the exam. The disciplinary committee has investigated the situation and recorded the statements from the students as given below.
	Statement of P: R has copied in the exam.
	Statement of Q: S has copied in the exam.
	Statement of R: P did not copy in the exam.
	Statement of S: Only one of us is telling the truth.
	Statement of T: R is telling the truth.
	The investigating team had authentic information that S never lies.
	Based on the information given above, the person who has copied in the exam is
(A)	R
(B)	Р
(C)	Q
(D)	Т

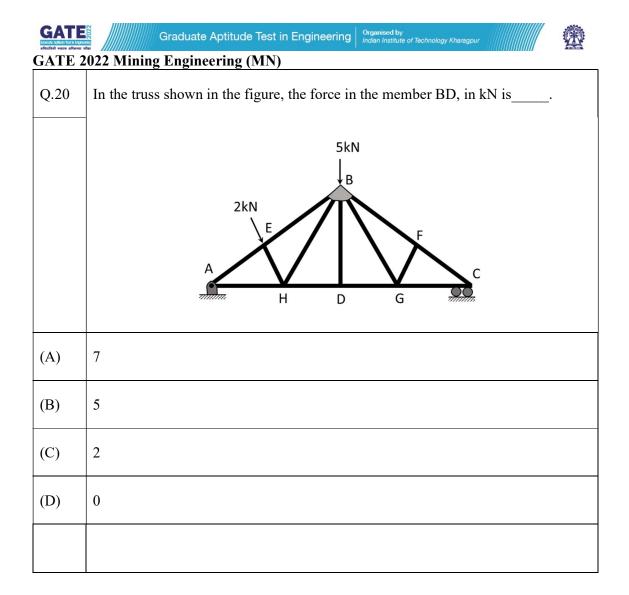
Q.10	Consider the following square with the four corners and the center marked as P, Q, R, S and T respectively.
	Let X, Y and Z represent the following operations:
	X: rotation of the square by 180 degree with respect to the S-Q axis.
	Y: rotation of the square by 180 degree with respect to the P-R axis.
	Z: rotation of the square by 90 degree clockwise with respect to the axis perpendicular, going into the screen and passing through the point T.
	Consider the following three distinct sequences of operation (which are applied in the left to right order).
	(1) XYZZ
	(2) XY (3) ZZZZ
	Which one of the following statements is correct as per the information provided above?
(A)	The sequence of operations (1) and (2) are equivalent
(B)	The sequence of operations (1) and (3) are equivalent
(C)	The sequence of operations (2) and (3) are equivalent
(D)	The sequence of operations (1), (2) and (3) are equivalent

