

			General term of an	Arithmetic progression
		Basic Le	evel	
1.	The sequence $\frac{5}{\sqrt{7}}, \frac{6}{\sqrt{7}}, \sqrt{7}$	/7 is		
	(a) H.P.	(b) G.P.	(c) A.P.	(d) None of these
2.	p^{th} term of the series	$\left(3-\frac{1}{n}\right)+\left(3-\frac{2}{n}\right)+\left(3-\frac{3}{n}\right)+\dots$ will	be	
	(a) $\left(3+\frac{p}{n}\right)$	(b) $\left(3-\frac{p}{n}\right)$	(c) $\left(3+\frac{n}{p}\right)$	(d) $\left(3-\frac{n}{p}\right)$
3.	If the 9 th term of an A.I	P. be zero, then the ratio of its 2	9 th and 19 th term is	
	(a) 1:2	(b) 2:1	(c) 1:3	(d) 3:1
4.	Which of the following	sequence is an arithmetic seque	ence	
	(a) $f(n) = an + b; n \in N$	(b) $f(n) = kr^n; n \in N$	(c) $f(n) = (an+b)kr^n; n \in N$	(d) $f(n) = \frac{1}{a\left(n+\frac{b}{n}\right)}; n \in N$
5۰	If the p^{th} term of an A.	P. be q and q^{th} term be p , then i	ts $r^{ m th}$ term will be	[Rajasthan PET 1999]
	(a) $p+q+r$	(b) $p+q-r$	(c) $p + r - q$	(d) $p - q - r$
6.	If the 9 th term of an A.I	P. is 35 and 19 th is 75, then its 20	o th term will be	[Rajasthan PET 1989]
	(a) 78	(b) 79	(c) 80	(d) 81
7.	If $(a+1)$, $3a$, $(4a+2)$ are i	n A.P. then 7 th term of the series	sis	
	(a) $10a+4$	(b) - 33	(c) 33	(d) 10 a - 4
8.	It x, y, z are in A.P., the	en its common difference is		
	(a) $\sqrt{x^2 - yz}$	(b) $\sqrt{y^2 - xz}$	(c) $\sqrt{z^2 - xy}$	(d) None of these
9.	The 10 th term of the se	quence $\sqrt{3}$, $\sqrt{12}$, $\sqrt{27}$,is		
	(a) $\sqrt{243}$	(b) $\sqrt{300}$	(c) $\sqrt{363}$	(d) $\sqrt{432}$
10.		ience (- 8 + 18 <i>i</i>), (- 6+15 <i>i</i>), (- 4	+ 12 <i>i</i>),is purely imagi	nary
10.		uence (- 8 + 18 <i>i</i>), (- 6+15 <i>i</i>), (- 4 (b) 7 th	+ 12 <i>i</i>),is purely imagi (c) 8 th	nary (d) 6 th
10. 11.	Which term of the sequ (a) 5 th		(c) 8 th	

				c	,
12. For an A.P., $T_2 + T_5 - T_3 = 10$, $T_2 + T_9 = 17$, then common difference is					
	(a) 0	(b) 1	(c) – 1	(d) 13	
		A	dvance Level		
13.	If $\tan n\theta = \tan m\theta$, the	on the different values of ℓ	9 will be in	[Karı	nataka CET 1998]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of	
14.		term of an arithmetic seq	uence are <i>a</i> , <i>b</i> and <i>c</i> respectively	, then the value	of [a ($q - r$)+b(r
	(-p)+c(p-q)]=				[MP PET 1985]
	(a) 1	(b) – 1	(c) O	(d) $\frac{1}{2}$	[
15.	If <i>n</i> th terms of two A.I	?.'s are 3n + 8 and 7n +15,	then the ratio of their 12 th terms	s will be	[MP PET 1986]
	(a) $\frac{4}{9}$	(b) $\frac{7}{16}$	(c) $\frac{3}{7}$	(d) $\frac{8}{15}$	
16.	The 6 th term of an A $a_1a_4a_5$ least is given b		e of the common difference of th	ne A.P. which ma	kes the product
	(a) $\frac{8}{5}$	(b) $\frac{5}{4}$	(c) $\frac{2}{3}$	(d) None of	these
17.	If p times the p^{th} terms	rm of an A.P. is equal to q	times the q^{th} term of an A.P., the	en $(p+q)^{th}$ term is	5
			[ח	MP PET 1997; Karn	ataka CET 2002]
	(a) 0	(b) 1	(c) 2	(d) 3	
18.		$-\frac{1}{2}t^2$ and 6 are three com	secutive terms of an A.P. If t be	real, then the ne	ext two terms of
	A.P. are (a) -2, -10	(b) 14, 6	(c) 14, 22	(d) None of	these
10					
19.	If the p term of the s	series 25, $22{5}$, $20{2}$, $18{4}$, is numerically the smallest	, then p=	
	(a) 11	(b) 12	(c) 13	(d) 14	
20.			term is $(x + y)$, then its first ter	-	[AMU 1989]
	(a) $x - \frac{1}{3}y$	(b) $x - \frac{2}{3}y$	(c) $x - \frac{4}{3}y$	(d) $x - \frac{5}{3}y$	
21.	The number of comm	on terms to the two seque	nces 17, 21, 25,417 and 16, 2	1, 26, 466 is	
	(a) 21	(b) 19	(c) 20	(d) 91	
22.	In an A.P. first term i		um, then common difference is		
	(a) -5/4	(b) -4/5	(c) 5/4	(d) 4/5	
23.	Let the sets $A = \{2, 4, 6\}$ (a) $n(A \cap B) = 67$	5, 8,} and $B = \{3, 6, 9, 1\}$ (b) $n(A \cup B) = 450$	12,}, and $n(A) = 200$, $n(B) = 1$ (c) $n(A \cap B) = 66$	250. Then (d) $n(A \cup B)$) - 284
	$(a) n(A \cap B) = 0/$	(0) <i>II</i> (A O B) - 450	$(C) n(A \cap B) = 00$	$(u) \ n(A \cup B)$	9 - 304
			Sum to n terms of	an Arithmetic	progression
					V

Basic Level

24.	The sum of first <i>n</i> natur	al numbers is	ГМФ	PET 1984; Rajasthan PET 1995]
24.			_	· · · ·
	(a) $n(n-1)$	(b) $\frac{n(n-1)}{2}$	(c) $n(n + 1)$	(d) $\frac{n(n+1)}{2}$
25.	The sum of the series $\frac{1}{2}$	$+\frac{1}{3}+\frac{1}{6}+$ to 9 terms is		[MNR 1985]
	(a) $-\frac{5}{6}$	(b) $-\frac{1}{2}$	(c) 1	(d) $-\frac{3}{2}$
26.	The sum of all natural r	numbers between 1 and 100 whi	ch are multiples of 3 is	[MP PET 1984]
	(a) 1680	(b) 1683	(c) 1681	(d) 1682
27.	The sum of 1+3+5+7+	upto <i>n</i> terms is		[MP PET 1984]
	(a) $(n+1)^2$	(b) $(2n)^2$	(c) n^2	(d) $(n-1)^2$
28.	If the sum of the series	2+ 5+ 8+11 is 60100, then	the number of terms are	[MNR 1991; DCE 2001]
	(a) 100	(b) 200	(c) 150	(d) 250
29.	If the first term of an A are [Rajasthan PET 198 7]	P. be 10, last term is 50 and th]	e sum of all the terms is 30	00, then the number of terms
	(a) 5	(b) 8	(c) 10	(d) 15
30.	The sum of the numbers	s between 100 and 1000 which i	s divisible by 9 will be	[MP PET 1982]
	(a) 55350	(b) 57228	(c) 97015	(d) 62140
31.	If the sum of three nu numbers are	umbers of a arithmetic sequend	ce is 15 and the sum of th	eir squares is 83, then the [MP PET 1985]
	(a) 4, 5, 6	(b) 3, 5, 7	(c) 1, 5, 9	(d) 2, 5, 8
32.		secutive terms of an A.P. is 51	and the product of last an	nd first term is 273, then the
	numbers are			
	(2) 21 17 12	(b) 20, 16, 12	(c) 22, 18, 14	[MP PET 1986]
22	(a) 21, 17, 13 There are 15 terms in a	(b) 20, 16, 12		(d) 24, 20, 16 3 390. The middle term is [MP PET 1 9
33.	(a) 23	(b) 26	(c) 29	(d) 32
	1			
34.	If $S_n = nP + \frac{1}{2}n(n-1)Q$, w	there S_n denotes the sum of the	first n terms of an A.P. then	the common difference is
				[JEE West Bengal 1994]
	(a) $P + Q$	(b) $2P + 3Q$	(c) 2 <i>Q</i>	(d) <i>Q</i>
35.	The sum of numbers fro	om 250 to 1000 which are divisi	ble by 3 is	[Rajasthan PET 1997]
	(a) 135657	(b) 136557	(c) 161575	(d) 156375
36.	Four numbers are in ar terms is 15. The least n	ithmetic progression. The sum o umber of the series is	of first and last term is 8 ar	nd the product of both middle [MP PET 2001]
	(a) 4	(b) 3	(c) 2	(d) 1
37.	The number of terms of	the A.P. 3, 7, 11, 15 to be ta	ken so that the sum is 406 i	is [Kerala (Engg.) 2002]
	(a) 5	(b) 10	(c) 12	(d) 14
38.	The consecutive odd int	egers whose sum is 45^2 – 21^2 are	e	
	(a) 43, 45,, 75	(b) 43, 45, 79	(c) 43, 45,, 85	(d) 43, 45,, 89

