Sample Paper (2023-24)

CLASS:9t	h				Code:A
Roll No.					

गणित

MATHEMATICS

[Time Allowed :3 hours] [Maximum Marks:80]

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 14 तथा प्रश्न 38 हैं।
- Please make sure that the printed pages in this question paper are 14 in number and it contains 38 questions.
- प्रश्न-पत्र के दाई ओर दिए गए कोड नंबर को छात्र द्वारा उत्तर- पुस्तिका के पहले पृष्ठ पर लिखा जाना चाहिए ।
- The code No.on the right side of the question paper should be written by the candidate on the front page of the answer-book.
- किसी प्रश्न का उत्तर देना शुरू करने से पहले उसका क्रमांक लिखना होगा |
- Before beginning to answer a question, its Serial Number must be written.
- अपनी उत्तर पुस्तिका में खाली पृष्ठ/ पृष्ठ न छोड़ें I
- Don't leave blank page/pages in your answer-book.
- उत्तर-पुस्तिका के अतिरिक्त कोई अन्य शीट नहीं दी जाएगी । अतः आवश्यकतानुसार ही लिखें व लिखा उत्तर न काटें ।
- Except answer-book, no extra sheet will be given. Write to the point and do not strike the written answer.
- परीक्षार्थी अपना रोल नंबर प्रश्न-पत्र पर अवश्य लिखें ।
- Candidates must write their Roll Number on the question paper.

- कृपया प्रश्नों का उत्तर देने से पहले यह सुनिश्चित केर लें कि प्रश्न-पत्र पूर्ण व
 सही है,परीक्षा के उपरांत इस संबंध में कोई भी दावा स्वीकार नहीं किया जाएगा
- Before answering the questions, ensure that you have been supplied the correct and complete question paper, no claim in this regard, will be entertained after examination.

सामान्य निर्देश: 1. इस प्रश्न पत्र में 5 खंड क, ख, ग, घ और ङ हैं।

- 2. खण्ड -क में 1 से 20 तक एक -एक अंक के प्रश्न हैं।1 से 18 तक बहुविकल्पीय(MCQs),एक शब्द उत्तरीय, रिक्त स्थान पूर्ति ,सत्य /असत्य प्रश्न तथा प्रश्न संख्या 19 और 20 अभिकथन-तर्क आधारित प्रश्न हैं।
- 3. खण्ड-ख में 21 से 25 तक अति लघ् उत्तरीय(VSA) प्रकार के दो-दो अंकों के प्रश्न हैं।
- 4. खण्ड-ग में 26 से 31 तक लघ् उत्तरीय(SA) प्रकार के तीन -तीन अंकों के प्रश्न हैं।
- 5. खण्ड-घ में 32 से 35 तक दीर्घ उत्तरीय(LA) प्रकार के पाँच-पाँच अंकों के प्रश्न हैं I
- 6. **खंड- इ** में प्रश्न संख्या 36 से 38 तक प्रकरण अध्ययन आधारित **चार -चार** अंकों के प्रश्न हैं । प्रत्येक प्रकरण अध्ययन में आंतरिक विकल्प **दो -दो** अंकों के प्रश्न में दिया गया है।
- 7. सभी प्रश्न अनिवार्य हैं। हालाँकि, **खण्ड-ख** के 2 प्रश्नों में, **खण्ड-ग** के 2 प्रश्नों में, **खण्ड-घ** के 2 प्रश्नों में तथा खंड- क के 3 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।

General Instructions:

- 1. There are 5 sections A, B, C, D and E in this question paper.
- 2. **Section A** consists of one mark questions from 1 to 20. 1 to 18 are Multiple Choice Questions (MCQs),One Word Answer,Fill in the blank,True/False and question numbers 19 and 20 are Assertion-Reasoning based questions.
- 3. **Section-B** consists of Very Short Answer Type (VSA) questions of two marks each from **21** to **25**.
- 4. Section-C consists of short-answer (SA) type questions of three marks each from 26 to 31.
- 5. Section-D consists of Long-Answer (LA) type questions of five marks each from 32 to 35.

- 6. Question numbers **36 to 38 in Section-E** are case study based questions of four marks each. Internal choice is given in each case study question of two marks each.
- 7. All questions are compulsory. However, provision of internal choice has been made in 2 questions of Section-B, 2 questions of Section-C, 2 questions of Section-D and 3 questions of Section-E.

SECTION-A

		<u>खण्ड-क</u>		
1. Between two	o rational numbers			1
(A) there is no	rational number	(B) there is e	xactly one rational number	<u>.</u>
(C) there are irrational number	•	ional numbers (D) ther	e are only rational numb	ers and no
दो परिमेय संख	याओं के बीच			
(C) अपरिमित रूप	प से अनेक परिमेय संर	नहीं हैं	नंख्याएँ हैं और कोई अपरिमेय	
_	_		at angle of the triangle is	1
(A) 60°	(B) 40°	(C) 80°	(D) 20°	
एक त्रिभुज के (A) 60°	कोणों का अनुपात 2 : (B) 40°	4 : 3 है। त्रिभुज का सबसे (C) 80°	ा छोटा कोण है∣ (D) 20°	
3. Which of the	e following is not a	criterion for congruence	of triangles?	1
(A) SAS	(B) ASA	(C) SSA	(D) SSS	
निम्न में से क (A) SAS	•	मता की कसौटी नहीं है? (C) SSA	(D) SSS	
4. Two sides o	f a triangle are of le	ngths 5 cm and 1.5 cm.	Γhe length of the third side	of
the triangle ca	nnot be			1
(A) 3.6 cm	(B) 4.1 cm	(C) 3.8 cm	(D) 3.4 cm	
एक त्रिभुज की सकती	दो भुजाओं की लंबाई	5 सेमी और 1.5 सेमी है।	त्रिभुज की तीसरी भुजा की त	त्रंबाई नहीं हो
(A) 3.6 cm	(B) 4.1 cm	(C) 3.8 cm	(D) 3.4 cm	
5. Three angle	s of a quadrilateral a	are 75°, 90° and 75°. The	fourth angle is:	1

(A) 90°	(B) 95°	(C) 105°		D) 120°	,	
	तीन कोण 75°, (B) 95°	90° और 75° है (C) 105°	ं। चौथा कोण है	D) 120°		
6. Equal chords	of a circle (or	of congruent of	circles) subter	nd equal an	gles at the cer	ntre (T/F)
एक वृत्त (या स	र्वांगसम वृत्तों) की	समान जीवाएँ व	फेंद्र पर समान व	कोण बनाती	हैं (T/F)	1
7. The base of a	a right triangle i	s 8 cm and hy	potenuse is 1	0 cm. Its an	ea will be:	1
(A) 24 cm ² (B) 40 cm ²	(C) 48 cm ²		(D) 80 cm ²		
	त्रेभुज का आधार १ B) 40 cm²			इसका क्षेत्रफर (D) 80 cm²	त्र होगा	
8. In a cone, if	radius is halved	and height is	doubled, the	volume wi	ll be:	1
(A) same	(B) doubled	(C) hal	ved	(D) fo	ur times	
एक शंकु में, यि (A) वही 9. The class-ma	5	(C)	ऊंचाई दोगुनी व आधा			т 1
(A)130 (B) 135	(C) 140		(D) 14	1 5	
वर्ग 130-150 क (A) 130 10. To draw a h	(B) 135	(C) 140		(D) 1		
Class Interval	5-10	10-15	15-25	25-45	45-75	
Frequency	6	12	10	8	15	
The adjusted f	requency for th	e class 25-45	is:			1
(A) 6	(B) 5	(C) 3	(D) 2	
बारंबारता बंटन						
वर्ग अन्तराल	5-10	10-15	15-25	25-45	45-75	
बारंबारता	6	12	10	8	15	
का एक आयत चि	त्र खींचने के लिए	, वर्ग 25-45 की	ा समायोजित बा	ारंबारता है:		
(A) 6	(B) 5	(C)	3	(E	0) 2	
11. The smalles	st natural numb	er is :				1
(A) zero	(B) 1	(C) 2		(D) -	-1	
सबसे छोटी प्रावृ	हृत संख्या है					