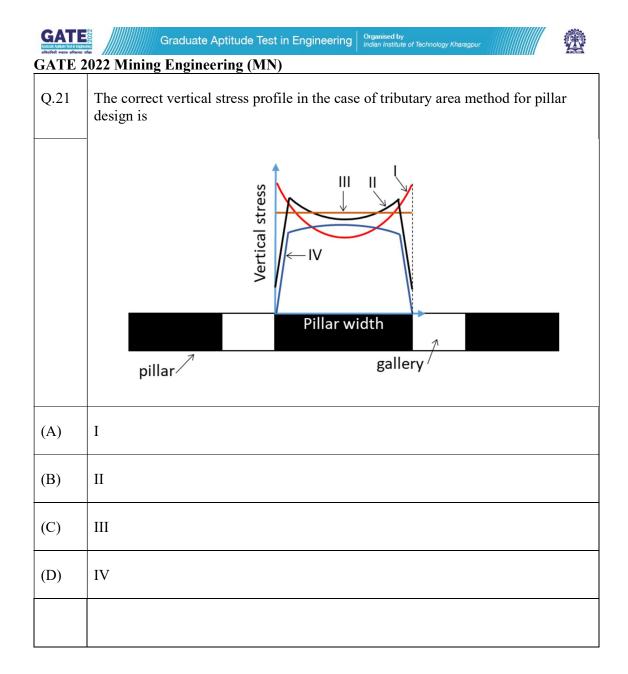
Q.11 – Q.35 Carry ONE mark Each

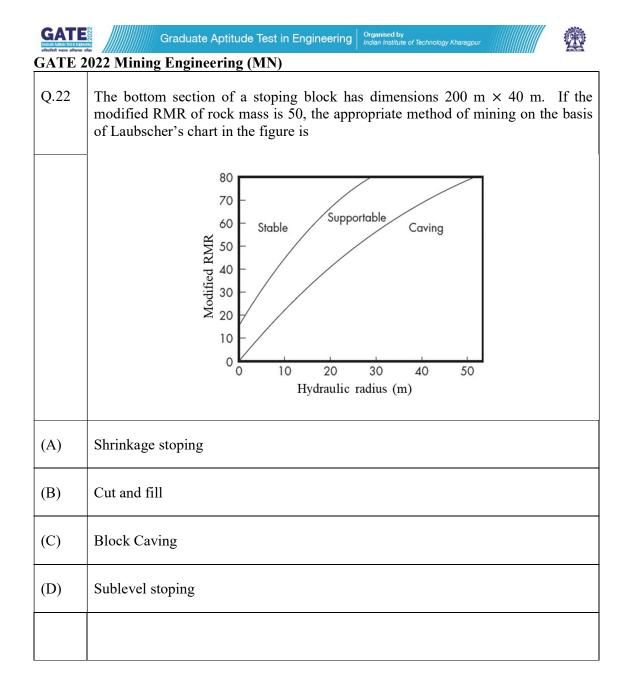
Q.11	The value of $\lim_{x \to 0} \frac{(1-x)^n - 1}{x}$ is
(A)	0
(B)	1
(C)	-n
(D)	n
Q.12	A velocity field in Cartesian coordinate system is expressed as $v = x\hat{i} + y\hat{j} + p(z)\hat{k}$, where $p(0) = 0$ If div $v = 0$, $p(z)$ is
(A)	0
(B)	-2z
(C)	2
(D)	2z

Q.13	The constant term of the Fourier coefficients of the periodic function
	$f(x) = \begin{cases} -k, & \text{for } -\pi < x < 0 \\ k, & \text{for } 0 < x < \pi \end{cases}, f(x + 2\pi) = f(x) \text{ and } k = constant$
	is
(A)	k
(B)	2k
(C)	2π
(D)	0
Q.14	Two vectors x and y are shown in the figure. The projection vector of x on y is
	x y
(A)	$\frac{x^T y}{y^T y} y$
(B)	$x \times y$
(C)	$\frac{x \times y}{y^T y}$
(D)	$\frac{x^T y}{x^T x} x$

.


Q.15A deposit has the grade attribute $X \in [0, 30]$ with a density function $f(x)$. For a cut-off grade x_c , the proportion of the ore in the deposit is given by(A) $\int_{0}^{30} f(x) dx - \int_{0}^{x_c} f(x) dx$ (B) $\frac{1}{2} \int_{0}^{30} f(x) dx - \int_{0}^{x_c} f(x) dx$ (C) $\frac{1}{2} \int_{0}^{30} f(x) dx + \int_{0}^{x_c} f(x) dx$ (D) $\int_{0}^{x_c} f(x) dx$ (A)Percussive drilling(A)Percussive drilling(B)Tricone roller drilling(C)Rotary-percussive drilling(D)Diamond core drilling	GATE 2	GATE 2022 Mining Engineering (MN)		
(B) $\frac{1}{2} \int_{0}^{30} f(x) dx - \int_{0}^{x_c} f(x) dx$ (C) $\frac{1}{2} \int_{0}^{30} f(x) dx + \int_{0}^{x_c} f(x) dx$ (D) $\int_{0}^{x_c} f(x) dx$ Q.16 The drilling technique applicable for mineral exploration is (A) Percussive drilling (B) Tricone roller drilling (C) Rotary-percussive drilling	Q.15			
$\overline{z} \int_{0}^{0} f(x) dx - \int_{0}^{0} f(x) dx$ (C) $\frac{1}{2} \int_{0}^{30} f(x) dx + \int_{0}^{x_{c}} f(x) dx$ (D) $\int_{0}^{x_{c}} f(x) dx$ Q.16The drilling technique applicable for mineral exploration is(A)Percussive drilling(B)Tricone roller drilling(C)Rotary-percussive drilling	(A)	$\int_{0}^{30} f(x) dx - \int_{0}^{x_{c}} f(x) dx$		
$\frac{1}{2} \int_{0}^{1} f(x) dx + \int_{0}^{1} f(x) dx$ (D) $\int_{0}^{x_{c}} f(x) dx$ Q.16 The drilling technique applicable for mineral exploration is (A) Percussive drilling (B) Tricone roller drilling (C) Rotary-percussive drilling	(B)	$\frac{1}{2} \int_0^{30} f(x) dx - \int_0^{x_c} f(x) dx$		
 Q.16 The drilling technique applicable for mineral exploration is (A) Percussive drilling (B) Tricone roller drilling (C) Rotary-percussive drilling 	(C)	$\frac{1}{2} \int_0^{30} f(x) dx + \int_0^{x_c} f(x) dx$		
 (A) Percussive drilling (B) Tricone roller drilling (C) Rotary-percussive drilling 	(D)	$\int_0^{x_c} f(x) dx$		
 (A) Percussive drilling (B) Tricone roller drilling (C) Rotary-percussive drilling 				
(B) Tricone roller drilling (C) Rotary-percussive drilling	Q.16	The drilling technique applicable for mineral exploration is		
(C) Rotary-percussive drilling	(A)	Percussive drilling		
	(B)	Tricone roller drilling		
(D) Diamond core drilling	(C)	Rotary-percussive drilling		
	(D)	Diamond core drilling		