39.	If common difference of m^{th} terms is	f <i>m</i> A.P.'s are respectively	1, 2, <i>m</i> and first term of	each series is 1, then sum of their	
	(a) $\frac{1}{2}m(m+1)$	(b) $\frac{1}{2}m(m^2+1)$	(c) $\frac{1}{2}m(m^2-1)$	(d) None of these	
10 .	The sum of all those nu	mbers of three digits whic	ch leave remainder 5 after div	rision by 7 is	
	(a) 551 × 129	(b) 550 × 130	(c) 552 × 128	(d) None of these	
1.	If $S_n = n^2 p$ and $S_m = m^2 p$	$p, m \neq n$, in A.P., then S_p is			
	(a) p^2	(b) p^3	(c) <i>p</i> ⁴	(d) None of these	
2.	An A.P. consists of <i>n</i> (or	dd terms) and its middle to	erm is <i>m</i> . Then the sum of the	A.P. is	
	(a) 2 mn	(b) $\frac{1}{2}mn$	(c) <i>mn</i>	(d) <i>mn</i> ²	
1 3.	The minimum number of	of terms of $1 + 3 + 5 + 7 +$	that add up to a number exce	eeding 1357 is	
_	(a) 15	(b) 37	(c) 35	(d) 17	
		Adva	ance Level		
14.	If the ratio of the sum c	of n terms of two A.P.'s be	(7n+1): $(4n+27)$, then the rate	atio of their 11 th terms will be [AMU	
• -	(a) 2: 3	(b) 3 : 4	(c) 4 : 3	(d) 5 : 6	
15 ∙	The interior angles of a the number of sides is	a polygon are in A.P. If the	e smallest angle be 120° and t	the common difference be 5, then	
				[IIT 1980]	
_	(a) 8	(b) 10	(c) 9	(d) 6	
16 .	-	m 1 to 100 that are divisib	-	[IIT 1984]	
	(a) 3000	(b) 3050	(c) 4050	(d) None of these	
1 7.	If the sum of first <i>n</i> terms of an A.P. be equal to the sum of its first <i>m</i> terms, $(m \neq n)$, then the sum of its first $(m + n)$ terms will be				
				[MP PET 1984]	
	(a) 0	(b) <i>n</i>	(c) m	(d) $m + n$	
18 .	If a1, a2 ,, an are in .	A.P. with common differer	nce <i>d</i> , then the sum of the foll	lowing series is	
		sec a_2 .cosec $a_3 + \dots + cosec a_d$		[Rajasthan PET 2000]	
	(a) $\sec a_1 - \sec a_n$	(b) $\cot a_1 - \cot a_n$	(c) $\tan a_1 - \tan a_n$	(d) cosec a_1 – cosec a_n	
49.	The odd numbers are di	ivided as follows			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
	Then the sum of n^{th} row				
	(a) $2^{n-2}[2^n+2^{n-1}-1]$	(b) $\frac{1}{2}(2n+1)$	(c) 2 <i>n</i>	(d) $4n^3$	

are

о.	If the sum of <i>n</i> term	is of an A.P. is $2n^2 + 5n$, then	the n^{th} term will be	[Rajasthan PET 1992]
	(a) $4n+3$	(b) $4n+5$	(c) $4n+6$	(d) $4n+7$
1.	The <i>n</i> th term of an <i>h</i>	A.P. is $3n-1$. Choose from the	e following the sum of its first fiv	ve terms [MP PET 1983]
	(a) 14	(b) 35	(c) 80	(d) 40
2.		treme numbers of an A.P. wi mber of the series will be	th four terms is 8 and product of	f remaining two middle term is [Roorkee 1965]
	(a) 5	(b) 7	(c) 9	(d) 11
•	The ratio of sum of	<i>m</i> and <i>n</i> terms of an A.P. is <i>m</i>	$n^2:n^2$, then the ratio of m^{th} and n^{th}	th term will be[Roorkee 1963; MP
	(a) $\frac{m-1}{n-1}$	(b) $\frac{n-1}{m-1}$	(c) $\frac{2m-1}{2n-1}$	(d) $\frac{2n-1}{2m-1}$
1 .	The value of x satist	fying $\log_a x + \log_{\sqrt{a}} x + \log_{\sqrt[3]{a}} x + \ldots$	+ $\log_{\sqrt[n]{a}} x = \frac{a+1}{2}$ will be	
	(a) $x = a$	(b) $x = a^{a}$	(c) $x = a^{-1/a}$	(d) $x = a^{1/a}$
•		s in the following series \cot^{-1}	$3 + \cot^{-1} 7 + \cot^{-1} 13 + \cot^{-1} 21 + \dots$ is	s given by
	(a) $\tan^{-1}\left(\frac{n}{n+2}\right)$	(b) $\cot^{-1}\left(\frac{n+2}{n}\right)$	(c) $\tan^{-1}(n+1) - \tan^{-1} 1$	(d) All of these
5.	Let S_n denotes the s	sum of <i>n</i> terms of an A.P. If <i>S</i>	$S_{2n} = 3S_n$, then ratio $\frac{S_{3n}}{S_n} =$	[MNR 1993; UPSEAT 2001]
	(a) 4	(b) 6	(c) 8	(d) 10
	If the sum of the fir	st <i>n</i> terms of a series be $5n^2$ +	-2n, then its second term is	[MP PET 1996]
	(a) 7	(b) 17	(c) 24	(d) 42
		A.P. are natural numbers. The natural numbers is the common difference is	ne sum of its first nine terms lie	es between 200 and 220. If the
	(a) 2	(b) 3	(c) 4	(d) None of these
).	If $S_1 = a_2 + a_4 + a_6 + \dots$ difference <i>d</i> is	up to 100 terms and $S_2 = a_1$	$+a_3 + a_5 + \dots$ up to 100 terms of	a certain A.P. then its common
	(a) $S_1 - S_2$	(b) $S_2 - S_1$	(c) $\frac{S_1 - S_2}{2}$	(d) None of these
).		-	fference is non-zero, the sum o m of the first 2 <i>n</i> terms to the nex	_
	(a) $\frac{1}{5}$	(b) $\frac{2}{3}$	(c) $\frac{3}{4}$	(d) None of these
	If the sum of <i>n</i> term	as of an A.P. is $nA + n^2B$, where	e A, B are constants, then its com	nmon difference will be [MNR 19
	(a) <i>A</i> – <i>B</i>	(b) $A + B$	(c) 2 <i>A</i>	(d) 2 <i>B</i>
				Arithmetic mean
		_		
		Ba	asic Level	
2.	A number is the set	inneed of the other If the	withmatic mean of the two	have by $\frac{13}{13}$ then the numbers
	A number is the rec	iprocar or the other. If the a	rithmetic mean of the two num	$\frac{1}{12}$, then the numbers

	(a) $\frac{1}{4}, \frac{4}{1}$	(b) $\frac{3}{4}, \frac{4}{3}$	(c) $\frac{2}{5}, \frac{5}{2}$	(d) $\frac{3}{2}, \frac{2}{3}$
63.	The arithmetic mean o	of first <i>n</i> natural number		[Rajasthan PET 1986]
	(a) $\frac{n-1}{2}$	(b) $\frac{n+1}{2}$	(c) $\frac{n}{2}$	(d) <i>n</i>
64.	The four arithmetic m	eans between 3 and 23 are		[MP PET 1985]
	(a) 5, 9, 11, 13	(b) 7, 11, 15, 19	(c) 5, 11, 15, 22	(d) 7, 15, 19, 21
65.	The mean of the series	s a, a + nd, a + 2nd is		[DCE 2002
	(a) $a + (n-1)d$	(b) $a+nd$	(c) $a + (n+1)d$	(d) None of these
66.	If <i>n</i> A.M. <i>s</i> are introduthe value of <i>n</i> is	iced between 3 and 17 such tha	t the ratio of the last mean t	to the first mean is 3 : 1, ther
	(a) 6	(b) 8	(c) 4	(d) None of these
		Advance	e Level	
67.	The sum of <i>n</i> arithmet	ic means between a and b, is		[Rajasthan PET 1986]
	(a) $\frac{n(a+b)}{2}$	(b) $n(a+b)$	(c) $\frac{(n+1)(a+b)}{2}$	(d) $(n+1)(a+b)$
58 .		e inserted between two sets of		here $a, b \in R$. Suppose furthe
		n these sets of numbers is same		
69.		(b) $n - m + 1 : n$ nd b. Let A denote the single A.	(c) <i>n</i> : <i>n</i> – <i>m</i> + 1 M. and <i>S</i> denote the sum of <i>r</i>	(d) <i>m</i> : <i>n</i> – <i>m</i> + 1 n A.M.'s between <i>a</i> and <i>b</i> , ther
	S/A depends on			[Pb. CET 1992]
	(a) <i>n</i> , <i>a</i> , <i>b</i>	(b) <i>n</i> , <i>b</i>	(c) <i>n</i> , a	(d) n
7 0.	The A.M. of series $a+c$	(a+d)+(a+2d)++(a+2nd) is		[Pb. CET 1998]
	(a) $a + (n-1)d$	(b) $a+nd$	(c) $a + (n-1)d$	(d) None of these
71.	If 11 AM's are inserted	between 28 and 10, then three	mid terms of the series are	[MNR 1997]
	(a) $\frac{41}{2}$, 19, $\frac{35}{2}$	(b) $20, \frac{41}{2}, \frac{43}{2}$	(c) $20, \frac{61}{2}, \frac{62}{3}$	(d) 20, 22, 24
72.	If $f(x+y, x-y) = xy$, the	en the arithmetic mean of $f(x, y)$	and $f(y, x)$ is	[AMU 2002]
	(a) x	(b) y	(c) 0	(d) 1
73.	If A.M. of the roots o	f a quadratic equation is $\frac{8}{5}$ ar	nd the A.M. of their recipro	cals is $\frac{8}{7}$, then the quadratic
	equation is			
	(a) $7x^2 + 16x + 5 = 0$	(b) $7x^2 - 16x + 5 = 0$	(c) $5x^2 - 16x + 7 = 0$	(d) $5x^2 - 8x + 7 = 0$
74.	If $a_1=0$ and a_1 , a_2 , a_3 a_n has the value x	,a _n are real numbers such th where	$aat a_i = a_{i-1}+1 $ for all <i>i</i> , the	en A.M. of the numbers a_1 , a_2
	(a) <i>x</i> <1	(b) $x < -\frac{1}{2}$	(c) $x \ge -\frac{1}{2}$	(d) $x = \frac{1}{2}$
		1. 1		

75. If A.M. of the numbers 5^{1+x} and 5^{1-x} is 13 then the set of possible real values of x is

(a) G.P.