(A) 0 (E	3) 1	(C) 2	2		(D)) –1		
12.	The coeffici	ents of x^2	2 in $2 - x^2 +$	$-\mathbf{x}^3$					1
(A	(B	3) 2	(C) 1			(D)	-2		
2	_ x² + x³ में	x² का गुणां	क होगा						
(A	(B	3) 2	(C) 1			(D)	-2		
13.	Find the val	lue of the p	oolynomial	5x - 4x	$x^2 + 3$ at	x = 0			1
(A) z	ero ((B) 1	(C)	2		(D)	3		
x (A) C	9		x ² + 3 का मान (C) 2	न ज्ञात व	क्रीजिए	(D) 3		
14.	Γhe total sur	rface area	of a cone who	ose rad	ius is $\frac{r}{2}$	and slant heig	tht 2 <i>l</i> is :		1
	(A) $2\pi r(l-$	+ <i>r</i>)	(B) $\pi r(l + l)$	$\left(\frac{r}{4}\right)$	(C)	$\pi r(l+r)$	(D))	$2\pi r l$	
एव	म शंकु का कु	ल पृष्ठीय क्षे	त्रफल ,जिसकी	त्रिज्या	$\frac{r}{2}$ और वि	तेर्यक ऊंचाई 2 <i>l</i>	है, होगा:		
	(A) $2\pi r(l-$	+ <i>r</i>)	(B) $\pi r(l + l)$	$\left(\frac{r}{4}\right)$	(C)	$\pi r(l+r)$	(D))	$2\pi r l$	
15. I	In triangle A	ABC, BC =	AB and $\angle B$	= 80°.	Then ∠	A is equal to:			1
(A) 40°	(B) 80	0	(C)	50°		(D) 100)°	
त्रि	भुज ABC में,	BC = AB औ	ोर ∠B=80° है,	तब ∠A	. बराबर है	ī:			
(A) 40°	(B) 80°		(C)	50°		(D) 100°		
16. s	sum of all th	ne interior	angles of qua	adrilate	eral is				1
17.	ABCD is a	cyclic qua	ाणों का योग है drilateral suc C is equal to:			diameter of a	a circle circ	cumscribing	g it and 1
(A) 8	80°	(B) 50°		(C) 4	10°		(D) 30°		
	BCD एक चर्ब्र ाबर है:	नेय चतुर्भुज	है जिसमें AB	3 इसके	परिगत व	वृत का व्यास ह	है और ∠AI)C=140°, ਨੀ	∠BAC
(A)	•	(B) 50°		(C) 4	10°		(D) 30°		
18.	Angles in	the same	segment of	a circl	e are				1
	एक ही वृत्तखं	ड में बने को	ण		होते हैं।				

- 19. Assertion (A) if $\sqrt{2}=1.414$, $\sqrt{3}=1.732$ then $\sqrt{5}=\sqrt{2}+\sqrt{3}$ Reason (R) Square root of positive number always exists
- A) Both A and R are true and R is the correct explanation of A.
- B) Both A and R are true but R is not the correct explanation of A.
- C) A is true but R is false
- D) A is false but R is true

अभिकथन (A) अगर $\sqrt{2}$ =1.414 , $\sqrt{3}$ =1.732 फिर $\sqrt{5}$ = $\sqrt{2}$ + $\sqrt{3}$

तर्क(R) धनात्मक (positive number) संख्या का वर्ग मूल हमेशा मौजूद होता है

- A) A और R दोनों सत्य हैं और R, A की सही व्याख्या है।
- B) A और R दोनों सही हैं लेकिन R, A की सही व्याख्या नहीं है।
- c) A सत्य है लेकिन R असत्य है
- D) A असत्य है लेकिन R सत्य है
- 20. Assertion (A) A chord of a circle, which is twice as long as its radius, is a diameter of the circle.

Reason (R) The longest chord of a circle is a diameter of the circle

- A) Both A and R are true and R is the correct explanation of A.
- B) Both A and R are true but R is not the correct explanation of A.
- C) A is true but R is false
- D) A is false but R is true

अभिकथन (A) किसी वृत्त की जीवा, जो उसकी त्रिज्या से दोगुनी लंबी होती है, वृत्त का व्यास होती है।
तर्क (R) किसी वृत्त की सबसे लंबी जीवा वृत्त का व्यास होती है

- A) A और R दोनों सत्य हैं और R, A की सही व्याख्या है।
- B) A और R दोनों सत्य हैं लेकिन R, A की सही व्याख्या नहीं है।
- C) A सत्य है लेकिन R असत्य है
- D) A असत्य है लेकिन R सत्य है

SECTION-B

खण्ड-ख

21. Find six rational numbers between 3 and 4.

2

- 21. 3 और 4 के बीच छह परिमेय संख्याएँ ज्ञात कीजिए।
- 22. Simplify $(3 + \sqrt{3})(2 + \sqrt{2})$

2

सरल कीजिए $(3 + \sqrt{3})(2 + \sqrt{2})$

OR

Simplify : $(125)^{\frac{-1}{3}}$

सरल कीजिये : $(125)^{\frac{-1}{3}}$

23. Rationalise the denominator of $\frac{1}{2+\sqrt{3}}$

2

 $\frac{1}{2+\sqrt{3}}$ के हर का परिमेयकरण कीजिए I

24. Evaluate 103 × 107

2

103 × 107 का मान ज्ञात कीजिए l

25. Find the value of k, if x - 1 is a factor of p(x), $p(x) = x^2 + x + k$

2

 \mathbf{k} का मान ज्ञात कीजिए, यदि \mathbf{x} – 1, $\mathbf{p}(\mathbf{x})$ का एक गुणनखंड है $\boldsymbol{p}(\mathbf{x})$ = $\mathbf{x}^2 + \mathbf{x} + \mathbf{k}$

OR

Use the Factor Theorem to determine whether x-3 is a factor of polynomial x^3-4x^2+x+6 ?

गुणनखंड प्रमेय का उपयोग करके ज्ञात कीजिए कि x-3, बह्पद x^3-4x^2+x+6 का एक गुणनखंड है या नहीं ?

SECTION-C

खण्ड-ग

26. Factorise $12x^2 - 7x + 1$

3

गुणनखण्ड कीजिए $12x^2 - 7x + 1$

27. A hemispherical bowl has a radius of 3.5 cm. What would be the volume of water it would contain?

3

एक अर्दधगोलीय कटोरे की त्रिज्या 3.5 सेमी है। इसमें पानी की मात्रा कितनी होगी?

Find the Total surface area of a cone, if its slant height is 21 m and diameter of its base is 24 m.

3

एक शंकु का कुल पृष्ठीय क्षेत्रफल ज्ञात कीजिए, यदि इसकी तिर्यक ऊँचाई 21 मीटर है और इसके आधार का व्यास 24 मीटर है।

28. Factorise $27Y^3 + 125Z^3$

3

गुणनखण्ड कीजिए 27Y³ + 125Z³

29. Find four different solutions of the equation x + 2y = 6.

3

समीकरण x + 2y = 6 के चार भिन्न हल ज्ञात कीजिए।

30. Find the value of k, if x = 2, y = 1 is a solution of the equation 2x + 3y = k.

3

k का मान ज्ञात कीजिए, यदि x = 2, y = 1 समीकरण 2x + 3y = k का एक हल है। 31. Factorise $8X^3 + 27Y^3 + 36X^2Y + 54XY^2$

3

गुणनखण्ड कीजिए $8X^3 + 27Y^3 + 36X^2Y + 54XY^2$

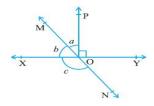
OR

Factorise: 8X³ + Y³ + 27Z³ – 18XYZ

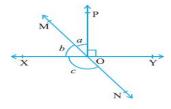
ग्णनखण्ड कीजिए 8X³ + Y³ + 27Z³ – 18XYZ

SECTION-D

<u>खण्ड-घ</u>

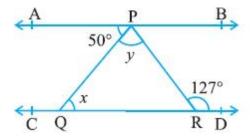

32. If a point C lies between two points A and B such that AC = BC, then prove that $AC = \frac{1}{2} AB$. Explain by drawing the figure.