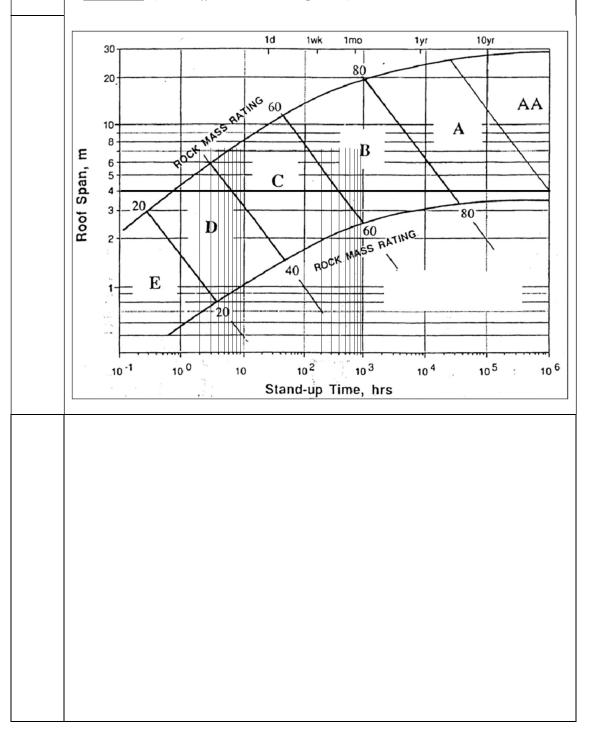
GATE 2	Ber ////////////////////////////////////		ineering (MN)		tate of recimology thategood	
Q.17	Match the rock with its metamorphosed form					
	Igneous/ Sedimentary rock Metamorphic rock					
		Р	Granite	Ι	Quartzite	
		Q	Limestone	II	Gneiss	
		R	Sandstone	III	Schist	
		S	Gabbro	IV	Marble	
(A)	P-II, Q-IV, F	R-I,	S-III			
(B)	P-III, Q-I, R	-IV	, S-II			
(C)	P-IV, Q-III, R-I, S-II					
(D)	P-II, Q-III, R-IV, S-I					
Q.18	Identify the WRONG statement:					
	Break-even stripping ratio					
(A)	takes into account the maximum pit slope that is safe					
(B)	helps in determining the volume of the overburden					
(C)	presents the maximum possible mine size that is economical					
(D)	takes into account the life of the mine					

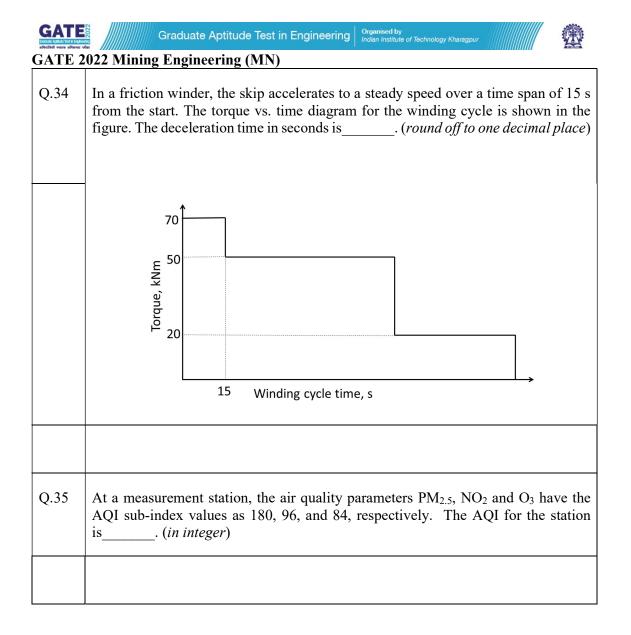
GATE जिर्दारार Action Test In Ergen अभियोंपियी भाराण अभियामा	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharegpur
Q.19	A square pattern of blasting is shown in the figure. For the case of simultaneous blast, identify the zone of no fragmentation
	Boundary of fracture zone around blast hole
(A)	Р
(B)	Q
(C)	R
(D)	S