(a)
$$(5, \frac{1}{5})$$
 (b) $[1, -1]$ (c) $[x | x^2 - 1] = 0, x \in R$ (d) None of these
Properties of A.P.
Basic Level
76. If $2x, x + 8, 3x + 1$ are in A.P., then the value of x will be [MP PET 1984]
(a) 3 (b) 7 (c) 5 (d) - 2
77. If $\log_2 2, \log_3 (2^x - 5)$ and $\log_3 \left(2^x - \frac{7}{2}\right)$ are in A.P., then x is equal to [IIT 1990]
(a) $1, \frac{1}{2}$ (b) $1, \frac{1}{3}$ (c) $1, \frac{3}{2}$ (d) None of these
78. If a_{u} denotes the m^{a} term of an A.P., then $a_{u} =$
(a) $\frac{a_{u,1} + a_{u,2}}{2}$ (b) $\frac{a_{u,1} - a_{u,2}}{2}$ (c) $\frac{2}{a_{u,1} + a_{u,-1}}$ (d) None of these
79. If 1, $\log_3 x, \log_3 y, -15 \log_3 x$ are in A.P., then
(a) $z^1 - x$ (b) $x = y^{-1}$ (c) $z^{-1} = y$ (d) $x = y^{-1} = z^3$
(e) All of these
80. If $\frac{1}{p+q}, \frac{1}{r+p}, \frac{1}{q+r}$ are in A.P., then
(a) p, q, r are in A.P. (b) p^2, q^2, r^2 are in A.P. (c) $\frac{1}{p}, \frac{1}{q}, \frac{1}{r}$ are in A.P. (d) None of these
81. If $a, b, c, are in A.P.$, then $b^3 - ac$ is equal to
(a) $a, \frac{1}{4}(a+c)^2$ (b) $\frac{1}{4}(a-c)^2$ (c) $\frac{1}{2}(a+c)^2$ (d) $\frac{1}{2}(a-c)^2$
82. If $a_{i,0}, a_{i,...}$ are in A.P. (b) g^2, q^2, r^2 are in A.P. if p, q, r are in
(a) A.P. (b) G.P. (c) H.P. (d) None of these
83. If the sum of the roots of the equation $ar^2 + bx + c = 0$ be equal to the sum of the reciprocals of their squares,
then b^2, a^2, a^3, a^3 will be in [IIT 1976]
(a) A.P. (b) G.P. (c) H.P. (d) None of these
84. If $\frac{1}{b-c}, \frac{1}{c-a}, \frac{1}{a-b}$ be consecutive terms of an A.P., then $(b-c)^2, (c-a)^3, (a-b)^2$ will be in

85. If a^2 , b^2 , c^2 are in A.P., then $(b + c)^{-1}$, $(c + a)^{-1}$ and $(a + b)^{-1}$ will be in [Roorkee 1968; Rajasthan PET 1996]

(b) A.P.

(c) H.P.

(d) None of these

Progressi	ons	122
110510351	0115	- JJ

				Prog	ressions 133
	(a) H.P.	(b) G.P.	(c) A.P.	(d) None of	these
5.	If the sides of a right	angled triangle are in A.P., th	en the sides are proportiona	l to	[Roorkee 1974]
	(a) 1, 2, 3	(b) 2, 3, 4	(c) 3, 4, 5	(d) 4, 5, 6	
7.	If <i>a, b, c</i> are in A.P.,	then the straight line $ax + by$	+ c = 0 will always pass thro	ough the point	[IIT 1984]
	(a) (-1,-2)	(b) (1,-2)	(c) (-1,2)	(d) (1,2)	
8.	If a, b, c are in A.P. t	hen $\frac{(a-c)^2}{(b^2-ac)} =$			[Roorkee 1975]
	(a) 1	(b) 2	(c) 3	(d) 4	
9.	If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> , <i>f</i> are in	A.P., then the value of $e - c$ w	vill be	[P	b. CET 1989, 91]
	(a) 2 (<i>c</i> – <i>a</i>)	(b) 2 (<i>f</i> – <i>d</i>)	(c) 2 $(d - c)$	(d) <i>d</i> – <i>c</i>	
) .	If p , q , r are in A.P. at	nd are positive, the roots of th	ne quadratic equation $px^2 + q$.	x + r = 0 are all re	al for [IIT 1995]
	(a) $\left \frac{r}{p}-7\right \ge 4\sqrt{3}$	(b) $\left \frac{p}{r} - 7 \right < 4\sqrt{3}$	(c) All p and r	(d) No <i>p</i> and	l <i>r</i>
1.	If $a_1, a_2, a_3, \dots, a_n$ are	e in A.P., where $a_i > 0$ for all i	, then the value of $\frac{1}{\sqrt{a_1}+\sqrt{a_2}}$	$+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}++$	$-\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}=[\mathbf{II}]$
	(a) $\frac{n-1}{\sqrt{a_1} + \sqrt{a_n}}$	(b) $\frac{n+1}{\sqrt{a_1} + \sqrt{a_n}}$	(c) $\frac{n-1}{\sqrt{a_1}-\sqrt{a_n}}$	(d) $\frac{n+1}{\sqrt{a_1}-\sqrt{a_n}}$	- 1
2.	Given $a+d > b+c$ wh	ere a, b, c, d are real numbers	s, then	[Kuruks	hetra CEE 1998]
	(a) <i>a, b, c, d</i> are in A	Р.	(b) $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}, \frac{1}{d}$ are in A	A.P.	
	(c) $(a+b), (b+c), (c+d)$	(a+d) are in A.P.	(d) $\frac{1}{a+b}, \frac{1}{b+c}, \frac{1}{c+d}, \frac{1}{a}$	$\frac{1}{d}$ are in A.P.	
3.	If a, b, c are in A.P., t	hen $(a + 2b - c) (2b + c - a)$	(c + a - b) equals		[Pb. CET 1999]
	(a) $\frac{1}{2}abc$	(b) <i>abc</i>	(c) 2 abc	(d) 4 abc	
ŀ.	If the roots of the equ	uation $x^3 - 12x^2 + 39x - 28 = 0$ a	are in A.P., then their commo	n difference will b	be
			[UPSEAT 1	994, 99, 2001; Raja	sthan PET 2001]
	(a) ± 1	(b) ± 2	(c) ± 3	(d) ± 4	
5.	If 1, $\log_9(3^{1-x}+2)$, $\log_3(3^{1-x}+2)$, $\log_3($	$(4 \cdot 3^x - 1)$ are in A.P., then <i>x</i> e	quals		[AIEEE 2002]
	(a) $\log_3 4$	(b) $1 - \log_3 4$	(c) $1 - \log_4 3$	(d) $\log_4 3$	
5.	If a, b, c, d, e are in A		-4d + e in terms of a, if poss	ible is [Raja	sthan PET 2002]
	(a) 4a	(b) 2a	(c) 3	(d) None of	these
•	If $a_1, a_2, a_3, \dots, a_{2n+1}$ are	the in A.P. then $\frac{a_{2n+1}-a_1}{a_{2n+1}+a_1} + \frac{a_{2n}-a_2}{a_{2n}+a_2}$	$\frac{a_2}{a_2} + \dots + \frac{a_{n+2} - a_n}{a_{n+2} + a_n}$ is equal to)	
	(a) $\frac{n(n+1)}{2} \cdot \frac{a_2 - a_1}{a_{n+1}}$	(b) $\frac{n(n+1)}{2}$	(c) $(n+1)(a_2 - a_1)$	(d) None of	these
3.	If the non-zero numb	hers x , y , z are in A.P. and tan^{-1}	x, tan ⁻¹ y, tan ⁻¹ z are also in A	P., then	
	(a) $x = y = z$	(b) $xy = yz$	(c) $x^2 = yz$	(d) $z^2 = xy$	

	(a) 2 ^{1/3}	(b) $2^{2/3}$	(c) $2^{1/2}$	(d) $2^{3/2}$
100.	If $\sin \alpha$, $\sin^2 \alpha$, 1, $\sin^4 \alpha$ ar	and $\sin^5 \alpha$ are in A.P., where $-\pi <$	$\alpha < \pi$, then α lies in the int	erval
	(a) $(-\pi/2,\pi/2)$	(b) $(-\pi/3,\pi/3)$	(c) $(-\pi/6,\pi/6)$	(d) None of these
101.	If the sides of a triang of the sides of the trian	e are in A.P. and the greatest an ngle is	ngle of the triangle is double	e the smallest angle, the ratio
	(a) 3:4:5	(b) 4:5:6	(c) 5:6:7	(d) 7:8:9
102.	If a, b, c of a $\triangle ABC$ are	in A.P., then $\cot \frac{c}{2} =$		[T.S. Rajendra 1990
	(a) $3 \tan \frac{A}{2}$	(b) $3 \tan \frac{B}{2}$	(c) $3 \cot \frac{A}{2}$	(d) $3 \cot \frac{B}{2}$
03.	If a, b, c are in A.P. the	n the equation $(a-b)x^2 + (c-a)x^2$	(b-c) = 0 has two roots which	ich are
	(a) Rational and equal	(b) Rational and distinct	(c) Irrational conjugates	(d) Complex conjugates
04.	The least value of 'a' fo	or which $5^{1+x} + 5^{1-x}, \frac{a}{2}, 25^x + 25^{-x}$	are three consecutive terms	of an A.P. is
	(a) 10	(b) 5	(c) 12	(d) None of these
05.	$\alpha, \beta, \gamma, \delta$ are in A.P. and	$\int_{0}^{2} f(x)dx = -4, \text{ where } f(x) = \begin{vmatrix} x + \alpha \\ x + \beta \\ x + \gamma \end{vmatrix}$	$\begin{vmatrix} x + \beta & x + \alpha - \gamma \\ x + \gamma & x - 1 \\ x + \delta & x - \beta + \delta \end{vmatrix}$, then the co	ommon difference d is
06.	(a) 1 If the sides of a right a	(b) –1 ngled triangle form an A.P. then	(c) 2 the sines of the acute angle	(d) – 2 es are
	(a) $\frac{3}{5}, \frac{4}{5}$	(b) $\sqrt{3}, \frac{1}{3}$	(c) $\sqrt{\frac{\sqrt{5}-1}{2}}$, $\sqrt{\frac{\sqrt{5}+1}{2}}$	(d) $\frac{\sqrt{3}}{2}, \frac{1}{2}$
07.	If x, y, z are positive n	umbers in A.P., then		
	(a) $y^2 \ge xz$		(b) $y \ge 2\sqrt{xz}$	
	(c) $\frac{x+y}{2y-x} + \frac{y+z}{2y-z}$ has	the minimum value 2	(d) $\frac{x+y}{2y-x} + \frac{y+z}{2y-z} \ge 4$	
			General term o	f Geometric progression
		Basic I	Level	
08.	If the 4^{th} , 7^{th} and 10^{th} to	erms of a G.P. be <i>a, b, c</i> respecti	vely, then the relation betwe	een <i>a, b, c</i> is
			[1	MNR 1995; Karnataka CET 1999
	(a) $b = \frac{a+c}{2}$	(b) $a^2 = bc$	(c) $b^2 = ac$	(d) $c^2 = ab$
09.	7 th term of the sequence	e $\sqrt{2}, \sqrt{10}, 5\sqrt{2}, \dots$ is		
	(a) $125\sqrt{10}$	(b) $25\sqrt{2}$	(c) 125	(d) $125\sqrt{2}$
10.	If the 5 th term of a G.P.	is $\frac{1}{3}$ and 9 th term is $\frac{16}{243}$, then	the 4 th term will be	[MP PET 1982
	(a) $\frac{3}{4}$	(b) $\frac{1}{2}$	(c) $\frac{1}{3}$	(d) $\frac{2}{5}$
11	If the 10^{th} term of a ge	progression is 9 and 1^{th}	term is 4, then its 7 th term i	is IMP PET 1006