5

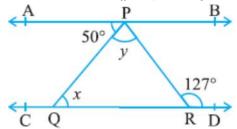

यदि एक बिंदु C दो बिंदुओं A और B के बीच इस प्रकार स्थित है कि AC = BC है, तो सिद्ध कीजिए AC = ½ AB , चित्र बनाकर समझाइए।

33. In Fig. lines XY and MN intersect at O. If $\angle POY = 90^{\circ}$ and a : b = 2 : 3, find c.

5



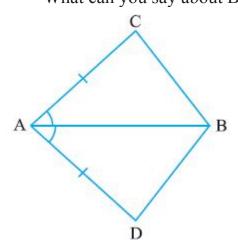
चित्र में रेखाएँ XY और MN O पर प्रतिच्छेद करती हैं। यदि $\angle POY = 90^\circ$ और a:b=2:3 है, तो c ज्ञात कीजिए।



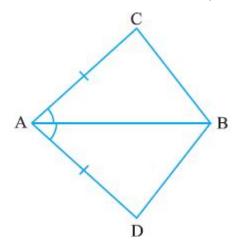
OR

In Fig. if AB \parallel CD, \angle APQ = 50° and \angle PRD = 127°, find x and y.

चित्र में यदि $AB \parallel CD$, $\angle APQ = 50^{\circ}$ और $\angle PRD = 127^{\circ}$, x और y ज्ञात कीजिए।

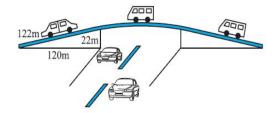

34. Find the area of a triangle two sides of which are 18cm and 10cm and the perimeter is 42cm.

एक त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसकी दो भुजाएँ 18 सेमी और 10 सेमी हैं तथा परिमाप 42 सेमी है।


OR

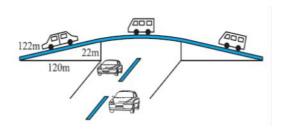
Find the curved surface area of a right circular cone whose slant height is 10 cm and base radius is 7 cm

एक लम्ब वृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल ज्ञात कीजिए जिसकी तिर्यक ऊँचाई 10 सेमी और आधार की त्रिज्या 7 सेमी है।


चतुर्भुज ABCD, AC = AD और AB, \angle A को समद्विभाजित करता है दिखाइए कि \triangle ABC \triangle ABD. आप BC और BD के बारे में क्या कह सकते हैं?

SECTION-E

36. The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 122 m, 22 m and 120 m. The advertisement yields an earning of Rs $5000 \text{ per m}^2 \text{ per year}$.


Based on the above information and the given figure answer the followings

(i) Perimeter of wall is	1
(ii) Write down the Heron's Formula.	1
(iii)Area of triangular wall is	2

OR

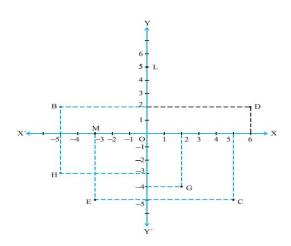
If company hired one of its walls with area 1680 m² for 3 months, then how much rent did it pay?

विज्ञापन के लिए फ्लाईओवर की त्रिकोणीय साइड की दीवारों का उपयोग किया गया है। दीवारों की भुजाएँ 122 मीटर, 22 मीटर और 120 मीटर हैं। विज्ञापनों से प्रति वर्ष 5000 रुपये प्रति m² की कमाई होती है।

उपरोक्त जानकारी और दी गई आकृति के आधार पर निम्नलिखित प्रश्नों का उत्तर दें ।

- (i) दीवार का परिमाप ज्ञात कीजिए I
- (ii) हीरोन का सूत्र लिखिए।
- (iii) त्रिभ्जाकार दीवार का क्षेत्रफल ज्ञात कीजिए I

अथवा

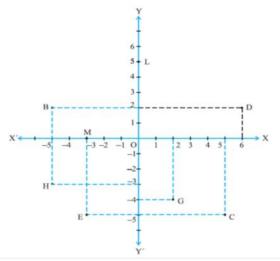

यदि कंपनी 1680 वर्ग मीटर क्षेत्रफल वाली एक दीवार को 3 महीने के लिए किराए पर लेती है, तो उसे कितना किराया देना होगा?

1

- 37. See Fig and write the following:
 - (i) The coordinates of B.
 - (ii) The point identified by the coordinates (-3, -5).
 - (iii) Find the abscissa of point D and the ordinate of point H.

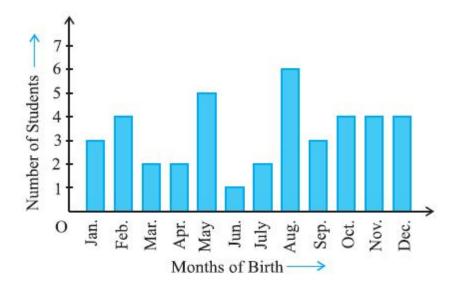
OR

Find the area of the rectangle formed by the line segment BD and the X-axis in the figure.



आकृति देखकर निम्नलिखित प्रश्नों के उत्तर दें।

- (i) B के निर्देशांक।
- (ii) निर्देशांक (-3, -5) द्वारा पहचाना गया बिंदु।
- (iii) बिंदु D का भुज तथा बिंदु H की कोटि ज्ञात कीजिए I


अथवा

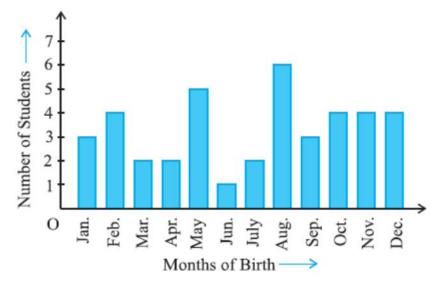
आकृति में रेखाखंड BD का X-अक्ष के साथ बनने वाले आयत का क्षेत्रफल ज्ञात कीजिए I

38. In a particular section of Class IX, 40 students were asked about the months of their birth and the following graph was prepared for the data so obtained:

Observe the bar graph given above and answer the following questions:

- (i) How many students were born in the month of November?
- (ii) In which month were the maximum number of students born?
- (iii) Name the months in which 4 students were born.

OR


1

1

Find the total number of students born from May to August.

38. कक्षा IX के एक विशेष खंड में, 40 छात्रों से उनके जन्म के महीनों के बारे में पूछा गया था और प्राप्त आंकड़ों के लिए निम्नलिखित ग्राफ तैयार किया गया था:

दिए गए दंड आलेख को देखें और निम्नलिखित प्रश्नों के उत्तर दें:

- (i) नवंबर के महीने में कितने विद्यार्थियों का जन्म ह्आ?
- (ii) किस महीने में सबसे अधिक विद्यार्थियों का जन्म ह्आ?
- (iii) उन महीनों के नाम बताइए जिनमें 4 विद्यार्थियों का जन्म ह्आ।

अथवा

मई से अगस्त के बीच पैदा हुए छात्रों की कुल संख्या ज्ञात कीजिए।

	Marking Schem	ne IX Mat	hs 2023-24	4 (हिन्दी) म	ाध्यम)	
Q.NO.	EXP		WER /VALUE	POINTS		MARKS
			CTION-A			
1	दो परिमेय संख्याओं के					
SOLUTION	(C) अपरिमित रूप से	अनेक परिमेय	संख्याएँ हैं			1
	एक त्रिभुज के कोणों व	न अनुपात 2	: 4 : 3 है। त्रि	भुज का सबसे	छोटा कोण	
2	है।					
SOLUTION	(B) 40°					1
3	निम्न में से कौन त्रिभु	जों की सर्वांग	प्तमता की कसौर्ट	ी नहीं है?		
SOLUTION	(C) SSA					1
	एक त्रिभुज की दो भुज	ाओं की लंबाई	5 सेमी और 1	.5 सेमी है। त्रि	भुज की	
4	तीसरी भुजा की लंबाई	नहीं हो सकत	ी			
SOLUTION	(D) 3.4 cm					1
5	एक चतुर्भुज के तीन कोण 75°, 90° और 75° हैं। चौथा कोण है					
SOLUTION	D) 120°					1
	एक वृत्त की समान जीवाएँ केंद्र पर समान कोण बनाती (या सर्वांगसम वृत्तों)					
6.) है T/F)					
SOLUTION	Т					1
	एक समकोण त्रिभुज व	न आधार 8 र	नेमी और कर्ण 1	0 सेमी है। इस	का क्षेत्रफल	
	होगा					
7.						
SOLUTION	(A) 24 cm ²					
	एक शंकु में, यदि त्रिज्य	ग आधी कर व	दी जाए और ऊंच	गई दोगुनी कर	दी जाए, तो	
8.	आयतन होगा					
SOLUTION	C) आधा					1
9.	वर्ग 130-150 का वर्ग	-चिह्न है				
SOLUTION	(C) 140					1
	बारंबारता बंटन					
	वर्ग अन्तराल	5-10	10-15	15-25	25-45	
	बारंबारता	6	12	10	8	
10.	का एक आयत चित्र खं	ोंचने के लिए,	वर्ग 25-45 की	समायोजित बा	रंबारता है:	
SOLUTION	(D) 2					1