GATE 2	2022 Mining Engi		ing (MN)	9 India	in Institute of Technology Kharagpur	
Q.23	Match the machine with its component.					
	Machine Component					
		Р	Continuous miner	Ι	Flight bar	
		Q	Jack hammer	II	Lemniscate link	
		R	AFC	III	Loading apron	
		S	Shield support	IV	Rifle bar	
(A)	P-III, Q-IV, R-I,	S-II				
(B)	P-IV, Q-III, R-I, S-II					
(C)	P-III, Q-IV, R-II, S-I					
(D)	P-IV, Q-III, R-II, S-I					
Q.24	Which one of the following is NOT a notifiable disease as per Indian mining legislation?					
(A)	Silicosis					
(B)	Noise induced hearing loss					
(C)	Nystagmus					
(D)	Asbestosis					

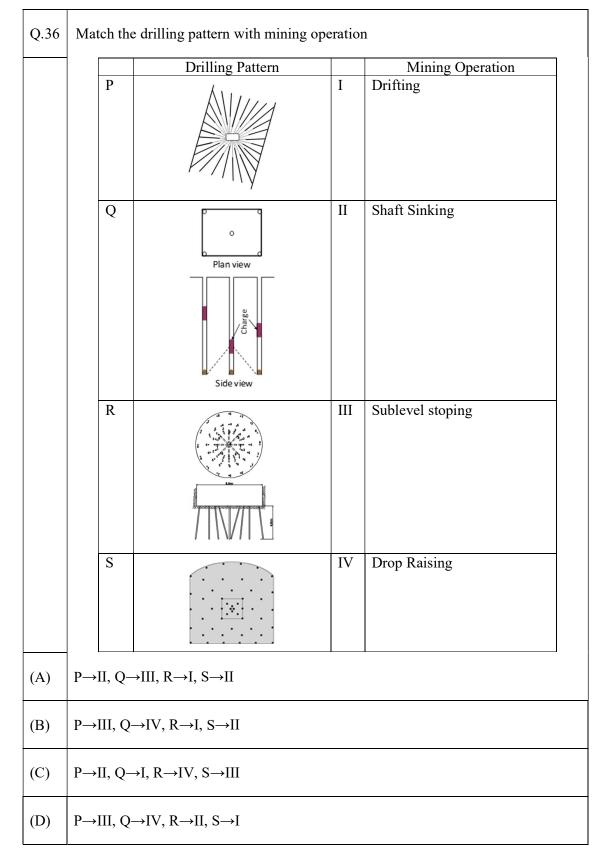
	2022 Mining Engineering (MN)
Q.25	If the ambient lapse rate is higher than the dry adiabatic lapse rate, the atmosphere is
(A)	stable
(B)	neutral
(C)	unstable
(D)	strongly stable
Q.26	Identify the WRONG statement:
	The application of controlled air recirculation in an underground work place can
(A)	increase the air velocity at the work place
(B)	lead to increased concentration of contaminants in the work place
(C)	require the installation of an additional fan in the system
(D)	lead to overall ventilation cost savings

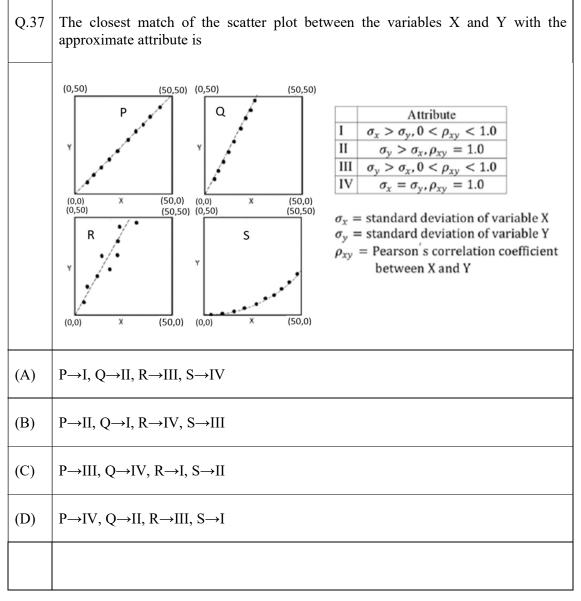
Q.27	The correct order of pavement layers for a haul road from top to bottom is
(A)	Wearing course \rightarrow Base \rightarrow Sub base \rightarrow Sub grade
(B)	Wearing course \rightarrow Sub base \rightarrow Base \rightarrow Sub grade
(C)	Wearing course \rightarrow Sub grade \rightarrow Sub base \rightarrow Base
(D)	Wearing course \rightarrow Base \rightarrow Sub grade \rightarrow Sub base
Q.28	A mining company produces iron ore and sells to another company. Royalty to be paid is on the basis of
(A)	quantity of ore produced
(B)	quantity of ore sold
(C)	difference between the quantities of ore produced and sold
(D)	net profit
Q.29	The cost of a screw compressor with an estimated life of 15 years is ₹21,00,000. If the depreciation of the compressor charged, using 'sum-of-the-years-digits' method, at the end of 4 th year is ₹2,00,000, the salvage value, in ₹ is (round off to one decimal place)