111. If the 10th term of a geometric progression is 9 and 4^{th} term is 4, then its 7^{th} term is

[MP PET 1996]

				ms of Geometric	
124.	If the nth term of g	eometric progression $5, -\frac{5}{2}, \frac{5}{4}$, (b) 10	$-\frac{5}{8}$, is $\frac{5}{1024}$, then the value (c) 9	alue of <i>n</i> is [Kera (d) 4	la (Engg.) 2002
	(a) 256	(b) 512	(c) 1024	(d) None of	
23.		is 2, then the product of its 9		[Pb. CET 1990,	
	(a) $-\frac{2}{5}$	(b) $-\frac{3}{5}$	(c) $\frac{2}{5}$	(d) None of	these
22.	If the first term of	a G.P. a_1, a_2, a_3, \dots is unity su	ch that $4a_2 + 5a_3$ is least, th	en the common ratio	o of G.P. is
	(a) 4 ³	(b) 4 ⁴	(c) 4 ⁵	(d) None of	
21.		a G.P. is 4 then the product of	(c) mn its first 5 terms is	(d) 0 [IIT 1982; Raj:	asthan PET 199
20.					MI 121 1905,
20.		.P. be <i>m</i> and $(p - q)^{\text{th}}$ term be <i>n</i>			MP PFT 1085
9.	α , β are the roots of form an increasing (a) (3, 12)	of the equation $x^2 - 3x + a = 0$ a G.P., then $(a, b) =$ (b) (12, 3)	nd γ, δ are the roots of the (c) (2, 32)	equation $x^2 - 12x + b$ (d) (4, 16)	$p = 0.$ If α, β, γ , [DCE 200
		Adv	ance Level		
	(a) 12	(b) 14	(c) 16	(d) None of	these
8.	Let $\{t_n\}$ be a seque	nce of integers in GP in which	$t_4: t_6 = 1:4$ and $t_2 + t_5 = 216$.	Then t_1 is	
.,.	(a) 11 th term	(b) 12 th term	(c) 13 th term	(d) 14 th terr	
7.	(a) 8 Given the geometri	(b) 16 c progression 3, 6, 12, 24,	(c) 32 the term 12288 would occu	(d) 64 Ir as the	[SCRA 199
16.	-	term is 512 and common ratio			
	(a) 2 ⁿ	(b) 4 ⁿ	(c) 1	(d) 4	
5.	If first term and co	mmon ratio of a G.P. are both	$\frac{\sqrt{3}+i}{2}$. The absolute value of	f n^{th} term will be	
	U	(b) $1 - \frac{\log l - \log a}{\log r}$	_	·	$\frac{\log a}{\operatorname{g} r}$
14.	The first and last to this G.P. is	erms of a G.P. are <i>a</i> and <i>l</i> resp	ectively, <i>r</i> being its commo	n ratio; then the nu	mber of term
	(a) – 1	(b) 2	(c) 4	(d) - 4	
13.	The 6 th term of a G	.P. is 32 and its 8 th term is 128	, then the common ratio of	the G.P. is	[Pb. CET 199
	(a) 120	(b) 124	(c) 128	(d) 132	
2.	The third term of a	G.P. is the square of first tern	(c) $\frac{4}{9}$	$\frac{1}{2}$	[MP PET 199

125. The sum of 100 terms of the series .9+ .09 + .009..... will be (b) $1 + \left(\frac{1}{10}\right)^{106}$ (a) $1 - \left(\frac{1}{10}\right)^{100}$ (c) $1 - \left(\frac{1}{10}\right)^{106}$ (d) $1 + \left(\frac{1}{10}\right)^{100}$ 126. If the sum of three terms of G.P. is 19 and product is 216, then the common ratio of the series is [Roorkee 1972] (a) $-\frac{3}{2}$ (b) $\frac{3}{2}$ (c) 2 (d) 3 127. If the sum of first 6 terms is 9 times to the sum of first 3 terms of the same G.P., then the common ratio of the series will be [Rajasthan PET 1985] (d) $\frac{1}{2}$ (a) - 2 (b) 2 (c) 1 **128.** If the sum of *n* terms of a G.P. is 255 and *n*th term is 128 and common ratio is 2, then first term will be[Rajasthan PET 1] (a) 1 (b) 3 (c) 7 (d) None of these 129. The sum of 3 numbers in geometric progression is 38 and their product is 1728. The middle number is[MP PET 1994] (b) 8 (c) 18 (d) 6 (a) 12 130. The sum of few terms of any ratio series is 728, if common ratio is 3 and last term is 486, then first term of series will be [UPSEAT 1999] (b) 1 (a) 2 (c) 3 (d) 4 **131.** The sum of *n* terms of a G.P. is $3 - \frac{3^{n+1}}{4^{2n}}$, then the common ratio is equal to (a) $\frac{3}{16}$ (b) $\frac{3}{256}$ (c) $\frac{39}{256}$ (d) None of these **132.** The value of *n* for which the equation $1 + r + r^2 - r^n = (1 + r)(1 + r^2)(1 + r^4)(1 + r^8)$ holds is (a) 13 (c) 15 (b) 12 (d) 16 **133.** The value of the sum $\sum_{n=1}^{13} (i^n + i^{n+1})$, where $i = \sqrt{-1}$, equals [IIT 1998] (b) *i* – 1 (c) - i (a) i (d) 0 **134.** For a sequence a_1, a_2, \dots, a_n given $a_1 = 2$ and $\frac{a_{n+1}}{a_n} = \frac{1}{3}$. Then $\sum_{r=1}^{20} a_r$ is (a) $\frac{20}{2}[4+19\times 3]$ (b) $3\left(1-\frac{1}{3^{20}}\right)$ (c) 2(1 - 3⁻²⁰) (d) None of these **135.** The sum of $(x+2)^{n-1} + (x+2)^{n-2}(x+1) + (x+2)^{n-3}(x+1)^2 + \dots + (x+1)^{n-1}$ is equal to [IIT 1990]

	(a) $(x+2)^{n-2} - (x+1)^n$		(b) $(x+2)^{n-1} - (x+1)^{n-1}$	
	(c) $(x+2)^n - (x+1)^n$		(d) None of these	
		Advance	Level	
36.	The sum of the first <i>n</i> te	erms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16}$	+ is	
		2 . 0		00; Pb. CET 1994; DCE 1995, 96]
	(a) $2^n - n - 1$	(b) $1-2^{-n}$	(c) $n + 2^{-n} - 1$	(d) $2^n - 1$
37.		consecutive terms of G.P. is 210		.,
	numbers will be			
				[MNR 1978]
	(a) 1, 3, 9	(b) 2, 6, 18	(c) 3, 9, 27	(d) 2, 4, 8
38.	If $f(x)$ is a function sati	sfying $f(x + y) = f(x)f(y)$ for all x	$x, y \in N$ such that $f(1) = 3$ and	$\sum_{x=1}^{n} f(x) = 120$. Then the value
				<i>x</i> =1
	of n is			[IIT 1992]
	(a) 4	(b) 5	(c) 6	(d) None of these
39.				he common ratio is [MP PET 200
	(a) 5	(b) 4	(c) 3	(d) 2
40.		common ratio 3 is 364, and last		
	(a) 6	(b) 5	(c) 4	(d) 10
41.	A G.P. consists of 2 <i>n</i> ter	rms. If the sum of the terms occ	cupying the odd places is S_1 ,	, and that of the terms in the
	even places is S_2 , then S_2	S_2/S_1 is		
	(a) Independent of a	(b) Independent of <i>r</i>	(c) Independent of a and r	r (d) Dependent on r
.42.	Sum of the series $\frac{2}{3} + \frac{8}{9}$	$+\frac{26}{27}+\frac{80}{81}+$ to <i>n</i> terms is		[Karnataka CET 2001]
	(a) $n - \frac{1}{2}(3^n - 1)$	(b) $n + \frac{1}{2}(3^n - 1)$	(c) $n + \frac{1}{2}(1 - 3^{-n})$	(d) $n + \frac{1}{2}(3^{-n} - 1)$
43.	2	2	2	P^2 is equal to[IIT 1966; Roorke
		-		_
	(a) $\frac{R}{S}$	(b) $\frac{S}{R}$	(c) $\left(\frac{R}{S}\right)^n$	(d) $\left(\frac{S}{R}\right)^n$
44.	The minimum value of <i>r</i>	<i>n</i> such that $1 + 3 + 3^2 + \dots + 3^n > 10$	00 is	
	(a) 7	(b) 8	(c) 9	(d) None of these
45.		with positive terms is the sum		
				[Rajasthan PET 1986]
				[Kajastnan FET 1980]
	(a) 1	(b) $\frac{2}{\sqrt{5}}$	(c) $\frac{\sqrt{5}-1}{2}$	(d) $\frac{\sqrt{5}+1}{2}$