11.	सबसे छोटी प्राकृत संख्या है	
SOLUTION	(B) 1	1
12.	$2 - x^2 + x^3$ में x^2 का गुणांक होगा	
SOLUTION	(A) -1	1
13.	$x = 0$ पर बहुपद $5x - 4x^2 + 3$ का मान ज्ञात कीजिए	
SOLUTION	(D) 3	
	एक शंकु का कुल पृष्ठीय क्षेत्रफल ,जिसकी त्रिज्या $\frac{r}{2}$ और तिर्यक ऊंचाई $2l$ है,	
	होगा:	
14.	(B) $\pi r (l + \frac{r}{4})$	
SOLUTION	त्रिभुज ABC में, BC = AB और ∠B=80° है, तब ∠A बराबर है:	
15. SOLUTION	(C) 50°	1
16.	चतुर्भुज के सभी आंतरिक कोणों का योग है	
SOLUTION	360 ⁰	1
	ABCD एक चक्रीय चतुर्भुज है जिसमें AB इसके परिगत वृत्त का व्यास है और	
	∠ADC=140°, तो ∠BAC बराबर है:	
17.	(D) 700	
SOLUTION	(B) 50°	1
18.	एक ही वृत्तखंड में बने कोणहोते हैं।	
SOLUTION	बराबर	1
	अभिकथन (A) अगर $\sqrt{2}$ =1.414 , $\sqrt{3}$ =1.732 फिर $\sqrt{5}$ = $\sqrt{2}$ + $\sqrt{3}$	
	तर्क(R) धनात्मक (positive number) संख्या का वर्ग मूल हमेशा मौजूद होता	
	है	
19.	₹	
SOLUTION	D) A असत्य है लेकिन R सत्य है	1
SOLUTION	अभिकथन (A) किसी वृत्त की जीवा, जो उसकी त्रिज्या से दोगुनी लंबी होती है,	1
	वृत्त का व्यास होती है।	
20.	तर्क (R) किसी वृत्त की सबसे लंबी जीवा वृत्त का व्यास होती है	
	A) A और R दोनों सत्य हैं और R, A की सही व्याख्या है।	
SOLUTION	SECTION -B	1

21	3 और 4 के बीच छह परिमेय संख्याएँ ज्ञात कीजिए।	
	हम जानते हैं कि	
SOLUTION	$3=3 imes rac{7}{7} = rac{21}{7}$ 3117 $4=4 imes rac{7}{7} = rac{28}{7}$	1
	इसलिए, 3 और 4 के बीच छह परिमेय संख्याएँ 22, 23, 24, 25, 26, 27 7, 7, 7, 7, 7, 7	
22	सरल कीजिए (3 + √3)(2 + √ 2)	1
22.	$= 3 (2 + \sqrt{2}) + \sqrt{3} (2 + \sqrt{2})$	
SOLUTION		1
BOLCTION	$= 6 + 3\sqrt{2} + 2\sqrt{3} + \sqrt{6}$	1
	OR	
	सरल कीजिये : $(125)^{rac{-1}{3}}$	
SOLUTION	$(125)^{\frac{-1}{3}} = (5 \times 5 \times 5)^{\frac{-1}{3}} = (5^3)^{\frac{-1}{3}}$	1
	$=5^{-1}=\frac{1}{5}$	1
23.	1/(2+ $\sqrt{3}$) के हर का परिमेयकरण कीजिये	
	$\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$	
	$=\frac{2-\sqrt{3}}{(2)^2-(\sqrt{3})^2}$	
SOLUTION		1
	$=\frac{2-\sqrt{3}}{4-3}$	
	$=\frac{2-\sqrt{3}}{1}$	1
24.	103 × 107 का मान ज्ञात कीजिए	
	103×107= (100+3)×(100+7)	
	यहाँ, $x = 100$, $a = 3$, $b = 7$	
SOLUTION	सर्वसमिका, $[(x+a)(x+b) = x^2 + (a+b)x + ab$ द्वारा	1

	$103 \times 107 = (100 + 3) \times (100 + 7)$	
	(100)2 (2.7)100 (2.7)	
	$= (100)^2 + (3+7)100 + (3\times7)$ = 10000+1000+21	
	= 10000+1000+21 = 110211	1
25.	k का मान ज्ञात कीजिए, यदि $x - 1$, $p(x)$ का एक गुणनखंड है $p(x) = x^2 + x + k$	-
	यदि $x - 1, p(x)$ का एक गुणनखंड है तो	
	p(1) = 0	
	गुणनखंड प्रमेय द्वारा	
SOLUTION	$\Rightarrow (1)^2 + (1) + k = 0$	1
	1+1+k=0	
	$\Rightarrow 2+k=0$	
	$\Rightarrow k = -2$ OR	1
	गुणनखंड प्रमेय का उपयोग करके ज्ञात कीजिए कि x -3, बहुपद x^3 -4 x^2 + x +6 का	
	गुणाबा अनय या अयाग यार्य सात याजिश वर्ग ४-3, बहुन्य ४ -4४ +४+० या	
	एक गुणनखंड है या नहीं ?	
	x-3 =0 लेने पर	
	x = 3	
SOLUTION	x=3 बहुपद में रखने पर (3) ³ -4(3) ² +3+6	1
	= 27-36+3+6= 0	
	अतः गुणनखंड प्रमेय द्वारा x-3, बह्पद x ³ -4x ² +x+6 का एक गुणनखंड है।	1
	SECTION-C	
26.	गुणनखण्ड कीजिए $12x^2 - 7x + 1$	
	मध्य पद को विभाजित करने की विधि का उपयोग करते हुए,	
	हमें एक संख्या ज्ञात करनी है जिसका योग = -7 है	
	और गुणनफल =1×12 = 12	
	हमें संख्या के रूप में -3 और -4 मिलते हैं [-3+-4=-7 और -3×-4 = 12]	
	$12x^2-7x+1$	
SOLUTION	$=12x^2-4x-3x+1$	1
	=4x(3x-1)-1(3x-1)	1
	=(4x-1)(3x-1)	1
	एक अर्द्धगोलीय कटोरे की त्रिज्या 3.5 सेमी है। इसमें पानी की मात्रा कितनी	
27.	होगी?	

	R = 3.5 CM	
	ार 3.3 टारा गोले का आयतन =4/3(∏R ³)	
	गाल का जायतन <i>-4/3(IIK)</i>	
	अर्धगोले का आयतन =2/3(∏R ³)	1
	=(2/3)x3.14x3.5x3.5x3.5	1
	(2/3)/3.14/3.3/3.3/3.3 =89.75 सेमी ³	1
	-03.73 (1011	1
SOLUTION	OR	
	एक शंकु का कुल पृष्ठीय क्षेत्रफल ज्ञात कीजिए, यदि इसकी तिर्यक ऊँचाई 21	
	मीटर है और इसके आधार का व्यास 24 मीटर है।	
	शंकु की तिर्यक ऊंचाई (I)=21 मी	
	शंकु के आधार का व्यास =24 मी	
SOLUTION	त्रिज्या (r)=24/2=12 मीटर	1
BOLUTION	कुल पृष्ठीय क्षेत्रफल =πr(l+r)=22/7×12(21+12)मी ²	1
	3 (1) 2 (1) (1) (1) (1) (1) (1) (1	1
	=22/7×12×33 मी2=8712/7मी2=1244.57 मी ²	1
28.	गुणनखण्ड कीजिए 27Y³ + 125Z³	
	$27Y^3 + 125Z^3 = (3Y)^3 + (5Z)^3$	
	हम जानते हे की, $x^3+y^3=(x+y)(x^2-xy+y^2)$	
	$=27Y^3+125Z^3$	
	$(3Y)^3 + (5Z)^3$	
SOLUTION	$=(3y)^3+(5z)^3$	1
	$= (3Y+5Z)[(3Y)^2-(3Y)(5Z)+(5Z)^2]$	
	$= (3Y+5Z)(9Y^2-15YZ+25Z^2)$	2
29	समीकरण $\mathbf{x}+2\mathbf{y}=6$ के चार भिन्न हल ज्ञात कीजिए।	
	x + 2y = 6 $y = 6$	
	X=6-2Y Y=0 रखने पर	
	Y=0 रखन पर X=6	
	पहला हल (X=6, Y=0)	
	Y=1 रखने पर	
	$X=6-2\times1$	
	X=0-2X1 $X=4$	
	दूसरा हल (X=4,Y=1)	4.5
		1.5
	Y=2 रखने पर	1.5