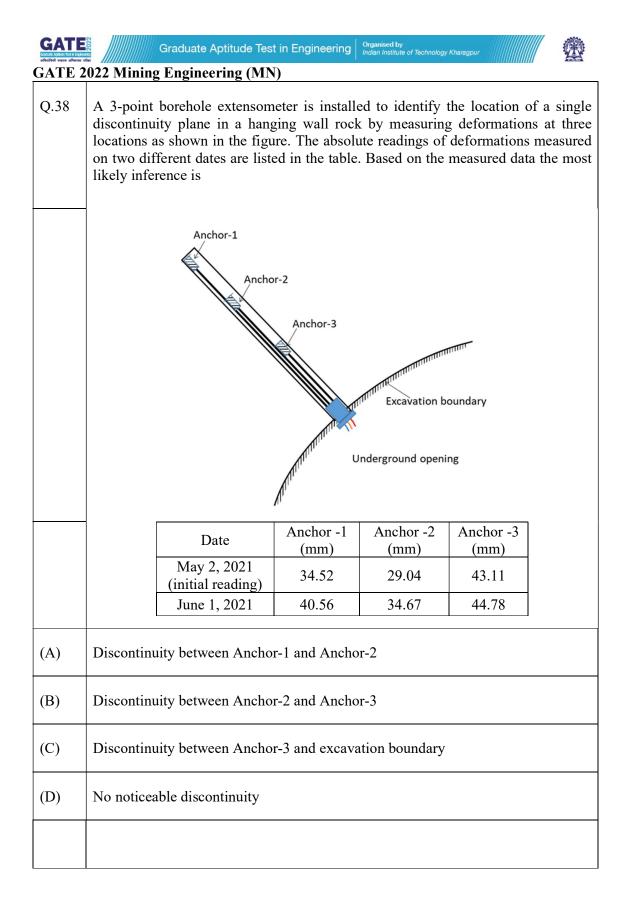


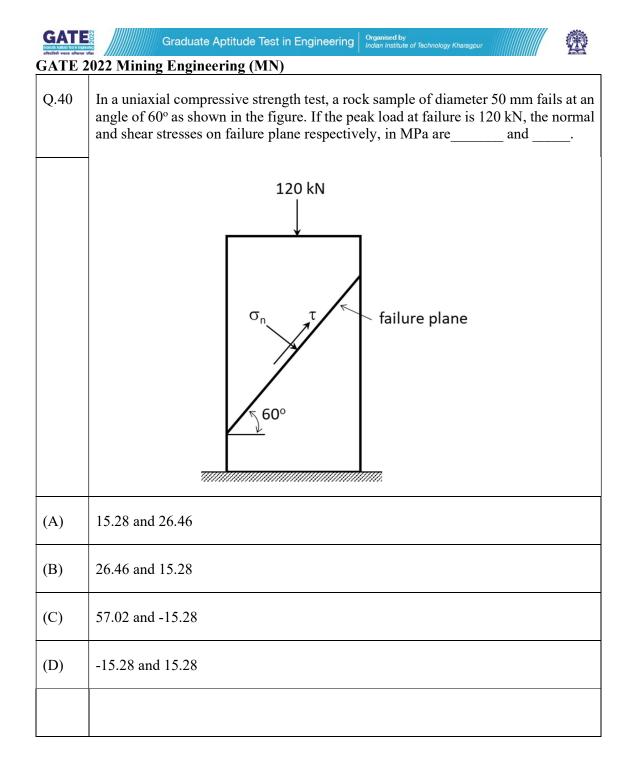

A safety device consists of two independent critical components X_1 and X_2 . The failure of any one or both of these components can cause an accident. The failure probabilities of components X_1 and X_2 are 0.2 and 0.1, respectively. The probability of occurrence of an accident is (round off to two decimal places)
In a levelling survey, a reading is taken as 2.25 m. However, along the line of sight there is deflection of 20 cm with respect to vertical position of the staff. The correct reading, in m is (<i>round off to two decimal places</i>)
Water flows through a vertical sand column of cross sectional area 4000 mm ² and length 300 mm. For a water head of 600 mm, quantity of seepage water is 100 mm ³ /min. The hydraulic conductivity of the sand column, in mm/min is (<i>round off to three decimal places</i>)

