

LINES AND ANGLES

CHAPTER

INTRODUCTION:

- A line is made up of an infinite number of points and it has only length.
 - i.e. A line has no end points on either side.

A line segment has two end points. A ray has one end point.

line segment line ray

- A line segment PQ is generally denoted by \overline{PQ}
- A line AB is denoted by AB
- \Box And the ray OP is denoted by \overline{OP}
- Collinear points- Three or more than three points are said to be collinear if there is a line which contains them all.

Here A,B and C are collinear points

Concurrent lines- Three or more
than three lines are said to be concurrent if there is a point which lies
on all of them.

AB, CD and EF are concurrent lines.

Recall that an "angle" is formed when lines or line segments meet.

E.g.

in figure (1) $\angle \alpha$ formed by AB and BC in figure (2) $\angle 1$, $\angle 2$, $\angle 3$ and $\angle 4$ are formed by PQ and RS

Related Angles

5

Straight Angle -

Complementary Angles - When the sum of the measures of the two angles is 90°, the angles are called "Complementary Angles".

i.e. $\angle A + \angle B = 90^{\circ}$ or $\angle A = \angle 90^{\circ} - \angle B$ - complement of $\angle A$

Supplementary Angles - Sum of two angles which are supplementary is 180°

angles which are supplementary is 180° . i.e. $\angle x + \angle y = 180^{\circ}$

Adjacent Angles- Two angles are said to be adjacent if

1. They have a common vertex;

2. They have a common arm; and

3. The non-common arms are on ej. ther side of the common arm.

Linear pair- A linear pair is a pair of adjacent angles whose non-common sides are opposite rays.

Ci.

 $\angle x$, $\angle y$ and A linear pair and $\angle x$ + $\angle y = 180^{\circ}$

i.e. linear pair Angles are supplementary.

Parallel Lines- If two lines have no point in common they are said to be

Parellel lines. $\stackrel{A}{\longleftrightarrow}$ $\stackrel{B}{\longleftrightarrow}$

a point in common, they are said to be intersecting lines. Two lines can intersect at the most at one point.

Vertically opposite Angles-

 $\angle AOD \angle BOC$ are vertically opposite angles

Angles made by a transversal line -

Interior Angles- $\angle 3, \angle 4, \angle 5, \angle 6$ Exterior Angles- $\angle 1, \angle 2, \angle 7, \angle 8$ Pairs of corresponding angles- $\angle 1$ and $\angle 5$, $\angle 2$ and $\angle 6$, $\angle 4$ and $\angle 7$, $\angle 3$ and $\angle 8$

Pairs of alternate interior angles-∠3 and ∠5, ∠4 and ∠6

Pairs of alternate exterior angles-∠1 and ∠8, ∠2 and ∠7

Pairs of interior angles on the same side of the transversal- \(\alpha \) and \(\alpha \)6, \(\alpha \)4 and \(\alpha \)5

If two parallel lines are interested by a transversal then-

 Each pair of corresponding angles are eqal.

2. Each pair of alternate interior are equal.

 Interior angles on the same side of the transversal are supplementary.

Checking for parallel lines- If two lines are parallel, then you know that a transversal gives rise to pairs of equal corresponding angles pairs of equal alternate interior angles and interior angles on the same side of the transversal being SUPPLEMEN-

TARY.

Exercise LEVEL - 1

- Find the measures of an angle which 1.
 - is complement of itself.
 - (a) 40°
- (b) 30°

5.

6.

- (c) 45°
- (d) 50°
- Determine the value of y. 2.