	X=6-2x2	
	X=2	
	तीसरा हल (X=2,Y=2)	
	Y=3 रखने पर	
	X=6-2x3	
	X=0	
	चौथा हल (X=0,Y=3)	
	${\bf k}$ का मान ज्ञात कीजिए, यदि ${\bf x}={\bf 2},{\bf y}={\bf 1}$ समीकरण ${\bf 2x}+{\bf 3y}={\bf k}$ का एक हल	
30	है।	
	2x + 3y = k.	
	x = 2, y = 1 समीकरण में रखने पर	
SOLUTION	2x2+3x1=K	2
	4+3=K	
	K=7	1
31.	गुणनखण्ड कीजिए 8X³ + 27Y³ + 36X²Y + 54XY²	
	व्यंजक $8X^3 + 27Y^3 + 36X^2Y + 54XY^2$	
	के रूप में लिखा जा सकता है	
SOLUTION	$(2X)^3 + (3Y)^3 + 3(2X)^2(3Y) + 3(2X)(3Y)^2$	1
	$=(2X)^3 + (3Y)^3 + 3(2X)^2(3Y) + 3(2X)(3Y)^2$	
	$(x+y)^3 = x^3 + y^3 + 3xy (x+y)$ $(2X)^3 + (3Y)^3 + 3(2X)(3Y)(2X+3Y)$	1
	$(2X)^3 + (3Y)^3 + 3(2X)(3Y)(2X + 3Y)$	
	$=(2X+3Y)^3$	
	=(2X+3Y)(2X+3Y)(2X+3Y)	1
	अथवा	
	गुणनखण्ड कीजिए 8X³ + Y³ + 27Z³ – 18XYZ	
	$8X^3 + Y^3 + 27Z^3 - 18XYZ$	
	के रूप में लिखा जा सकता है	
SOLUTION	$(2X)^3 + Y^3 + (3Z)^3 - 3(2X)(Y)(3Z)$	1
BOLUTION	$x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx)$	1 1
	= $(2X+Y+3Z)((2X)^2+Y^2+(3Z)^2-2XY-Y(3Z)-3Z(2X))$	1
		1
	$(2X+Y+3Z)(4X^2+Y^2+9Z^2-2XY-3YZ-6ZX)$	

	यदि एक बिंदु C दो बिंदुओं A और B के बीच इस प्रकार स्थित है कि AC =	
	BC है, तो सिद्ध कीजिए AC = ½ AB चित्र बनाकर समझाइए।	
32.		
	C	
	A	
SOLUTION		1
	दिया गया है कि , AC = BC	
	अब दोनों तरफ AC को जोड़ रहे हैं	
	L.H.S+AC = R.H.S+AC	2
	AC+AC = BC+AC	2
	2AC = BC + AC	
	हम जानते हैं कि, BC+AC = AB (क्योंकि यह रेखाखंड AB के साथ संपाती है)	
	∴ 2 AC = AB (यदि बराबर को बराबर में जोड़ा जाए, तो पूर्ण बराबर होते हैं।)	
	\Rightarrow AC = ($\frac{1}{2}$) AB.	
		2
	चित्र में रेखाएँ XY और MN O पर प्रतिच्छेद करती हैं। यदि ∠POY = 90° और	
	a:b=2:3 है, तो c ज्ञात कीजिए।	
	↑ P	
	b a	
	X c O Y	
33.	N ²	
331	हम जानते हैं कि रैखिक युग्मों का योग हमेशा 180° के बराबर होता है	
	इसलिए, ∠POY +a +b = 180°	
SOLUTON	\$\text{\$\ext{\$\text{\$\exiting{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	1
SOLUTON		тт
	जैसा कि प्रश्न में दिया गया है $\angle POY = 90^\circ$ का मान रखने पर,	
	$a+b=90^{\circ}$	
	दिया ह्आ है : a:b=2:3	1
	मान लीजिए a =2x है और b =3x है	
	$\therefore 2x + 3x = 90^{\circ}$	
	इसे हल करने पर हमें प्राप्त होता है	
	$5x = 90^{\circ}$	
	So, $x = 18^{\circ}$	4
	$\dot{a} = 2 \times 18^{\circ} = 36^{\circ}$	1
	इसी प्रकार, b की गणना की जा सकती है और मान होगा	1
	Am mand and the man de surface from the surface form	1

	$b = 3 \times 18^{\circ} = 54^{\circ}$	
	आरेख से, b+c भी एक सीधा कोण बनाता है,	
	इसलिए, b+c = 180°	
	$c+54^{\circ} = 180^{\circ}$	
	\therefore c = 126°	1
	चित्र में यदि AB CD, ∠APQ = 50° और ∠PRD = 127°, x और y ज्ञात	1
	कीजिए।	
	50° y 127°	
	C Q R D	
OR 33		
	चित्र से ∠APQ = ∠PQR (अंतः एकांतर कोण)	
	$\angle APQ = 50^{\circ}$ और $\angle PQR = x$ का मान रखने पर	
SOLUTION	$x = 50^{\circ}$	1
BOLCTION	भी	
	∠APR = ∠PRD (अंतःएकांतर कोण)	
	Or, ∠APR = 127° (जैसा कि दिया गया है कि ∠PRD = 127°)	
	हम वह जानते हैं ∠APR =∠APQ+∠QPR	2
	अब, ∠QPR = y और ∠APR = 127° का मान रखने पर,	
	हम पाते हैं	
	$127^{\circ} = 50^{\circ} + y$	
	Or, $y = 77^{\circ}$	
	इस प्रकार, x और y के मानों की गणना इस प्रकार की जाती है:	
	x = 50° और y = 77°	2
	एक त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसकी दो भुजाएँ 18 सेमी और 10 सेमी	۷
34.	हैं तथा परिमाप 42 सेमी है।	
	त्रिभुज की तीसरी भुजा को "x" मान लें।	
	अब, त्रिभुज की तीन भुजाएँ 18 सेमी, 10 सेमी और "x" सेमी हैं	
	दिया गया है कि त्रिभुज का परिमाप = 42 सेमी	
SOLUTION	इसलिए, x = 42-(18+10) सेमी = 14 सेमी	

	त्रिभ्ज का अर्ध परिमाप = 42/2 = 21 सेमी	1
	हीरोन के सूत्र का प्रयोग करने पर,	
	त्रिभ्ज का क्षेत्रफल= $\sqrt{s(s-a)(s-b)(s-c)}$	1
	3 V V V V V V V V V V	
	.	
	= v[21(21-18)(21-10)(21-14)] सेमी ²	
	(524 2 44 71 2 12 2	1
	= v[21×3×11×7] सेमी ²	
	= 21√11 सेमी²	1
	एक लम्ब वृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल ज्ञात कीजिए जिसकी तिर्यक ऊँचाई 10	
34 OR	सेमी और आधार की त्रिज्या 7 सेमी है।	
	दिया गया है : /=10 सेमी ,त्रिज्या r = 7 सेमी	1
		'
	लम्बवृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल = $\pi r l$	1
		2
	$= 22/7x7 \times 10$	1
	= 220 सेमी ²	
SOLUTION		
	चतुर्भुज ABCD, AC = AD और AB, ∠A को समद्विभाजित करता है दिखाइए	
	कि △ABC △ABD. आप BC और BD के बारे में क्या कह सकते हैं?	
	C	
	A D	
	$A \longrightarrow B$	
35.	D	
	दिया गया है : AC = AD और रेखाखंड AB , ∠A को समद्विभाजित करती है।	
SOLUTION	सिद्ध करना है : $\Delta ABC \cong \Delta ABD$	2