46.	If $(1.05)^{50} = 11.658$, then	$\sum_{n=1}^{49} (1.05)^n$ equals		[Roorkee 1991
	(a) 208.34	(b) 212.12	(c) 212.16	(d) 213.16
47.	If $a_1, a_2, a_3, \dots, a_n$ are in G is equal to	.P. with first term 'a' and con	from ratio 'r' then $\frac{a_1 a_2}{a_1^2 - a_2^2}$ +	$\frac{a_2a_3}{a_2^2 - a_3^2} + \frac{a_3a_4}{a_3^2 - a_n^2} + \dots + \frac{a_{n-1}a_n}{a_{n-1}^2 - a_n^2}$
	(a) $\frac{nr}{1-r^2}$	(b) $\frac{(n-1)^r}{1-r^2}$	(c) $\frac{nr}{1-r}$	(d) $\frac{(n-1)r}{1-r}$
Į8 .	The sum of the squares	of three distinct real numbers	s which are in G.P. is S^2 . If	their sum is αS , then
	(a) $1 < \alpha^2 < 3$	(b) $\frac{1}{3} < \alpha^2 < 1$	(c) $1 < \alpha < 3$	(d) $\frac{1}{3} < \alpha < 1$
				Sum to infinite terms
		Basic	Level	
1 9.	If the sum of the series	$1 + \frac{2}{x} + \frac{4}{x^2} + \frac{8}{x^3} + \dots \infty$ is a fini	te number, then	[UPSEAT 2002
	(a) $x > 2$	(b) $x > -2$	(c) $x > \frac{1}{2}$	(d) None of these
;0.	If $y = x - x^2 + x^3 - x^4 + \dots$	$1.\infty$, then value of x will be	[MNR 1975; Ra	ajasthan PET 1988; MP PET 2002
	(a) $y + \frac{1}{y}$	(b) $\frac{y}{1+y}$	(c) $y - \frac{1}{y}$	(d) $\frac{y}{1-y}$
1.	If the sum of an infinite	e G.P. be 9 and the sum of first	two terms be 5, then the co	ommon ratio is
	(a) $\frac{1}{3}$	(b) $\frac{3}{2}$	(c) $\frac{3}{4}$	(d) $\frac{2}{3}$
2.	2.357 =			[IIT 1983; Rajasthan PET 199
	(a) $\frac{2355}{1001}$	(b) $\frac{2370}{997}$	(c) $\frac{2355}{999}$	(d) None of these
3.	The first term of a G.P.	whose second term is 2 and su	-	
4.	(a) 6 The sum of infinite term	(b) 3 ms of a G.P. is <i>x</i> and on squari	(c) 4 ng the each term of it, the s	(d) 1 um will be <i>y</i> , then the commo
	ratio of this series is			[Rajasthan PET 1988
	(a) $\frac{x^2 - y^2}{x^2 + y^2}$	(b) $\frac{x^2 + y^2}{x^2 - y^2}$	(c) $\frac{x^2 - y}{x^2 + y}$	(d) $\frac{x^2 + y}{x^2 - y}$
5.	If $3 + 3\alpha + 3\alpha^2 + \dots = \infty$	$\frac{45}{8}$, then the value of α will be	be	[Pb. CET 1989
5.	If $3 + 3\alpha + 3\alpha^{2} + \dots =$ (a) $\frac{15}{23}$	$\frac{45}{8}$, then the value of α will be (b) $\frac{7}{15}$	(c) $\frac{7}{8}$	[Pb. CET 198] (d) $\frac{15}{7}$
	(a) $\frac{15}{23}$	-	(c) $\frac{7}{8}$	[Pb. CET 1989 (d) 15 7 [AMU 1982

57.				
	The sum of infinity of	a geometric progression is $\frac{4}{3}$	and the first term is $\frac{3}{4}$. The	common ratio is [MP PET 1994]
	(a) $\frac{7}{16}$	(b) $\frac{9}{16}$	(c) $\frac{1}{9}$	(d) $\frac{7}{9}$
58.	The value of $4^{1/3}.4^{1/9}.4^{1/9}$	$4^{1/27}$ ∞ is		[Rajasthan PET 2003]
	(a) 2	(b) 3	(c) 4	(d) 9
9.	0.14189189189 can	be expressed as a rational nun	nber	[AMU 2000]
	(a) $\frac{7}{3700}$	(b) $\frac{7}{50}$	(c) $\frac{525}{111}$	(d) $\frac{21}{148}$
о.	The sum of the series	$5.05 + 1.212 + 0.29088 + \infty$ is		[AMU 2000]
	(a) 6.93378	(b) 6.87342	(c) 6.74384	(d) 6.64474
1.	Sum of infinite numbe	er of terms in G.P. is 20 and sur	n of their square is 100. The	e common ratio of G.P. is [AIEEE 2
	(a) 5	(b) 3/5	(c) 8/5	(d) 1/5
2.		-	-	terms, then its common ratio is [I
	(a) 1	(b) 2	(c) 1/3	(d) - 1/3
3.	The sum of infinite te	rms of the geometric progressi	on $\frac{\sqrt{2}+1}{\sqrt{2}-1}, \frac{1}{2-\sqrt{2}}, \frac{1}{2}$ is	[Kerala (Engg.) 2002]
	(a) $\sqrt{2}(\sqrt{2}+1)^2$	(b) $(\sqrt{2}+1)^2$	(c) $5\sqrt{2}$	(d) $3\sqrt{2} + \sqrt{5}$
į .	If $x > 0$, then the sum	of the series $e^{-x} - e^{-2x} + e^{-3x}$	∞ is	[AMU 1989]
		(b) $\frac{1}{e^x - 1}$	(c) $\frac{1}{1+e^{-x}}$	(d) $\frac{1}{1+e^x}$
5.	The sum of the series	$0.4 + 0.004 + 0.00004 + \dots \infty$ is		[AMU 1989]
	(a) $\frac{11}{25}$	(b) $\frac{41}{100}$	(c) $\frac{40}{99}$	(d) $\frac{2}{5}$
6.		-	-	hich it has fallen. If it continues
	to fall and rebound in (a) 240 <i>m</i>	this way. How far will it trave (b) 140 m	(c) 1080 m	(d) ∞
7.	(a) 240 m	•	(c) 1080 m	(d) ∞
7.	(a) 240 m	(b) 140 m	(c) 1080 m	(d) ∞ (d) None of these
7.	(a) 240 m The series $C + \frac{C^2}{1+C} + \frac{C^2}{C}$	(b) 140 m $\frac{C^3}{(1+C)^2} + \frac{C^4}{(1+C)^3} + \dots \text{ has a finit}$ (b) - 1	(c) 1080 m e sum if <i>C</i> is greater than	
	(a) 240 m The series $C + \frac{C^2}{1+C} + \frac{C^2}{C^2}$ (a) - 1/2	(b) 140 m $\frac{C^3}{(1+C)^2} + \frac{C^4}{(1+C)^3} + \dots \text{ has a finit}$ (b) - 1 Advance ∞, then the value of r will be	 (c) 1080 m e sum if C is greater than (c) - 2/3 	
	(a) 240 m The series $C + \frac{C^2}{1+C} + \frac{C^2}{C^2}$ (a) - 1/2	(b) 140 m $\frac{C^3}{(1+C)^2} + \frac{C^4}{(1+C)^3} + \dots \text{ has a finit}$ (b) - 1 Advance ∞, then the value of r will be	(c) 1080 m e sum if C is greater than (c) $-2/3$ ce Level	
8.	(a) 240 m The series $C + \frac{C^2}{1+C} + \frac{C}{C^2}$ (a) - 1/2 If $A = 1 + r^z + r^{2z} + r^{3z} + \frac{C^2}{C^2}$ (a) $A(1-A)^z$	(b) 140 m $\frac{C^3}{(1+C)^2} + \frac{C^4}{(1+C)^3} + \dots \text{ has a finit}$ (b) - 1 Advance ∞, then the value of r will be	(c) 1080 m e sum if C is greater than (c) $-2/3$ ce Level (c) $\left(\frac{1}{A}-1\right)^{1/z}$	(d) None of these (d) $A(1-A)^{1/z}$
8.	(a) 240 m The series $C + \frac{C^2}{1+C} + \frac{C}{C^2}$ (a) - 1/2 If $A = 1 + r^z + r^{2z} + r^{3z} + \frac{C^2}{C^2}$ (a) $A(1-A)^z$	(b) 140 m $\frac{C^3}{(1+C)^2} + \frac{C^4}{(1+C)^3} + \dots \text{ has a finit}$ (b) - 1 Advance ∞, then the value of r will be (b) $\left(\frac{A-1}{A}\right)^{1/z}$	(c) 1080 m e sum if C is greater than (c) $-2/3$ ce Level (c) $\left(\frac{1}{A}-1\right)^{1/z}$	(d) None of these (d) $A(1-A)^{1/z}$ e [AMU 1984]