- (a) 17°
- (b) 15°
- (c) 20°
- (d) 25°
- In the given figure, the arms of two 3. angles are parallel. If ∠ABC=70°, then find - ∠DGC and ∠DEF

- (a) 70°, 60°
- (b) 60°, 50°
- (c) 70°,70°
- (d) None of these
- In the given figure, AB | | CD, then X 4. is equal to:

- (a) 290°
- (p) 300°
- (c) 280°
- (d) 285°

In the given two straight lines Po RS intersect each other at o If \sumset SOT = 75°, find the vallue of a

- (a) $a = 84^\circ$, $b = 21^\circ$, $c = 48^\circ$
- (b) $a = 48^{\circ}$, $b = 20^{\circ}$, $c = 50^{\circ}$
- (c) $a = 72^{\circ}$, $b = 24^{\circ}$, $c = 54^{\circ}$
- (d) $a = 64^{\circ}$, $b = 28^{\circ}$, $c = 45^{\circ}$
- In the given figure XY and M intersect at O. If POY = 90° and a:b: 2:3, then find c:

- (a) 113°
- (b) 54°
- (c) 126°
- (d) 48°
- In the given figure POS is a line, find 7. x:

(a) 20°

(b) 80°

- (c) 10°
- (d) 100°

- 8. Which of the following statements are true:
 - (a) Angles forming a linear pair are supplementary.
 - (b) If two adjacent angles are equal, then measures of each angle will only be 90°.
 - (c) Angles forming a linear pair can both be acute angles.
 - (d) If angles forming a linear pair are equal, then each of these angles is of measure 90°.
 - (1) Only a
- (2) a, b and d
- (3) c and d
- (4) a and d
- 9. If one angle of a linear pair is acute, then its other angle will be:
 - (a) acute
- (b) obtuse
- (c) right angle
- (d) None of these
- 10. In the given figure m | | n and \(\alpha \) 1=65°, find \(\alpha \) 5 and \(\alpha \) 8:-

- (a) 125°, 55°
- (b) 115°, 65°
- (c) 105°, 75°
- (d) None of these
- 11. In the following figure find the value of \(\sumbole BOC : \)

- (a) 101°
- (b) 149°
- (c) 71°
- (d) 140°
- 12. Find y, if $x^{\circ} = 36^{\circ}$, as per the given diagram:

- (a) 36°
- (b) 16°
- (c) 12°
- (d) 42°
- 13. AB is a straight line and O is a point on AB, if line OC is drawn not conciding with OA or OB, then ∠AOC and ∠BOC are:
 - (a) equal
 - (b) complementary
 - (c) supplementary
 - (d) together equal to 100
- 14. In the given diagram AB||GH||DE and GF||BD||HI, ∠FGC = 80°. Find the value of ∠CHI:

- (a) 80°
- (b) 120°
- (c) 100°
- (d) 160°

LEVEL - 2

An angle is equal to one-third of its supplement. Find its measure: 1. (b) 50°

(a) 45°

(c) 55°

(d) None of these

In figure ∠POR and ∠QOR form a linear pair. If a-b = 80, find the value 2. of 'a' and b':

- (a) $a = 125^{\circ}$, $b = 55^{\circ}$
- (b) $a = 110^{\circ}, b = 70^{\circ}$
- (c) $a = 130^{\circ}, b = 50^{\circ}$
- (d) $a = 75^{\circ}$, $b = 105^{\circ}$
- In figure OP bisects ∠BOC and OQ, 3. ∠AOC. Find the value of ∠POQ:

- (a) 60°
- (b) 75°
- (c) 90°
- (d) None of these
- Lines 1 | | m, p | | q. Find a, b, c, d: 4.

- (a) a=120°, b=60°, c=60°, d=120° (b) a=120°, b=120°, c=60°, d=120°
- (c) a = 120°, b = 60°, c = 120°, d = 60°
- (d) None of these

In figure, AB | | CD. Find θ : 5.

- (a) 30°
- (b) 35°
- (c) 40°
- (d) 45°
- In the figure below, lines K and Lare 7. parallel. The value of a° + b° is:

- (a) 45°
- (b) 180°
- (c) 180°
- (d) 360°
- In the figure below, if AB||CD and 8. $CE_{\perp}ED$, then the value of x is:

- (a) 53°
- (b) 63°
- (c) 37°

9.