	प्रमाण:	
	त्रिभ्जों ΔABC और ΔABD में	
	(i) AC = AD (दिया गया है)	
	(ii) AB = AB (उभयनिष्ठ)	
	(iii) ∠CAB = ∠DAB (क्योंकि AB कोण A का समद्विभाजक है)	
	इसलिए, $\Delta ABC\cong \Delta ABD$. (SAS सर्वांगसमता कसौटी के अनुसार)	
		2
	प्रश्न के दूसरे भाग के लिए, BC =BD हैं। (C.P.C.T के नियम के अनुसार)	1
	विज्ञापन के लिए फ्लाईओवर की त्रिकोणीय साइड की दीवारों का उपयोग	
	किया गया है। दीवारों की भुजाएँ 122 मीटर, 22 मीटर और 120 मीटर हैं।	
	विज्ञापनों से प्रति वर्ष 5000 रुपये प्रति m² की कमाई होती है। उपरोक्त	
	जानकारी और दी गई आकृति के आधार पर निम्नलिखित प्रश्नों का उत्तर दें	
	(i) दीवार का परिमाप ज्ञात कीजिए I	
	(ii) हीरोन का सूत्र लिखिए।	
	(iii) त्रिभुजाकार दीवार का क्षेत्रफल ज्ञात कीजिए l	
	अथवा	
	यदि कंपनी 1680 वर्ग मीटर क्षेत्रफल वाली एक दीवार को 3 महीने के लिए	
	किराए पर लेती है, तो उसे कितना किराया देना होगा?	
36.		
	(i) त्रिभुज ABC की भुजाएँ क्रमशः 122 मीटर, 22 मीटर और 120 मीटर हैं	
	अब, परिमाप (122+22+120) = 264 मीटर होगा	
SOLUTION		1
	(ii) Δ का क्षे $\sigma = \sqrt{s(s-a)(s-b)(s-c)}$ जहाँ $s = (a+b+c)/2$	2
	(i) अर्द्ध परिमाप (s) = 264/2 = 132 मी.	
	हीरोन के सूत्र का प्रयोग करने पर,	
	त्रिभुज का क्षेत्रफल = $\sqrt{s(s-a)(s-b)(s-c)}$	
	$=\sqrt{132(132-122)(132-22)(132-120)}$	
	$=\sqrt{132\times10\times110\times12}$	
	$=1320 \text{ m}^2$	2
	OR	2

	हम जानते हैं कि प्रति वर्ष विज्ञापन का किराया = 5000 प्रति वर्ग मीटर	
	∴ एक दीवार का 3 महीने का किराया = रु. (1680×5000×3)/12	
	= vo. 2100000	
	आकृति देखकर निम्नलिखित प्रश्नों के उत्तर दें ।	
	(i) B के निर्देशांक।	
	(ii) निर्देशांक (-3, -5) द्वारा पहचाना गया बिंदु।	
	(iii) बिंदु D का भुज तथा बिंदु H की कोटि ज्ञात कीजिए l	
	अथवा	
	आकृति में रेखाखंड BD का X-अक्ष के साथ बनने वाले आयत का क्षेत्रफल	
37.	ज्ञात कीजिए ।	
	B का निर्देशांक (−5, 2) है।	
SOLUTION		1
	निर्देशांक (-3, -5) द्वारा पहचाना गया बिंदु E है।	_
	बिंदु D का भुज 6 तथा बिंदु H की कोटि -3 है।	1
	विषु प्रया मुठा ७ (वि. विषु । या या। ८ -५ हा	2
	OR	
	आयत का क्षेत्रफल= लo × चौo= 11×2=22 वर्ग इकाई	2
	कक्षा IX के एक विशेष खंड में, 40 छात्रों से उनके जन्म के महीनों के बारे में	
	पूछा गया था और प्राप्त आंकड़ों के लिए निम्नलिखित ग्राफ तैयार किया गया	
	था। दिए गए दंड आलेख को देखें और निम्नलिखित प्रश्नों के उत्तर दें:	
	Jan. Jan. Jan. Jan. Jan. Heb. Apr. Aug. Oct. Number of Students Jan. Aug. Oct. Nov. Dec.	
38.	(i) नवंबर के महीने में कितने विद्यार्थियों का जन्म हुआ?	

	T
(ii) किस महीने में सबसे अधिक विद्यार्थियों का जन्म हुआ?	
(iii) उन महीनों के नाम बताइए जिनमें 4 विद्यार्थियों का जन्म हुआ।	
अथवा	
मई से अगस्त के बीच पैदा हए छात्रों की कुल संख्या ज्ञात कीजिए।	
, , , , , , , , , , , , , , , , , , ,	
(i) नवंबर के महीने में 4 छात्रों का जन्म हुआ था	1
(ii) अगस्त में सबसे अधिक विद्यार्थियों का जन्म हुआ	1
(iii) फरवरी, अक्टूबर, नवंबर, दिसंबर	
	2
OR	
मई से अगस्त तक कुल छात्र = 5+1+2+6 = 14 छात्र	
	2
Marking Scheme IX Maths 2023-24 (English Medium)	
EXPECTED ANSWER /VALUE POINTS	MARK
SECTION A	S
	1
	1
	1
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1
	1
	1
length of the third side of the triangle cannot be	
(D) 3.4 cm	
Three angles of a quadrilateral are 75°, 90° and 75°. The fourth	
angle is	
D) 120°	1
	(iii) उन महीनों के नाम बताइए जिनमें 4 विद्यार्थियों का जन्म हुआ। अथवा मई से अगस्त के बीच पैदा हुए छात्रों की कुल संख्या ज्ञात कीजिए। (i) नवंबर के महीने में 4 छात्रों का जन्म हुआ था (ii) अगस्त में सबसे अधिक विद्यार्थियों का जन्म हुआ (iii) फरवरी, अक्टूबर, नवंबर, दिसंबर OR मई से अगस्त तक कुल छात्र = 5+1+2+6 = 14 छात्र EXPECTED ANSWER /VALUE POINTS SECTION -A Between two rational numbers (C) there are infinitely many rational numbers Angles of a triangle are in the ratio 2 : 4 : 3. The smallest angle of the triangle is (B) 40° Which of the following is not a criterion for congruence of triangles? (C) SSA Two sides of a triangle are of lengths 5 cm and 1.5 cm. The length of the third side of the triangle cannot be (D) 3.4 cm Three angles of a quadrilateral are 75°, 90° and 75°. The fourth angle is

6	Equal chords of a angles at the centr	-	of congrue	nt circles) su	ıbtend equal	
SOLUTION	TRUE				1	
7	The base of a righ	t triangle		l hypotenuse	e is 10 cm. Its	
	area will be	8		<i>.</i> .		
SOLUTION	(A) 24 cm ²					1
8	In a cone, if radius will be	s is halved	and height	is doubled,	the volume	
SOLUTION	(C) halved					1
9	The class-mark of	the class	130-150 is :			
SOLUTION	(C) 140					1
10	To draw a histogra	am to repi	resent the fo	ollowing free	quency	
	Class Interval	5-10	10-15	15-25	25-45	
	Frequency	6	12	10	8	
	The adjusted frequency	uency for	the class 25	-45 is:		
SOLUTION	(D) 2					1
11	The smallest natur	al numbe	er is :			
SOLUTION	(B) 1					1
12	The coefficients of	$f X^2 in 2$	$2-X^2+X^3$			
SOLUTION	(A) -1				1	
13	Find the value of	the polyn	omial 52	$X-4X^2+3$	at: x = 0	
SOLUTION	(D) 3					1
14	The total surface	area of a o	cone whose	radius is $\frac{r}{2}$ a	nd slant	
	height 2 <i>l</i> is:					
SOLUTION	(B) $\pi r(l + \frac{r}{4})$					1
15	In triangle ABC,	BC = AB	and $\angle B = 8$	80°. Then ∠A	l is equal to:	
SOLUTION	(C) 50°				_	1
16	sum of all the inte	riors angl	e of quadri	lateral is	-	
SOLUTION	360°					
17	ABCD is a cyclic q	uadrilate	ral such tha	t AB is a dia	ameter of a	
	circle circumscrib	ing it and	$\angle ADC = 1$	40° , then ∠ <i>I</i>	<i>BAC</i> is equal	
	to:					
SOLUTION	(B) 50°					1
18	Angles in the same	segment	of a circle a	re	•••••	

SOLUTION	equal	1
19	Assertion (A) if $\sqrt{2}=1.414$, $\sqrt{3}=1.732$ then $\sqrt{5}=\sqrt{2}+\sqrt{3}$	
	Reason (R) Square root of positive number always exists.	
SOLUTION	A is false but R is true	1
20	Assertion (A) A chord of a circle, which is twice as long as its	
	radius, is a diameter of the circle.	
	Reason (R) The longest chord of a circle is a diameter of the	
	circle	
SOLUTION	Both A and R are true and R is the correct explanation of A.	1