Q.33 The modified Lauffer diagram as shown in the figure relates to roof span, RMR and stand-up time. In a metal mine, roof span of a drive is 4 m. If the RMR of the rock mass changes from 40 to 60, then the stand-up time increases by a factor of ______. (round off to two decimal places)





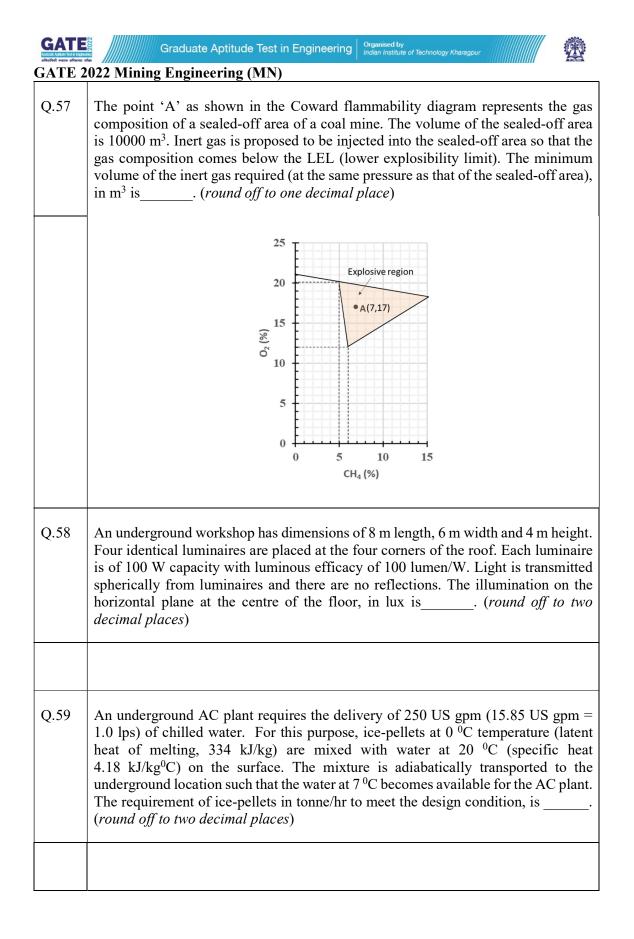

GATE 2022 Mining Engineering (MN) Q.36 – Q.65 Carry TWO marks Each



	Parameter	Type-1	Type-2	Constraints			
	Capital cost per dumper (in ₹ crore)	3.0	4.0	Maximum capital available for purchasing is ₹120 crore			
	Capacity in tonne	40	50	Minimum daily tonnage to be hauled is 31,000			
	Daily trips for each dumper	20	20				
	Operating cost (in ₹) per tonne	300.0	200.0				
	In order to minimize the operation and Type-2, respectively are	ng cost, the	e optimum	a fleet of dumpers of Type-1			
(A)	20, 15						
(B)	0, 30	0, 30					
(C)	0, 31						
(D)	40, 0						

Q.42	Let $f(x)$ be a continuous and differentiable funct $f'(x) \le 20$, then the largest possible value of $f(x)$					
Q.43	Let $\frac{dT}{dt} \propto (T_R - T)$, where T_R and T are temper room and thermometer, respectively, and t denote at a reading of 2°C is brought in a room of temp the thermometer reads 15°C. The time elapsed reads 39.5°C, is (round off to two decime	es time in minutes. A thermometer perature 40° C. Two minutes later, in minutes when the thermometer				
Q.44	In a health centre, the probability of 'full occupancy' of COVID beds for a day is 0.8. Assuming Binomial probability distribution, the probability of full occupancy exactly for 5 days in a week, is (<i>round off to three decimal places</i>)					
Q.45	Following information is given for a drilling operation to be carried out for overburden removal in a surface mine.					
	Volume of rock blasted per round, m ³	: 3,20,000				
	Number of blast holes	: 100				
	Drill hole diameter (D), mm	: 200				
	Length of subgrade drilling	: 8D				
	Stemming length	: 25D				
	Bench height, m	: 30				
	Powder factor, m ³ /kg	: 3.2				
	The amount of explosive per unit length of charg (<i>round off to two decimal places</i>)	ge in kg/m, is				

