Exercise: 7.4

(Page No: 132)

1. Show that in a right-angled triangle, the hypotenuse is the longest side.



## **Solution:**

It is known that ABC is a triangle right angled at B.

We know that,

$$A + B + C = 180^{\circ}$$

Now, if  $B + C = 90^{\circ}$  then A has to be  $90^{\circ}$ .

Since A is the largest angle of the triangle, the side opposite to it must be the largest.

So, AB is the hypotenuse which will be the largest side of the above right-angled triangle i.e.  $\triangle$ ABC.

2. In Fig. 7.48, sides AB and AC of  $\triangle$ ABC are extended to points P and Q respectively. Also, PBC < QCB. Show that AC > AB.



Fig. 7.48

#### **Solution:**

It is given that PBC < QCB

We know that  $ABC + PBC = 180^{\circ}$ 

So,  $ABC = 180^{\circ}$ -PBC

Also,

 $ACB + QCB = 180^{\circ}$ 

Therefore,  $ACB = 180^{\circ} - QCB$ 

Now, since PBC < QCB,

 $\therefore$  ABC > ACB

Hence, AC > AB as sides opposite to the larger angle is always larger.

3. In Fig. 7.49, B < A and C < D. Show that AD < BC.



## **Solution:**

In the question, it is mentioned that angles B and angle C is smaller than angles A and D respectively i.e.  $B \le A$  and  $C \le D$ .

Now,

Since the side opposite to the smaller angle is always smaller

$$AO < BO$$
 ... (i)

And 
$$OD < OC$$
 ... (ii)

By adding equation (i) and equation (ii) we get

$$AO+OD < BO + OC$$

So, 
$$AD < BC$$

4. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see Fig. 7.50).

Show that A > C and B > D.



Fig. 7.50

#### **Solution:**

In  $\triangle$ ABD, we see that

AB < AD < BD

So, ADB < ABD ... (i)

(Since angle opposite to longer side is always larger)

Now, in  $\triangle BCD$ ,

BC < DC < BD

Hence, it can be concluded that

BDC < CBD ... (ii)

Now, by adding equation (i) and equation (ii) we get,

ADB + BDC < ABD + CBD

ADC < ABC

B > D

Similarly, In triangle ABC,

ACB < BAC ... (iii)

(Since the angle opposite to the longer side is always larger)

Now, In  $\triangle$ ADC,

$$DCA < DAC$$
 ... (iv)

By adding equation (iii) and equation (iv) we get,

$$\Rightarrow$$
 BCD  $<$  BAD

$$\therefore A > C$$

## 5. In Fig 7.51, PR > PQ and PS bisect QPR. Prove that PSR > PSQ.



## **Solution:**

It is given that PR > PQ and PS bisects QPR

Now we will have to prove that angle PSR is smaller than PSQ i.e. PSR > PSQ

## **Proof:**

$$QPS = RPS$$
 ... (ii) (As PS bisects  $\angle QPR$ )

$$PQR > PRQ$$
 ... (i)

(Since PR > PQ as angle opposite to the larger side is always larger)

$$PSR = PQR + QPS$$
 ... (iii)

(Since the exterior angle of a triangle equals to the sum of opposite interior angles)

$$PSQ = PRQ + RPS$$
 ... (iv)

(As the exterior angle of a triangle equals to the sum of opposite interior angles)

By adding (i) and (ii)

$$PQR + QPS > PRQ + RPS$$

Thus, from (i), (ii), (iii) and (iv), we get

# 6. Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

#### **Solution:**

First, let "l" be a line segment and "B" be a point lying on it. A line AB perpendicular to l is now drawn. Also, let C be any other point on l. The diagram will be as follows:



## To prove:

## **Proof:**

In  $\triangle ABC$ ,  $B = 90^{\circ}$ 

Now, we know that

$$A+B+C = 180^{\circ}$$

$$\therefore A + C = 90^{\circ}$$

Hence, C must be an acute angle which implies C < B

So, AB < AC (As the side opposite to the larger angle is always larger)