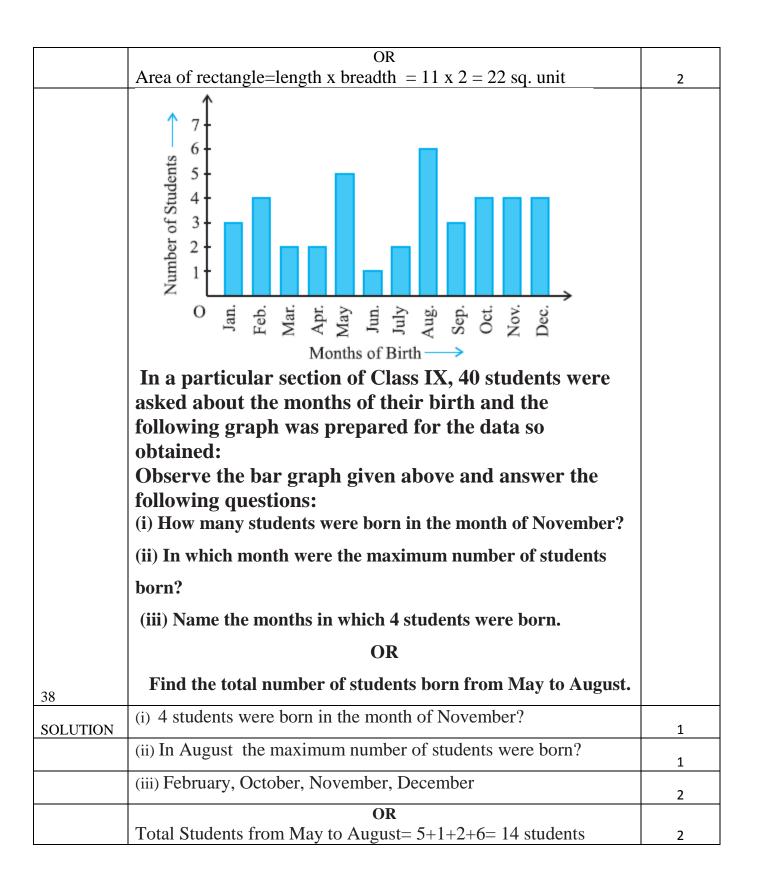
SECTION -B

Q.NO.	EXPECTED ANSWER /VALUE POINTS	MARKS
21	Find six rational numbers between 3 and 4.	
	We know that $3= 3 \times \frac{7}{7} = \frac{21}{7}$, $4= 4 \times \frac{7}{7} = \frac{28}{7}$	
SOLUTION		1
	Hence, six rational numbers between 3 and 4 $\frac{22}{7}, \frac{23}{7}, \frac{24}{7}, \frac{25}{7}, \frac{26}{7}, \frac{27}{7}$	1
22	Simplify $(3 + \sqrt{3})(2 + \sqrt{2})$	1
SOLUTION	$= (3 (2 + \sqrt{2})) + (\sqrt{3} (2 + \sqrt{2}))$	1
	$= 6 + 3\sqrt{2} + 2\sqrt{3} + \sqrt{6}$	1
	OR	
	Simplify: $(125)^{\frac{-1}{3}}$	
SOLUTION	$(125)^{\frac{-1}{3}} = (5 \times 5 \times 5)^{\frac{-1}{3}} = (5^3)^{\frac{-1}{3}}$	1
	$=5^{-1}=\frac{1}{5}$	1
	Rationalise the denominator of $\frac{1}{2+\sqrt{3}}$	
23		
SOLUTION	$\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{2-\sqrt{3}}{(2)2-(\sqrt{3})2}$	1

	$=\frac{2-\sqrt{3}}{4-3}=\frac{2-\sqrt{3}}{1}$	
	4-3 1	1
24	Evaluate 103×107	
	102 107 (100 2) (100 7)	
	$103 \times 107 = (100 + 3) \times (100 + 7)$	
	Here, $x = 100$, $a = 3$, $b = 7$	
SOLUTION	Using identity, $[(x+a)(x+b) = x^2 + (a+b)x + ab]$	1
	We get, $103 \times 107 = (100+3) \times (100+7)$ = $(100)^2 + (3+7)100 + (3\times7)$	
	$= (100) + (3+7)100 + (3\times7)$ = 10000+1000+21	
	= 110211	1
	Find the value of k, if $x - 1$ is a factor of $p(x)$, $p(x) = x^2 + x + k$	
25		
	If x-1 is a factor of $p(x)$, then $p(1) = 0$	
	By Factor Theorem	
SOLUTION	$\Rightarrow (1)^2 + (1) + k = 0$	1
	1+1+k=0	
	$\Rightarrow 2+k=0$	
	\Rightarrow k = -2	1
	OR Use the Factor Theorem to determine whether x-3 is a factor	
	of polynomial x^3-4x^2+x+6 ?	
	Take x-3 =0	
	$\Rightarrow x = 3$	
SOLUTION	putting $x=3$ in given polynomial $(3)^3-4(3)^2+3+6$	1
	= 27-36+3+6= 0	
	Therefore by factor theorem x-3 is a factor of polynomial x^3-4x^2+x+6	1
	SECTION -C	
	Factorise: $12x^2 - 7x + 1$	
26		
	Using the splitting the middle term method,	
	We have to find a number whose sum = -7	
SOLUTION	and product $=1 \times 12 = 12$	1

	We get -3 and -4 as the numbers $[-3+-4=-7 \text{ and } -3\times-4=12]$	
	$12x^2-7x+1$	
	$=12x^2-4x-3x+1$	
	=4x(3x-1)-1(3x-1)	
		1
	=(4x-1)(3x-1)	1
	A hemispherical bowl has a radius of 3.5 cm. What would be	
	the volume of water it would contain?	
27		
	R=3.5 cm	
SOLUTION	Volume of hemisphere = $2/3(\Pi R^3)$	1
	=(2/3)x3.14x3.5x3.5x3.5	1
	$=89.75 \text{ cm}^3$	1
	OR	
	Find the Total surface area of a cone, if its slant height is 21 m	
	and diameter of its base is 24 m.	
	Slant height of a cone (1)=21 m	
	diameter of its base =24 m	
	Radius (r)= $\frac{24}{2}$ =12 m	
	Radius $(1) = \frac{1}{2} = 12 \text{ III}$	
SOLUTION	2	1
	Now total surface area= $\pi r(1+r)=22/7\times12(21+12)m^2$	
		1
	$=22/7\times12\times33 \text{ m}^2=8712/7\text{m}^2=1244.57 \text{ m}^2$	1
•	Factorise $27Y^3 + 125Z^3$	
28	$27Y^3+125Z^3$	
	The expression, $27Y^3+125Z^3$ can be written as $(3Y)^3+(5Z)^3$	
	The expression, $2/1 + 125Z$ can be written as $(31) + (3Z)$	
	2 2 2	1
	$27Y^{3}+125Z^{3}=(3Y)^{3}+(5Z)^{3}$	
	We know that, $x^3+y^3 = (x+y)(x^2-xy+y^2)$	
	$=27Y_{3}^{3}+125Z_{3}^{3}$	
	$=(3y)^3+(5z)^3$	1
	$= (3Y+5Z)[(3Y)^2-(3Y)(5Z)+(5Z)^2$	
	$= (3Y+5Z)(9Y^2-15YZ+25Z^2)$	
		1
20	Find four different solutions of the equation $x + 2y = 6$.	
29	x + 2y = 6	
COLUTION	x + 2y = 6 $X=6-2Y$	2
SOLUTION	Λ-0-41	2