(a)
$$\frac{N}{x+y-1}$$
 (b) $\frac{N}{x+y+1}$ (c) $\frac{N}{x-y-1}$ (d) $\frac{N}{x-y+1}$
171. The value of a^{0+1} , where $a = 0.2, b = \sqrt{5}, x = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$ to $x = 18$
(a) 1 (b) 2 (c) $1/2$ (d) 4
172. The sum of an infinite geometric series is 3. A series, which is formed by squares of its terms have the sum also 3. First series will be
Rajasthan PET 1999; Roorkee 1972; UPSEAT 1999
(a) $\frac{3}{2}, \frac{3}{4}, \frac{3}{5}, \frac{3}{16}, \dots, x = 0 = 2 - \sqrt{2}$, then $a, \ 0 < \alpha < \pi$) is
Roorkee 2000
(a) $\pi/8$ (b) $\pi/6$ (c) $\pi/4$ (d) $3\pi/4$
174. Consider an infinite G.P. with first term a and common ratio r , its sum is 4 and the second term is $3/4$, then
IIT Screening 2007; DCE 2001
(a) $a = \frac{7}{4}r = \frac{3}{7}$ (b) $a = \frac{3}{2}, r = \frac{1}{2}$ (c) $a = 2, r = \frac{3}{8}$ (d) $a = 3, r = \frac{1}{4}$
175. Let $n(>1)$ be a positive integer, then the largest integer m such that $(w^n + 1)$ divides $(1+n+n^2+\dots+n^{12})$, is[**IIT 1995**]
(a) 32 (b) 63 (c) $\frac{1}{2}a^2 + \frac{ab}{1-ab}$ (c) $\frac{1}{a^2}b^2 + \frac{ab}{1-ab}$ (c) $\frac{1}{a}b^2 + \frac{ab}{1-a}$ (d) $\frac{b^2}{1-b^2} + \frac{ab}{1-ab}$
175. If $f|a|a(a+b)+a^2(a^2+b^2)+a^2(a^2+b^2)+\dots$ upto π is
(a) 32 (b) 63 (c) $\frac{1}{a^2}a^2 + \frac{ab}{1-ab}$ (c) $\frac{1}{a^2}b^2 + \frac{ab}{1-a}$ (d) $\frac{b^2}{1-b^2} + \frac{ab}{1-ab}$
177. If *S* is the sum to infinity of a G.P., whose first term is *a*, then the sum of the first *n* terms is **[UPSEAT 2003]**
(a) $S\left[1-\frac{a}{5}\right]^n$ (b) $S\left[1-\left(1-\frac{a}{5}\right)^n\right]$ (c) $a\left[1-\left(1-\frac{a}{5}\right)^n\right]$ (d) None of these
178. If *S* denotes the sum to infinity and s_x the sum of *n* terms of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\dots$, such that $S - S_s < \frac{1}{100}$, then the least value of *n* is
(a) 8 (b) 9 (c) 10 (d) 11
179. If G be the geometric mean of *x* and *y*, then $\frac{1}{G^2-x^2} + \frac{1}{G^2-x^2} = \frac{1}{G}$
(a) G^2 (d) $3G^2$

181. If *n* geometric means be inserted between *a* and *b*, then the n^{th} geometric mean will be

				U -
	(a) $a\left(\frac{b}{a}\right)^{\frac{n}{n-1}}$	(b) $a\left(\frac{b}{a}\right)^{\frac{n-1}{n}}$	(c) $a\left(\frac{b}{a}\right)^{\frac{n}{n+1}}$	(d) $a\left(\frac{b}{a}\right)^{\frac{1}{n}}$
182.	If $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ be the geom	netric mean of a and b, then n=		
	(a) 0	(b) 1	(c) 1/2	(d) None of these
183.	The G.M. of roots of the	equation $x^2 - 18x + 9 = 0$ is		[Rajasthan PET 1997]
	(a) 3	(b) 4	(c) 2	(d) 1
184.	If five G.M.'s are inserte	d between 486 and 2/3 then fo	urth G.M. will be	[Rajasthan PET 1999]
	(a) 4	(b) 6	(c) 12	(d) – 6
185.		tween 160 and 5 them third G.I		
	(a) 8	(b) 118	(c) 20	(d) 40
186.	The product of three geo	ometric means between 4 and $\frac{1}{4}$	will be	
	(a) 4	(b) 2	(c) - 1	(d) 1
187.	The geometric mean bet			(
-	(a) 12	(b) - 12	(c) - 13	(d) None of these
		Advance	Level	
188.	If <i>n</i> geometric means be	tween a and b be G_1, G_2, \dots, G_n a	and a geometric mean be <i>G</i> ,	then the true relation is
	(a) $G_1, G_2, \dots, G_n = G$	(b) $G_1. G_2 G_n = G^{1/n}$	(c) $G_1. G_2 G_n = G^n$	(d) $G_1. G_2 G_n = G^{2/n}$
189.	If x and y be two real n	umbers and <i>n</i> geometric means	s are inserted between x an	d y . now x is multiplied by k
-	-	nd then n G.M's. are inserted. T		
	and g is mattiplied $\frac{k}{k}$	in them in 0.100 St are inserted. I	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
	(a) $k^{\frac{n-1}{n+1}}:1$	(b) $1:k^{\frac{1}{n+1}}$	(c) 1:1	(d) None of these
				Properties of G.P.
		Basic Le	evel	
190.	If a, b, c are in G.P., ther	1		

(a) $a(b^2 + a^2) = c(b^2 + c^2)$ (b) $a(b^2 + c^2) = c(a^2 + b^2)$ (c) $a^2(b+c) = c^2(a-b)$ (d) None of these

191. If x is added to each of numbers 3, 9, 21 so that the resulting numbers may be in G.P., then the value of x will be[MP PI

(a) 3 (b) $\frac{1}{2}$ (c) 2 (d) $\frac{1}{3}$

192. If $\log_x a, a^{x/2}$ and $\log_b x$ are in G.P., then x =

- (a) $-\log_a(\log_b a)$ (b) $-\log_a(\log_a b)$ (c) $\log_a(\log_e a) \log_a(\log_e b)$ (d) $\log_a(\log_e b) \log_a(\log_e a)$
- **193.** If $\sum_{n=1}^{n} n$, $\frac{\sqrt{10}}{3} \cdot \sum_{n=1}^{n} n^2$, $\sum_{n=1}^{n} n^3$ are in G.P. then the value of *n* is

	(a) 2	(b) 3	(c) 4	(d) Nonexistent
94.	If <i>p</i> , <i>q</i> , <i>r</i> are in A.P.,	then $p^{ m th}$, $q^{ m th}$ and $r^{ m th}$ terms of an	y G.P. are in	
	(a) AP		(b) G.P.	
	(c) Reciprocals of th	ese terms are in A.P.	(d) None of these	
95.	If a, b, c are in G.P.,	then		[Rajasthan PET 1995]
	(a) a^2, b^2, c^2 are in G.	Р.	(b) $a^2(b+c), c^2(a+b), b^2(a+b), b^2(a+b)$	(a+c) are in G.P.
	(c) $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$	are in G.P.	(d) None of these	
96.		s of $x^2 - 3x + p = 0$ and let c and the ratio of $(q + p) : (q - p)$ is		+q=0, where <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> form an
	(a) 8:7	(b) 11:10	(c) 17:15	(d) None of these
97.	If the roots of the cu	bic equation $ax^3 + bx^2 + cx + d = 0$) are in G.P., then	
	(a) $c^3 a = b^3 d$	(b) $ca^3 = bd^3$	(c) $a^3b = c^3d$	(d) $ab^3 = cd^3$
98.	If x_1, x_2, x_3 as well as	y_1, y_2, y_3 are in G.P. with the s	ame common ratio, then the	points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) [I
	(a) Lie on a straight triangle	line (b) Lie on an ellipse	(c) Lie on a circle	(d) Are vertices of a
99.	Let $f(x) = 2x + 1$. Then	n the number of real values of	x for which the three unequa	al numbers $f(x), f(2x), f(4x)$ are in
	GP is			
	(a) 1	(b) 2	(c) 0	(d) None of these
00.	$S_{ m r}$ denotes the sum o	f the first <i>r</i> terms of a G.P. The	en $S_n, S_{2n} - S_n, S_{3n} - S_{2n}$ are in	
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
201.	If $a^{1/x} = b^{1/y} = c^{1/z}$ and	d a, b, c are in G.P., then x, y, z	will be in	[IIT 1969; UPSEAT 2001]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
202.	If <i>x, y, z</i> are in G.P. a	and $a^x = b^y = c^z$, then		[IIT 1966, 1968]
	(a) $\log_a c = \log_b a$	(b) $\log_b a = \log_c b$	(c) $\log_c b = \log_a c$	(d) None of these

Basic Level

203. Three consecutive terms of a progression are 30, 24, 20. The next term of the progression is 1 + 1 + 1 + 1 = 1

	(a) 18	(b) $17\frac{1}{7}$	(c) 16	(d) None of these
204.	The 5 th term of the H.P.	, $2, 2\frac{1}{2}, 3\frac{1}{3}, \dots$ will be		[MP PET 1984]
	(a) $5\frac{1}{5}$	(b) $3\frac{1}{5}$	(c) 1/10	(d) 10

205. If
$$5^{m}$$
 term of a H.P. is $\frac{1}{45}$ and 11^{m} term is $\frac{1}{69}$, then its 16^{m} term will be
 [Rajasthan PET 1987, 97]

 (a) $\frac{1}{80}$
 (b) $\frac{1}{85}$
 (c) $\frac{1}{80}$
 (d) $\frac{1}{79}$

 206. If the 7^{m} term of a H.P. is $\frac{1}{10}$ and the 12^{m} term is $\frac{1}{25}$, then the 20^{m} term is
 [MP PET 1997]

 (a) $\frac{1}{37}$
 (b) $\frac{1}{41}$
 (c) $\frac{1}{45}$
 (d) $\frac{1}{49}$

 207. If 6^{m} term of a H.P. is $\frac{1}{61}$ and its tenth term is $\frac{1}{165}$, then first term of that H.P. is
 [Karnataka CET 200]

 (a) $\frac{1}{28}$
 (b) $\frac{1}{39}$
 (c) $\frac{1}{6}$
 (d) $\frac{1}{17}$
(dvance Level

 208. The 9^{h} term of the series $27 + 9 + 5\frac{2}{5} + 3\frac{6}{7} + ...$ will be
 [MP PET 1983]

 (a) $1\frac{10}{17}$
 (b) $\frac{10}{17}$
 (c) $\frac{16}{27}$
 (d) $\frac{17}{27}$

 (a) $1\frac{10}{17}$
 (b) $\frac{10}{17}$
 (c) $\frac{16}{27}$
 (d) $p(p(p+q))$

 208. The 9^{h} term is q and the q^{m} term is p . Then pq^{m} term is
 [Marnataka CET 2002]
 (a) $1\frac{10}{7}$
 (b) $1\frac{10}{7}$
 (c) $1\frac{10}{7}$
 (d) $1\frac{17}{27}$

 209. In a H.P., p^{m} term is q and the q^{m} term is p . Then pq^{m} term is
 [Marnataka CET 2002]
 (a) 1
 (b) 1
 (c) pq
 (d) 2
 (d) $pq(p+q$