- (d) 45°
- In the figure, OP_OA and OQ10B. Find $\angle POQ$ if $\angle AOB = 20^{\circ}$

- (a) 20°
- (b) 30°
- (c) 40°
- (d) None of these
- 10. In the figure $\angle PRQ = \angle SRT$. If $\angle QPR = 100^{\circ}$ and $\angle QRS = 80^{\circ}$, Find $\angle PQR$

- (a) 20°
- (b) 30°
- (c) 40°
- (d) 60°
- 11. From the given figure, find ∠ABC, if BE||DE

- (a) 50°
- (b) 40°
- (c) 35°
- (d) None of these
- 12. In the figure, if PQ||ST, \angle PQR = 110° and \angle RST = 130°, find \angle QRS.

- (a) 40°
- (b) 50°
- (c) 60°
- (d) 70°
- 13. Given that ∠AOB = 75° and ∠BOC = 105° then which statement is true:

- (a) ABLOC
- (b) OC⊥OA
- (c) C, O and A are in line
- (d) None of these
- 14. In the figure, AB | | CD, the value of x is:

- (a) 220°
- (b) 140°
- (c) 150°
- (d) none of these
- 15. In the figure, AB | |CD and EF | |DQ, the value of ∠PDQ is:

- (a) 68°
- (b) 78°
- (c) 56°
- (d) None of these
- 16. In the given figure AB | |CD, given that ∠PEB = 80°, ∠QHD = 120° and ∠PQR = X°, find the value of x:

- (a) 40°
- (b) 20°
- (c) 100°
- (d) 30°

- (a) 125°
- (b) 55°
- (c) 65°
- (d) 75°

LEVEL III

If a straight line L makes an angle $(\theta > 90^{\circ})$ with the positive direction of x-axis, then the acute angle made by a straight line Li, perpendicular to L, with the y-axis is:

(a)
$$\frac{\pi}{2} + \theta$$

1.

(b)
$$\frac{\pi}{2} - \theta$$

(c)
$$\pi + \theta$$

(d)
$$\pi - \theta$$

6.

7.

8.

- A,O,B, are three points on a line 2. segment and C is a point not lying on AOB. If $\angle AOC = 40^{\circ}$ and OX, 0are the internal and external bisectors of ∠AOCand ∠BOC respectively, then \(\sum_{\text{BOY}} \) is:
 - (a) 70°
- (b) 80°
- (c) 72°
- (d) 68°
- In the given figure, $\angle XZT = 130^{\circ}$, PO. 3. RS, and TU are parallel. VW||XY. Find ∠VOP:

- (a) 125°
- (b) 130°
- (c) 120°
- (d) 135°
- From the following figure, find if $\angle RQZ = 2 \angle QRS$ and PQ | |ST:

- (a) 20°
- (b) 30°
- (c) 40°
- (d) 60°

Advance Maths- Where Concept is Paramon

5. From the following figure, find \(\sum_{\text{BZX}}:

- (a) 80°:
- (b) 90°
- (c) 110°
- (d) 125°
- 6. In the given figure, PR | |TS and PU | |RS. Find ∠TPU:

- (a) 60°
- (b) .70°
- (c) 80°
- (d) 100°
- 7. The angle between lines L and M measures 35°. If line M is rotated 45° counter clockwise about point P to line M¹ what is the angle in degrees between lines L and M¹:
 - (a) 90°
- (b) 80°
- (c) 75°
- (d) 60°
- 8. In the given figure, AB||CD and AC||BD and AC||BD. If \(\subseteq EAC = 40^{\circ}, \subseteq FDG = 55^{\circ}, \subseteq HAB = x, then the value of x is:

- (a) 95°
- (b) 70°
- (c) 35°
- (d) 85°
- 9. In the given figure, ∠a is greater than one-sixth of right angle, then:

- (a) b > 165°
- (b) $b < 165^{\circ}$
- (c) $b < 165^{\circ}$
- (d) $b > 165^{\circ}$
- 10. If AB || CD, then find the value of $\alpha + \beta + \gamma$:
 - (a) 180°
- (b) 270°
- (c) 360°
- (d) 90°

Hints and Solutions:

LEVEL-1

1.(c) Let the measur of angle = x° measure of its complement = x°

$$\therefore x^{\circ} + x^{\circ} = 90^{\circ} \Rightarrow x^{\circ} = 45^{\circ}$$

2.(b) ∠COD = ∠EOF = 5Y° (vertically opposite angle)

$$\therefore \angle AOD + \angle DOC + \angle COB = 180^{\circ}$$

$$\Rightarrow 2y^{\circ} + 5y^{\circ} + 5y^{\circ} = 180^{\circ}$$

$$\Rightarrow 12y^{\circ} = 180^{\circ}$$
$$y = 15^{\circ}$$

- 3.(c) $\angle DGC = \angle DEF = \angle ABC = 70^{\circ}$ (corresponding angles)
- 4.(d) A B B

Scanned by CamScannero

$$= 4 \times 21$$

$$\Rightarrow 2\dot{c} = 180^{\circ} - 84^{\circ}$$
$$= 96^{\circ}$$

$$\therefore$$
 a = 84°, b = 21°, c = 48°

6.(c)
$$\angle POQ = 90^{\circ}$$

by line property $-\angle a + \angle b = 90^{\circ}$
 $a:b=2:3$

So,
$$\angle a = 36^{\circ}$$
 and $\angle b = 54^{\circ}$
Here MN is a line so

$$\Rightarrow$$
 54° + \angle C = 180°

7.(a) by line property,

$$60 + 4x + 40 = 180^{\circ}$$

$$\Rightarrow 4x = 80^{\circ}$$

$$\Rightarrow x = 20^{\circ}$$

9.(b) Let X < 90° and other angle = 11

LEVEL-2

Let the measure of angle = x° 1.(a) its supplement = $(180 - x)^{\circ}$

$$x = \frac{1}{3} (180 - x) \Rightarrow x = 45^{\circ}$$

 $/POR = a^{\circ}$ and $\angle QOR = b^{\circ}$ form a 2.(c)linear pair

therefore,
$$a + b = 180^{\circ}$$
____(1)
 $a - b = 80^{\circ}$ ____(2) given

$$(1) + (2) \quad 2a = 260^{\circ} \Rightarrow a = 130^{\circ}$$

$$\therefore$$
 a = 130° and b = 50°

3.(c)
$$\angle BOC = 2 \angle POC$$

$$\therefore$$
 OP bisects \angle BOC \angle AOC = $2\angle$ QOC

∴ OQ bisects ∠AOC

Since, ray OC stands on line AB.

Therefore,

$$\Rightarrow 2\angle QOC + 2\angle POC = 180^{\circ}$$

$$\Rightarrow$$
 \angle QOC + \angle POC = 90°

4.(a)
$$60^{\circ} + a = 180^{\circ} \implies a = 120^{\circ}$$

$$\therefore \angle \log = 180^{\circ} - a = 60^{\circ}$$

 \therefore $\angle c = \angle loq = 60^{\circ}$ (Alternate angles) and $\angle b = \angle c = 60^{\circ}$