GATE	Ber ////////////////////////////////////		ptitude Test in En	gineering Organised by Indian Institute	of Technology Kharagpur	
GATE 2	022 Mining F	Inginee	ring (MN)]
Q.46	The shaft-top coordinates of two vertical shafts are given below. The depth of the shaft A and B are 200 m and 149 m, respectively.				e depth of the	
		Shaft	Latitude (m)	Departure (m)	Surface RL (m)	
		А	N670.0	W150.0	250	
		В	N170.0	E50.0	209	
			ient of the line		m of the two shaft	ts in degrees,
Q.47	The oxygen-balanced equation for explosive ANFO is given below. $3NH_4NO_3 + CH_2 \rightarrow 7H_2O + CO_2 + 3N_2$ For 100 litre of fuel oil having density 850 kg/m ³ , the amount of ammonium nitrate to be mixed, in kg, is (round off to two decimal places)					
Q.48	Two weightless cables of equal length and cross sectional area are hanging from a ceiling as shown in the figure. They are connected by a horizontal light bar of length 1.0 m and pulled by a force, F. The modulus of elasticity of Cable-1 and Cable-2 are 50 GPa and 200 GPa, respectively. If the deformation in both the cables is equal, the distance <i>x</i> , in m is (<i>round off to one decimal place</i>)					
			ZZ Cable-1	Ceiling Cable $\leftarrow x \rightarrow$ F	e-2 - bar	



	022 Mining Engineering (MN)		
Q.49	A circular tunnel of radius 3 m is constructed in a hydrostatic stress. The modulus of elasticity and Poisson's ratio of the rock are 5 respectively. A uniform support pressure p_i is applied at tunnel bot the radial deformation at the tunnel boundary to 4 mm. The values is (round off to two decimal places)	5 GPa and undary to 1	1 0.25, restrict
Q.50	The extraction ratio during development of a bord and pillar pane coal seam. The panel is further extracted by widening the ga extraction ratio changes to 0.25. The percentage change in pillar sta tributary area method, is (round off to two decimal places	alleries, an ress, consi	nd the
Q.51	In a small metal mine a battery powered locomotive hauls a train of such that:	of mine tul	os
	The weight of the train of mine tubs, tonne	: 3.0	
	The coefficient of friction between the wheels and the rails	: 0.06	
	The coefficient of adhesion between the loco wheels and the rails	: 0.2	
	Time required from the start to reach speed of 1.8 m/s through con acceleration, min	istant : 3.0	
	Upward gradient to be negotiated	: 1 in 20	
	The minimum weight of the locomotive in tonnes to mean requirements, is (round off to one decimal place)	et these	design
Q.52	A pump lifts mine water of density 1020 kg/m ³ , at 250 m ³ /hr 150 m. The overall pumping efficiency is 68%. Considering a he due to pipe friction and shock, the motor input power, in (<i>round off to two decimal places</i>)	ead loss of	

Q.53	In a surface mine bench, overburden is removed by the shovel-dumper combination For the dumper:		
	Time required at the loading station	: 3.0 min	
	Time required at the unloading station	: 1.0 min	
	Distance between loading and unloading stations	: 4.5 km	
	Average speed during loaded travel	: 12.0 km/hr	
	Average speed during empty travel	: 18.0 km/hr	
	Minimum number of dumpers required to avoid idle time of the shovel, is (<i>in integer</i>)		
Q.54	In a bord and pillar development panel, headings of 4.4 m \times 2.5 m are advanced using solid blasting. The average pull per round of blast is 1.2 m. On an average 12 faces are blasted per day. Density of coal is 1500 kg/m ³ . The mine operates in three shifts. If the average daily employment is 330 persons, labour productivity (OMS) of the panel in tonne, is (<i>round off to two decimal places</i>)		
Q.55	In a longwall face, the full seam thickness of 3 m is cut by a shear depth 0.7 m. The hauling speed of shearer during cutting is 12 m cross-section of AFC is 0.4 m ² and the average loading coefficien to evacuate coal from the face without spillage, the speed of AFC, i (<i>round off to one decimal place</i>)	/min. The trough nt is 0.7. In order	
Q.56	A city is spread over an area of 20 km \times 40 km. Wind, at an 4 m/s, enters perpendicular to the 20 km long side. On a winter of layer exists over the city at a height of 100 m. PM ₁ is emitted from of 1 kg/s. The steady state PM ₁ concentration in the city air, in Box model, is (round off to one decimal place)	day the inversion the city at a rate	

	2022 Mining Engineering (MN)
GAIL	2022 Mining Engineering (MN)
Q.60	An intake shaft has resistance of $0.05 \text{ Ns}^2/\text{m}^8$ up to a depth of 400 m. The airflow rate is 100 m ³ /s and the average density is 1.2 kg/m ³ . A barometer reads 99.375 kPa when placed on surface. Considering acceleration due to gravity is 9.81 m/s ² , the reading of the barometer at the depth of 400 m, in kPa is (round off to two decimal places)
Q.61	The net present values (NPV) of two mining project proposals A and B are as
	given. $NPV_A = -0.01i^2 - 0.02i + 4.44$
	$NPV_B = -0.03i^2 - 0.01i + 6.55$
	where, <i>i</i> is discount rate.
	The required rate of return for which both the proposals have equal possibility of acceptance and rejection, is (<i>round off to two decimal places</i>)
Q.62	The value of $\int_0^1 x \log(1+x) dx$, is (round off to two decimal places)
Q.63	A coal seam of uniform thickness 12 m is dipping at an angle 30° as shown in the
	figure. The ultimate pit is demarcated based on allowable instantaneous stripping ratio of 10 m ³ /tonne and safe slope angle of 45°. The density of coal is 1.41 tonne/m ³ . The length, L in m is (round off to two decimal places)
	$L \longrightarrow Surface$
	Pit limit Coal seam
	1