215.	The harmonic mean of	$\frac{a}{1-ab}$ and $\frac{a}{1+ab}$ is		[MP PET 1996
	(a) $\frac{a}{\sqrt{1-a^2b^2}}$	(b) $\frac{a}{1-a^2b^2}$	(c) a	(d) $\frac{1}{a-a^2b^2}$
216.	The sixth H.M. betwee	en 3 and $\frac{6}{13}$ is		[Rajasthan PET 1996
	(a) $\frac{63}{120}$	(b) $\frac{63}{12}$	(c) $\frac{126}{105}$	(d) $\frac{120}{63}$
		Ad	lvance Level	
217.		ic means between 1 and	$\frac{1}{31}$ and the ratio of 7^{th} and (n)	$(-1)^{th}$ harmonic means is 9 : 5, the
	the value of <i>n</i> will be			[Rajasthan PET 1986
	(a) 12	(b) 13	(c) 14	(d) 15
218.		ven equation $(1-ab)x^2 - (a^2)$ ence between last and the		nonic means are inserted between
	(a) <i>b</i> – <i>a</i>	(b) <i>ab</i> (<i>b</i> – <i>a</i>)	(c) a (b – a)	(d) $ab(a - b)$
			_	
			Propert	ties of Harmonic progression
			Propert Basic Level	ties of Harmonic progression
219.	If $\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{a} + \frac{1}{c}$, t		Basic Level	
219.	If $\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{a} + \frac{1}{c}$, t (a) A.P.		Basic Level	
	(a) A.P.	then <i>a, b, c</i> are in	Basic Level [MN (c) H.P.	NR 1984; MP PET 1997; UPSEAT 2000
	(a) A.P.	then <i>a, b, c</i> are in (b) G.P.	Basic Level [MN (c) H.P.	NR 1984; MP PET 1997; UPSEAT 2000 (d) In G.P. and H.P. both
220.	 (a) A.P. If <i>a</i>, <i>b</i>, <i>c</i> are in H.P., th (a) A.P. 	then <i>a</i> , <i>b</i> , <i>c</i> are in (b) G.P. then $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in (b) G.P.	Basic Level [MN (c) H.P.	NR 1984; MP PET 1997; UPSEAT 2000 (d) In G.P. and H.P. both [Roorkee 1980 (d) None of these
220.	 (a) A.P. If <i>a</i>, <i>b</i>, <i>c</i> are in H.P., th (a) A.P. 	then <i>a</i> , <i>b</i> , <i>c</i> are in (b) G.P. then $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in (b) G.P.	Basic Level [MN (c) H.P. 1 (c) H.P.	NR 1984; MP PET 1997; UPSEAT 2000 (d) In G.P. and H.P. both [Roorkee 1980 (d) None of these
220. 221.	 (a) A.P. If <i>a</i>, <i>b</i>, <i>c</i> are in H.P., th (a) A.P. If <i>a</i>, <i>b</i>, <i>c</i>, <i>d</i> are any four 	then <i>a</i> , <i>b</i> , <i>c</i> are in (b) G.P. then $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in (b) G.P. there consecutive coefficients (b) G.P.	Basic Level [MN (c) H.P. (c) H.P. (c) H.P. s of any expanded binomial, th	NR 1984; MP PET 1997; UPSEAT 2000 (d) In G.P. and H.P. both [Roorkee 1980 (d) None of these hen $\frac{a+b}{a}, \frac{b+c}{b}, \frac{c+d}{c}$ are in (d) None of these
220. 221.	 (a) A.P. If <i>a</i>, <i>b</i>, <i>c</i> are in H.P., th (a) A.P. If <i>a</i>, <i>b</i>, <i>c</i>, <i>d</i> are any four (a) A.P. 	then <i>a</i> , <i>b</i> , <i>c</i> are in (b) G.P. then $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in (b) G.P. there consecutive coefficients (b) G.P.	Basic Level [MN (c) H.P. (c) H.P. (c) H.P. s of any expanded binomial, th	NR 1984; MP PET 1997; UPSEAT 2000 (d) In G.P. and H.P. both [Roorkee 1980 (d) None of these hen $\frac{a+b}{a}, \frac{b+c}{b}, \frac{c+d}{c}$ are in (d) None of these
220. 221. 222.	(a) A.P. If <i>a</i> , <i>b</i> , <i>c</i> are in H.P., th (a) A.P. If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are any four (a) A.P. $\log_3 2, \log_6 2, \log_{12} 2$ are (a) A.P.	then <i>a</i> , <i>b</i> , <i>c</i> are in (b) G.P. hen $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in (b) G.P. ur consecutive coefficients (b) G.P. in	Basic Level [MN (c) H.P. (c) H.P. s of any expanded binomial, th (c) H.P. (c) H.P.	NR 1984; MP PET 1997; UPSEAT 2000 (d) In G.P. and H.P. both [Roorkee 1980 (d) None of these hen $\frac{a+b}{a}, \frac{b+c}{b}, \frac{c+d}{c}$ are in (d) None of these [Rajasthan PET 1993, 2001 (d) None of these
220. 221. 222.	(a) A.P. If <i>a</i> , <i>b</i> , <i>c</i> are in H.P., th (a) A.P. If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are any four (a) A.P. $\log_3 2, \log_6 2, \log_{12} 2$ are (a) A.P. If <i>a</i> , <i>b</i> , <i>c</i> are in H.P., th	then <i>a</i> , <i>b</i> , <i>c</i> are in (b) G.P. hen $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in (b) G.P. ur consecutive coefficients (b) G.P. in (b) G.P.	Basic Level [MN (c) H.P. (c) H.P. s of any expanded binomial, th (c) H.P. (c) H.P.	NR 1984; MP PET 1997; UPSEAT 2000 (d) In G.P. and H.P. both [Roorkee 1980 (d) None of these hen $\frac{a+b}{a}, \frac{b+c}{b}, \frac{c+d}{c}$ are in (d) None of these [Rajasthan PET 1993, 2001 (d) None of these
220. 221. 222. 223.	(a) A.P. If <i>a</i> , <i>b</i> , <i>c</i> are in H.P., th (a) A.P. If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are any four (a) A.P. $\log_3 2, \log_6 2, \log_{12} 2$ are (a) A.P. If <i>a</i> , <i>b</i> , <i>c</i> are in H.P., th (a) $a^n + c^n < 2b^n$	then <i>a</i> , <i>b</i> , <i>c</i> are in (b) G.P. hen $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in (b) G.P. ur consecutive coefficients (b) G.P. in (b) G.P. hen for all $n \in N$ the true s (b) $a^n + c^n > 2b^n$	Basic Level [MM (c) H.P. (c) H.P. (c) H.P. (c) H.P. (c) H.P. (c) H.P. (c) H.P. (c) H.P. (c) H.P.	NR 1984; MP PET 1997; UPSEAT 2000 (d) In G.P. and H.P. both [Roorkee 1980 (d) None of these hen $\frac{a+b}{a}, \frac{b+c}{b}, \frac{c+d}{c}$ are in (d) None of these [Rajasthan PET 1993, 2001 (d) None of these [Rajasthan PET 1995

225. If
$$b^{3}, a^{3}, c^{4}$$
 are in A.P., then $a+c, b+c, c+a$ will be in [AMU 1974]
(a) A.P. (b) G.P. (c) H.P. (d) None of these
(a) $a^{2}, c^{2}, b^{2} + b^{2} + c^{2}$ (b) $b^{2} + d^{2} + b^{2} + c^{2}$ (c) $ac+bd > b^{2} + c^{2}$ (d) $ac+bd > b^{2} + d^{2}$
(e) $ac+bd > b^{2} + d^{2}$
(f) $a, a_{2}, a_{3}, ..., a_{n}$ are in H.P., then $a_{1}a_{2}a_{2}a_{3} + ..., a_{n}a_{n}a_{n}$ will be equal to [IIT 1975]
(a) $a_{2}a_{n}$ (b) $ma_{n}a_{n}$ (c) $(a-1)a_{n}a_{n}$ (d) None of these
(a) $\log(x-2)$ (b) $2\log(x-2)$ (c) $3\log(x-2)$ (d) $4\log(x-2)$; (d) $4\log(x-2)$
(e) $3\log(x-2)$ (f) $4\log(x-2)$ (c) $3\log(x-2)$ (f) $4\log(x-2)$
(f) $4\log(x-2)$
(g) $16a_{n}b_{n}c_{n}d$ are in H.P., then x, y, z are in [Rajasthan PET 1989; MP PET 2003]
(a) $bx(x-2)$ (b) $2\log(x-2)$ (c) $3\log(x-2)$ (d) $4\log(x-2)$
(e) 100 (f) $a_{n}b_{n}c_{n}d$ (f) None of these
(a) $a + d > b + c$ (b) $ad > bc$ (c) Both (a) and (b) (d) None of these
(a) $a + d > b + c$ (b) $ad > bc$ (c) Both (a) and (b) (d) None of these
(a) $\frac{1}{1-x}$ (b) $\frac{1}{1+x}$ (c) $\frac{1}{(1+x)^{2}}$ (d) $\frac{1}{(1-x)^{2}}$
(a) $16a_{n}b_{n}c_{n}d$ (b) $\frac{3(00)}{9801}$ (c) $\frac{1000}{9801}$ (d) None of these
(a) $\frac{1}{2}(2a-1)$ (b) $\frac{2(2a+1)}{1+x}$ (c) $\frac{1000}{9801}$ (d) None of these
(a) $\frac{2}{2}(2a-1)$ (b) $\frac{2}{(2a+1)}$
(Advance Level
234. The sum of infinite terms of the following series $1 + \frac{4}{5} + \frac{7}{51} + \frac{10}{51} + ...,$ will be
(f) $\frac{1}{(1-x)^{2}}$ (h) $\frac{3}{16}$ (b) $\frac{35}{8}$ (c) $\frac{3}{54}$ (d) $\frac{35}{16}$
(a) $\frac{3}{16}$ (b) $\frac{35}{8}$ (c) $\frac{3}{54}$ (d) $\frac{35}{16}$
(a) $\frac{1}{(1-x)^{2}}$ (b) $\frac{1}{1-x}$ (c) $\frac{1}{(1+x)^{2}}$ (d) $\frac{1}{(1-x)^{2}}$
(a) $\frac{1}{(1-x)^{2}}$ (b) $\frac{1}{1-x}$ (c) $\frac{1}{(1+x)^{2}}$ (d) $\frac{1}{(1-x)^{2}}$
(a) $\frac{1}{(1-x)^{2}}$ (b) $\frac{1}{1-x}$ (c) $\frac{3}{2}$ (d) $\frac{5}{2}$
(a) 1 (b) 2 (c) $\frac{3}{2}$ (d) $\frac{5}{2}$
(a) 1 (b) 2 (c) $\frac{3}{2}$ (d) $\frac{5}{2}$
(c) $\frac{3}{16}$ (d) $\frac{5}{2}$
(c) $\frac{1}{2} + \frac{5}{16} + \frac{4}{5^{3}} + \frac{4}{5^{3}} + \dots$ with terms is (MP PET 1982; MEEE 2002]
(a) 1 (b) 2 (c) $\frac{3}{2}$ (c) $\frac{3}{2} - \frac{$