(Vertically opposite angles)

and
$$\angle d = 180^{\circ} - \angle c = 120^{\circ}$$

$$\therefore$$
 a = 120°, b = 60°, c = 60°, d = 120°

5.(c)
$$\angle COE = \angle ABE = 75^{\circ}$$
 (corresponding angles)

$$\angle DOE = 180^{\circ} - \angle COE = 180^{\circ} - 75^{\circ}$$

= 105°

in
$$\triangle DOE - 105^{\circ} + 35^{\circ} + \theta = 180^{\circ}$$

$$\Rightarrow \theta = 180^{\circ} - 140^{\circ} = 40^{\circ}$$

6.(b) Let
$$y = 3p$$
 and $z = 7p$

y and z are atlernative angles

$$\therefore \angle y + \angle z = 180^{\circ} \Rightarrow 3p + 7p$$

=
$$180^{\circ} \Rightarrow p = 18^{\circ}$$

$$\therefore y = 3p = 54^{\circ}$$

 \therefore $\angle y$ and $\angle x$ are consecutive interior angles

$$\therefore \angle y + \angle x = 180^{\circ}$$

$$\Rightarrow \angle x = 180^{\circ} - 54^{\circ}$$
$$= 126^{\circ}$$

$$\therefore$$
 $\angle DOB = b^{\circ} \text{ and } \angle AOD = a^{\circ}$

$$\therefore$$
 a° + b° = \angle AOB = 45°

8.(a)
$$\angle AEC = \angle CED + \angle DEB = 180^{\circ}$$

$$\Rightarrow$$
 37° + 90° + \angle DEB = 180°

9.(a)
$$\angle BOP = 90^{\circ} - \angle AOB$$

= 90°- 70°
= 20°

10.(b)
$$\angle PRQ + \angle QRS + \angle SRT = 180^{\circ}$$

$$\therefore \angle PRQ + 80^{\circ} + \angle PRQ = 180^{\circ}$$

($\therefore \angle PRQ = \angle SRT$)

$$\Rightarrow$$
 \angle PRQ = 50°

$$\Rightarrow \angle PQR = 180^{\circ} - \angle QPR - \angle PRR$$

$$\therefore$$
 $\angle ABC = 180^{\circ} - 20^{\circ} - 110^{\circ}$
= 50°

draw a line QI, then
$$\angle RQO = 180^{\circ} - 110^{\circ} = 70^{\circ}$$
 $\angle ROI = 130^{\circ}$ (corresponding)

So,
$$\angle ROQ = 180^{\circ} - 130^{\circ} = 50^{\circ}$$

Now in $\triangle QRO$

$$\Rightarrow \angle RQO + \angle ROQ + \angle QRO = 180^{\circ}$$

$$\Rightarrow \angle QRO = 180^{\circ} - (70^{\circ} + 50^{\circ})$$
$$= 60^{\circ} = \angle QRS$$

Draw EF parallel to both AB and CD

: AB | | EF and AE transversal cuts them at A and È respectively.

$$\Rightarrow$$
 112° + \angle 1 = 180°

$$\Rightarrow \angle 2 + 108^\circ = 180^\circ$$

$$\Rightarrow \angle 2 = 72^{\circ}$$

Now,
$$x = \angle 1 + \angle 2$$

$$\Rightarrow x = 72^{\circ} + 68^{\circ} = 140^{\circ}$$

$$\therefore \angle DEF = 180^{\circ} - 78^{\circ} - 34^{\circ}$$

$$\therefore$$
 $\angle PDQ = \angle DEF = 68^{\circ}$

(corresponding)

16.(b)
$$\angle PGH = 80^{\circ} \Rightarrow \angle QGH = 100^{\circ}$$

$$\angle QHD = 120^{\circ} \Rightarrow \angle CHQ = 60^{\circ}$$

$$\therefore \angle x + 100^{\circ} + 60^{\circ} = 180^{\circ} \Rightarrow x = 20^{\circ}$$

$$\angle MED = 25^{\circ}$$

$$\therefore \angle MDE = 180^{\circ} - (100^{\circ} + 25^{\circ})$$

1.(d)

$$\angle$$
BCP = 180° - \angle BCL₁ = 90°

in A BOA,

$$\angle$$
 O = 90°, \angle A = 180° - θ

:.
$$\angle OBA = 180^{\circ} - (90^{\circ} + 180^{\circ} - \theta)$$

= $\theta - 90$

Now in \triangle BPC,

$$\angle BPC = 180^{\circ} - (90^{\circ} + \theta - 90^{\circ})$$

= $180^{\circ} - \theta$
= $\pi - \theta$

2.(a)

$$\therefore \angle BOC = 180^{\circ} - 40^{\circ} = 140^{\circ}$$

∴ OY is the bisector of ∠ BOC

$$\therefore \angle BOY = \frac{1}{2} \angle BOC = \frac{1}{2} \times 140 = 70^{\circ}$$