] i	A mine has a reserve of 150 million tonne (Mt) and is designed for a maximu production capacity of 5 Mt per year. In the first year the production is 2 Mt and increases by 20% each year. The reserve in Mt that remains at the end of 15 year is (<i>round off to two decimal places</i>)								
5	Information on Activity-Time duration of a project is provided below								
	A	Predecessor event	Successor event	Estimated Time Duration (weeks)					
	Activity			Pessimistic	Most likely	Optimistic			
	А	1	2	20	15	4			
	В	1	3	12	8	4			
	С	2	3	16	11	6			
	D	3	4	20	13	12			
	Е	2	4	13	8	3			
	F	1	4	45	35	25			
,	The expected project duration in weeks, is (<i>in integer</i>)								
,									

Q. No.	Session	Question	Subject	Key/Range	Mark
		Туре	Name		
1	3	MCQ	GA	С	1
2	3	MCQ	GA	D	1
3	3	MCQ	GA	В	1
4	3	MCQ	GA	В	1
5	3	MCQ	GA	С	1
6	3	MCQ	GA	D	2
7	3	MCQ	GA	С	2
8	3	MCQ	GA	С	2
9	3	MCQ	GA	В	2
10	3	MCQ	GA	В	2
11	3	MCQ	MN	С	1
12	3	MCQ	MN	В	1
13	3	MCQ	MN	D	1
14	3	MCQ	MN	A	1
15	3	MCQ	MN	Α	1
16	3	MCQ	MN	D	1
17	3	MCQ	MN	A	1
18	3	MCQ	MN	D	1
19	3	MCQ	MN	С	1
20	3	MCQ	MN	D	1
21	3	MCQ	MN	С	1
22	3	MCQ	MN	В	1
23	3	MCQ	MN	A	1
24	3	MCQ	MN	С	1
25	3	MCQ	MN	С	1
26	3	MCQ	MN	В	1
27	3	MCQ	MN	A	1
28	3	MCQ	MN	В	1
29	3	NAT	MN	100000.0 to 100000.0	1
30	3	NAT	MN	0.28 to 0.28	1
31	3	NAT	MN	2.20 to 2.30	1
32	3	NAT	MN	0.012 to 0.013	1
33	3	NAT	MN	50.00 to 70.00	1
34	3	NAT	MN	10.0 to 10.0	1
35	3	NAT	MN	180 to 180	1
36	3	MCQ	MN	D	2
37	3	MCQ	MN	D	2
38	3	MCQ	MN	В	2
39	3	MCQ	MN	Α	2
40	3	MCQ	MN	Α	2
41	3	MCQ	MN	A	2
42	3	NAT	MN	250 to 250	2
43	3	NAT	MN	20.40 to 20.80	2
44	3	NAT	MN	0.251 to 0.299	2

45	3	NAT	MN	36.00 to 39.00	2
46	3	NAT	MN	0.90 to 1.13	2
47	3	NAT	MN	1453.00 to 1458.00	2
48	3	NAT	MN	0.8 to 0.8	2
49	3	NAT	MN	9.50 to 9.75	2
50	3	NAT	MN	13.00 to 14.00	2
51	3	NAT	MN	3.7 to 3.8	2
52	3	NAT	MN	165.00 to 170.00	2
53	3	NAT	MN	14 to 14	2
54	3	NAT	MN	0.70 to 0.75	2
55	3	NAT	MN	1.4 to 1.6	2
56	3	NAT	MN	125.0 to 125.0	2
57	3	NAT	MN	2000.0 to 2400.0	2
58	3	NAT	MN	45.00 to 50.00	2
59	3	NAT	MN	7.00 to 7.50	2
60	3	NAT	MN	103.50 to 103.60	2
61	3	NAT	MN	10.00 to 11.00	2
62	3	NAT	MN	0.25 to 0.25	2
63	3	NAT	MN	320.00 to 330.00	2
64	3	NAT	MN	84.80 to 85.50	2
65	3	NAT	MN	39 to 39	2