		1
	PUT Y=0	
	X=6	
	1^{ST} SOLUTION (X=6, Y=0)	
	PUT Y=1	
	$X=6-2\times1$	
	X=4	
	2^{ND} SOLUTION (X=4,Y=1)	
	PUT Y=2	
	$X=6-2\times 2$	
	X=2	
	3^{RD} SOLUTION (X=2,Y=2)	
	PUT Y=3	
	$X=6-2\times3$	
	X=0 $X=0$	
	4^{TH} SOLUTION (X=0,Y=3)	1
	4 SOLUTION (A=0,1=3)	1
	Find the value of k , if $x = 2$, $y = 1$ is a solution of the equation	
30	2x + 3y = k.	
30	2x + 3y = k.	
	2x + 3y - k.	
	2 1	
	x = 2, y = 1	
GOL LITTON	$2\times2+3\times1=K$	
SOLUTION	4.2 //	2
	4+3=K	
	K=7	1
	Factorise $8X^3 + 27Y^3 + 36X^2Y + 54XY^2$	
31		
	The expression, $8X^3 + 27Y^3 + 36X^2Y + 54XY^2$	
SOLUTION	can be written as $(2X)^3 + (3Y)^3 + 3(2X)^2(3Y) + 3(2X)(3Y)^2$	1
	(21)3 (21)3 2(21) 2(21) 2(21)	
	$=(2X)^{3} + (3Y)^{3} + 3(2X)^{2}(3Y) + 3(2X)(3Y)^{2}$	
	$(x + y)^3 = x^3 + y^3 + 3xy (x + y)$	1
	$=(2X)^3 + (3Y)^3 + 3(2X)(3Y)(2X + 3Y)$	_
	$=(2X+3Y)^3$	
	=(2X+3Y)(2X+3Y)(2X+3Y)	1
	OR	
31	Factorise $8X^3 + Y^3 + 27Z^3 - 18XYZ$	
	The expression $8X^3 + Y^3 + 27Z^3 - 18XYZ$	
	Can be written as $(2X)^3 + Y^3 + (3Z)^3 - 3(2X)(Y)(3Z)$	
SOLUTION		1
	•	•


	$x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$	
		1
	= $(2X+Y+3Z)((2X)^2+Y^2+(3Z)^2-2XY-Y(3Z)-3Z(2X))$	
	$(2X+Y+3Z)(4X^2+Y^2+9Z^2-2XY-3YZ-6ZX)$	1
	SECTION-D	
	If a point C lies between two points A and B such that AC =	
	BC, then prove that $AC = \frac{1}{2}AB$. Explain by drawing the fig.	
32		
GOL LITION		4
SOLUTION	Given that, $AC = BC$	1
	Now, adding AC both sides.	
	L.H.S+AC = R.H.S+AC	
	L.II.STAC - K.II.STAC	2
	AC+AC = BC+AC	
	2AC = BC + AC	
	We know that, $BC+AC = AB$ (as it coincides with line segment AB)	
	\therefore 2 AC = AB (If equals are added to equals, the wholes are equal.)	
	\Rightarrow AC = (½)AB.	
		2
	In Fig. lines XY and MN intersect at O. If $\angle POY = 90^{\circ}$ and $a : b = 2 : 3$, find c .	
	M a	
	X C Y	
	и	
33	W 1 1 1 1000	
	We know that the sum of linear pair are always equal to 180°	
	So, $\angle POY + a + b = 180^{\circ}$	
SOLUTION		1
	Putting the value of $\angle POY = 90^{\circ}$ (as given in the question) we	
	get, $a+b=90^{\circ}$	
	Now, it is given that $a:b=2:3$ so,	
		4
		1

	Let a be 2x and b be 3x	
	$\therefore 2x + 3x = 90^{\circ}$	
	Solving this we get	
	$5x = 90^{\circ}$	
	So, $x = 18^{\circ}$	
	1.2.2.190 260	1
	$\therefore a = 2 \times 18^{\circ} = 36^{\circ}$ Similarly, because a solution and the value will be	
	Similarly, b can be calculated and the value will be $b = 3 \times 18^{\circ} = 54^{\circ}$	
	0-3/10 -34	1
	From the diagram, b+c also forms a straight angle so,	1
	$b+c=180^{\circ}$	
	$c+54^{\circ} = 180^{\circ}$	
	\therefore c = 126°	
		1
	In Fig. if AB CD, \angle APQ = 50° and \angle PRD = 127°, find x and	
	y.	
	A - D	
	$\stackrel{A}{\leftarrow} \stackrel{P}{\longrightarrow} \stackrel{B}{\longrightarrow}$	
	50°	
	x 127°	
	<+	
33 OR	C Q K D	
33 OK		
	From the diagram,	
	$\angle APQ = \angle PQR$ (Alternate interior angles)	
	Now, putting the value of $\angle APQ = 50^{\circ}$ and $\angle PQR = x$ we get,	
	$x = 50^{\circ}$	
SOLUTION		1
	Also,	
	$\angle APR = \angle PRD$ (Alternate interior angles)	
	Or, $\angle APR = 127^{\circ}$ (As it is given that $\angle PRD = 127^{\circ}$)	
	We know that $\angle APR = \angle APQ + \angle QPR$	
		2
	Now, putting values of $\angle QPR = y$ and $\angle APR = 127^{\circ}$ we get,	
	$127^{\circ} = 50^{\circ} + y$	
	Or, $y = 77^{\circ}$	
	Thus, the values of x and y are calculated as:	
	$x = 50^{\circ}$ and $y = 77^{\circ}$	2

	Find the area of a triangle two sides of which are 18cm and	
34	10cm and the perimeter is 42cm.	
	Assume the third side of the triangle to be "x".	
	Now, the three sides of the triangle are 18 cm, 10 cm, and "x" cm	
	It is given that the perimeter of the triangle = 42cm	
	So, $x = 42-(18+10)$ cm = 14 cm	
SOLUTION		1
	\therefore The semi perimeter of triangle = $42/2 = 21$ cm	
	Using Heron's formula,	
	Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$	
	Then of the triangle $-\sqrt{3(3-a)(3-b)(3-c)}$	
		2
	$=\sqrt{21(21-18)(21-10)(21-14)}$ cm ²	
	$=\sqrt{21\times3\times11\times7}$ m2	1
	,[====================================	
	$= 21\sqrt{11} \text{ cm}^2$	1
		_
	Find the curved surface area of a right circular cone whose	
	slant height is 10 cm and base radius is 7 cm	
34 OR		
	Given that $l=10$ cm	
	Radius $r=7$ cm	
		1
SOLUTION		
	curved surface area of a right circular cone is = $\pi r l$	1
		_
	$C.S = 22/7x7 \times 10$	1
	= 220 cm2	2
	In quadrilateral ACBD, $AC = AD$ and AB bisects $\angle A$. Show	
35	that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?	

	$\begin{array}{c} C \\ \\ D \end{array}$	
SOLUTION	It is given that AC and AD are equal i.e. $AC = AD$ and the line segment AB bisects $\angle A$. We will have to now prove that the two triangles ABC and ABD are congruent i.e. $\triangle ABC \cong \triangle ABD$	2
	Proof: Consider the triangles $\triangle ABC$ and $\triangle ABD$, (i) $AC = AD$ (It is given in the question) (ii) $AB = AB$ (Common) (iii) $\angle CAB = \angle DAB$ (Since AB is the bisector of angle A) $\triangle ABC \cong \triangle ABD$ (by SAS congruency criterion)	2
	For the 2nd part of the question, BC = BD (by C.P.C.T.) SECTION –E	1
	The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 122 m, 22 m and 120 m. The advertisement yields an earning of Rs 5000 per m² per year. Based on the above information and the given figure answer the followings (i) Perimeter of wall is (ii) Write down the Heron's Formula.	

	OR If company hired one of its walls with area 1680 m² for 3 months, then how much rent did it pay?	
SOLUTION	(i) The sides of the triangle ABC are 122 m, 22 m and 120 m resp. Now, the perimeter will be (122+22+120) = 264 m	1
	(ii) Area of $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$ where $s = (a+b+c)/2$	1
	(iii) the semi perimeter (s) = 264/2 = 132 m Using Heron's formula,	
	Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$	
	$=\sqrt{132(132-122)(132-22)(132-120)}$	
	$=\sqrt{132 \times 10 \times 110 \times 12} = 1320 \text{ m}^2$	2
	OR	
	We know that the rent of advertising per year = 5000 per m^2	
	\therefore The rent of one wall for 3 months = Rs. $(1680 \times 5000 \times 3)/12$	
	= Rs 2100000.	2
	Y 6 5 L 4 3 1 X' -5 -4 -3-2-10 12 3 4 5 6 X H	
	See Fig and write the following: (i) The coordinates of B. (ii) The point identified by the coordinates (-3, -5). (iii) Find the abscissa of point D and the ordinate of point H. OR Find the area of the rectangle formed by the line segment	
37	BD and the X-axis in the figure.	
SOLUTION	(i) The co-ordinates of B (-5, 2).	1
	(ii) The point identified by the coordinates (-3, -5) is E.	1
	(iii) abscissa of the point D is 6 and ordinate of point H is -3.	2