3.(b) RS | | TU

: VW | XY

: PQ || RS

4.(c)

∵ PQ || ST

$$\therefore$$
 \angle RMS = 180°- \angle QMS = 100°

$$\angle$$
RMS + \angle MSR + \angle SRM = 180°

$$\Rightarrow$$
 \angle SRM = 180°-100°-60° = 20°

$$\therefore$$
 \angle RQZ = $2\angle$ QRS = $2\angle$ SRM

$$\therefore \angle RQZ = 2 \times 20^{\circ} = 40^{\circ}$$

5.(d)
$$\angle PQY = 180^{\circ} - \angle PYQ - \angle YPQ$$

= $180^{\circ} - 40^{\circ} - (180^{\circ} - 120^{\circ}) = 80^{\circ}$

:.
$$\angle RQZ = 180^{\circ} - \angle PQY$$

= 180° - 80°
= 100°

$$\therefore \angle RZQ = 180^{\circ}-25^{\circ}-100^{\circ}$$

= 55°

6.(b): PR | TS

$$\therefore$$
 \angle PRQ = \angle USR = 50°

In $\triangle PQR$:

$$\angle PQR = 180^{\circ} - (50^{\circ} + 60^{\circ})$$

= 70°

$$\therefore \angle TPU = \angle PQR = 70^{\circ}$$
$$[\because PU \mid | RS \mid | QS]$$

7.(b)

$$\therefore \angle PYL = 180^{\circ} - \angle PYX = 80^{\circ}$$

Answer-Key

8.(d)
$$\angle DCK = \angle FDG$$

= 55°(corresponding)

So,
$$\angle AEC = 180^{\circ} - (40^{\circ} + 55^{\circ})$$

= 85°

 $x = 85^{\circ}$ Hence,

9.(b)
$$a > \frac{90^{\circ}}{6} \Rightarrow a > 15^{\circ}$$

 $a + b = 180^{\circ} \Rightarrow b < 165^{\circ}(Qa > 15^{\circ})$

10.(c) Draw OM | AB | CD

$$\therefore$$
 \angle BOM = 180° - α

Also,

$$\therefore$$
 \angle DOM = 180° - β

$$\therefore \gamma = \angle BOD$$

$$\Rightarrow \gamma = \angle BOM + \angle DOM$$

$$\Rightarrow \gamma = 180^{\circ} - \alpha + 180^{\circ} - \beta$$

$$\Rightarrow \alpha + \beta + \gamma = 360^{\circ}$$

LEVEL - 1

- 4. (d)
- 7. (a)
- 10. (b)
- 13. (c)

- 2. (b)
- 3. (c) 5. (a) 6. (c)
- 8. (d)
- 9. (b) 11. (b) 12. (a)
- 14. (a)

LEVEL - 2

- 1. (a)
- 4. (a)
- 7. (a)
- 10. (b)
- 13. (c)
- 16. (b)

- 2. (c)
- 5. (c)
- 6. (b) 9. (a)

3. (c)

- 8. (a) 11. (a)
- 12. (c) 14. (b) 15. (a)
- 17. (a)

LEVEL - 3

- 1. (d)
- 4. (c)
- 7. (b)
- 10. (c)
- 2. (a)
- 3. (b)
- 5. (d)
- 6. (b)
- (d) 8.
- 9. (b)