238. The sum of $i - 2 - 3i + 4 + \dots$ upto 100 terms, where $i = \sqrt{-1}$ is

(a) 50(1-i)

(b) 25 *i*

(c) 25(1+i)

(d) 100(1-i)

Basic Level

	es $2+4+7+11+$ will be		[Roorkee 1977
(a) $\frac{n^2 + n + 1}{2}$	(b) $n^2 + n + 2$	(c) $\frac{n^2 + n + 2}{2}$	(d) $\frac{n^2 + 2n + 2}{2}$
40. If t_n denotes the n^{th}	^h term of the series $2+3+6+11$	+18 + then t_{50} is	
(a) $49^2 - 1$	(b) 49^2	(c) $50^2 + 1$	(d) $49^3 + 2$
41. First term of the 11 ^t	^h group in the following groups	(1), (2, 3, 4), (5, 6, 7, 8, 9),	is
(a) 89	(b) 97	(c) 101	(d) 123
	es $6 + 66 + 666 +$ upto <i>n</i> terms	sis	[IIT 197
(a) $(10^{n-1} - 9n + 10)/8$	(b) $2(10^{n+1}-9n-10)/27$	(c) $2(10^n - 9n - 10)/27$	(d) None of these
13. Sum of n terms of s	series 12 + 16 + 24 + 40 + will	be	[UPSEAT 199
(a) $2(2^n-1)+8n$	(b) $2(2^n - 1) + 6n$	(c) $3(2^n - 1) + 8n$	(d) $4(2^n-1)+8n$
14. If $ a < 1$ and $ b < 1$,	then the sum of the series $1 + (1$	$(+a)b + (1 + a + a^2)b^2 + (1 + a + a^2 + a^3)b^2$	$b^{3} + \dots $ is
(a) $\frac{1}{(1-a)(1-b)}$	(b) $\frac{1}{(1-a)(1-ab)}$	(c) $\frac{1}{(1-b)(1-ab)}$	(d) $\frac{1}{(1-a)(1-b)(1-ab)}$
			nth Torres of Crossic Learning
			n th Term of Special series
	Bas	ic Level	
	2 2 2 2 2 2 2		
15. n^{th} term of the series	es $\frac{1^3}{1} + \frac{1^3 + 2^3}{1+3} + \frac{1^3 + 2^3 + 3^3}{1+3+5} + \dots$.will be	[Pb. CET 200
(a) $n^2 + 2n + 1$	(b) $\frac{n^2 + 2n + 1}{8}$	(c) $\frac{n^2 + 2n + 1}{4}$	(d) $\frac{n^2 - 2n + 1}{4}$
the c	es $\frac{1}{1} + \frac{1+2}{2} + \frac{1+2+3}{3} + \dots$ will	be	[AMU 198
16. The <i>n</i> th term of serie	1 2 3		
(a) $\frac{n+1}{2}$	(b) $\frac{n-1}{2}$	(c) $\frac{n^2+1}{2}$	(d) $\frac{n^2-1}{2}$
(a) $\frac{n+1}{2}$	(b) $\frac{n-1}{2}$		(d) $\frac{n^2-1}{2}$
(a) $\frac{n+1}{2}$	(b) $\frac{n-1}{2}$		(d) $\frac{n^2 - 1}{2}$ (d) - 2
(a) $\frac{n+1}{2}$ 27. If $a_1 = a_2 = 2, a_n = a_{n-1}$	(b) $\frac{n-1}{2}$ -1(n > 2), then a_5 is (b) - 1	(c) $\frac{n^2+1}{2}$	Z
(a) $\frac{n+1}{2}$ 17. If $a_1 = a_2 = 2, a_n = a_{n-1}$ (a) 1	(b) $\frac{n-1}{2}$ -1(n > 2), then a_5 is (b) - 1	(c) $\frac{n^2 + 1}{2}$ (c) O	2
(a) $\frac{n+1}{2}$ 17. If $a_1 = a_2 = 2, a_n = a_{n-1}$ (a) 1 18. The number 111	(b) $\frac{n-1}{2}$ $-1(n > 2)$, then a_5 is (b) -1 Adva .1 (91 times) is a	(c) $\frac{n^2 + 1}{2}$ (c) o nce Level	2 (d) - 2
(a) $\frac{n+1}{2}$ (a) If $a_1 = a_2 = 2, a_n = a_{n-1}$ (a) 1 (a) The number 111 (a) Even number	(b) $\frac{n-1}{2}$ $-1(n > 2)$, then a_5 is (b) -1 Adva 1 (91 times) is a (b) Prime number	(c) $\frac{n^2 + 1}{2}$ (c) O nce Level (c) Not prime	2 (d) - 2 (d) None of these
(a) $\frac{n+1}{2}$ (a) $\frac{1}{2}$ (a) 1 (a) 1 (b) Even number 111 (a) Even number (b) The difference between the set of the	(b) $\frac{n-1}{2}$ $-1(n > 2)$, then a_5 is (b) -1 Adva .1 (91 times) is a (b) Prime number veen an integer and its cube is d	(c) $\frac{n^2 + 1}{2}$ (c) O (c) Not prime livisible by	2 (d) – 2 (d) None of these [MP PET 199
 (a) ⁿ⁺¹/₂ (a) 1 (a) 1 (a) 1 (a) Even number 111 (a) Even number (a) 4 (b) In the sequence 1, 2 	(b) $\frac{n-1}{2}$ $-1(n > 2)$, then a_5 is (b) -1 Adva 1 (91 times) is a (b) Prime number	(c) $\frac{n^2 + 1}{2}$ (c) o nce Level (c) Not prime livisible by (c) 9	2 (d) – 2 (d) None of these [MP PET 199 (d) None of these
 (a) ⁿ⁺¹/₂ 47. If a₁ = a₂ = 2, a_n = a_{n-1} (a) 1 48. The number 111 (a) Even number 49. The difference betw (a) 4 50. In the sequence 1, 2 1025th term is 	(b) $\frac{n-1}{2}$ $-1(n > 2)$, then a_5 is (b) -1 Adva .1 (91 times) is a (b) Prime number veen an integer and its cube is d (b) 6	(c) $\frac{n^2 + 1}{2}$ (c) o nce Level (c) Not prime livisible by (c) 9 8, 8,, where <i>n</i> consecutive	 (d) - 2 (d) None of these [MP PET 199] (d) None of these re terms have the value n , the value of th
 (a) ⁿ⁺¹/₂ (a) 1 (a) 1 (a) 1 (a) Even number (b) Even number (c) 1 (c) 1 (c) 25th term is (c) 2⁹ 	(b) $\frac{n-1}{2}$ $-1(n > 2)$, then a_5 is (b) -1 Adva .1 (91 times) is a (b) Prime number veen an integer and its cube is d (b) 6 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	(c) $\frac{n^2 + 1}{2}$ (c) 0 nce Level (c) Not prime livisible by (c) 9 8, 8,, where <i>n</i> consecutive (c) 2 ¹¹	 (d) - 2 (d) None of these [MP PET 199] (d) None of these re terms have the value n, the value n, the value n and the value

(b)
$$(n^2 + n + 1) + (n^2 + n + 3) + (n^2 + n + 5) + \dots + (n^2 + 3n - 1)$$

- (c) $(n^2 n + 1) + (n^2 n + 3) + (n^2 n + 5) + \dots + (n^2 + n 1)$
- (d) None of these

			Sum to n terms and in	nfinite number of terms 🛛
		Basic Le	evel	
252.	The sum of the series 3 .	6 + 4 . 7 + 5 . 8 + upto (<i>n</i> -	- 2) terms	[EAMCET 1980]
	(a) $n^3 + n^2 + n + 2$	(b) $\frac{1}{6}(2n^3+12n^2+10n-84)$	(c) $n^3 + n^2 + n$	(d) None of these
253.	The sum of the series 1+	(1+2)+(1+2+3)+ upto <i>n</i> term	ns, will be	[MP PET 1986]
	(a) $n^2 - 2n + 6$	(b) $\frac{n(n+1)(2n-1)}{6}$	(c) $n^2 + 2n + 6$	(d) $\frac{n(n+1)(n+2)}{6}$
254.	The sum to <i>n</i> terms of th	e series $2^2 + 4^2 + 6^2 + \dots$ is		[MP PET 1994]
	(a) $\frac{n(n+1)(2n+1)}{3}$	(b) $\frac{2n(n+1)(2n+1)}{3}$	(c) $\frac{n(n+1)(2n+1)}{6}$	(d) $\frac{n(n+1)(2n+1)}{9}$
255.	$11^2 + 12^2 + 13^2 + \dots + 20^2 =$	=		[MP PET 1995]
	(a) 2481	(b) 2483	(c) 2485	(d) 2487
256.	The sum to n terms of (2)	$(2n-1) + 2(2n-3) + 3(2n-5) + \dots$ is	;	[AMU 2001]
	(a) $(n+1)(n+2)(n+3)/6$	(b) $n(n+1)(n+2)/6$	(c) $n(n+1)(2n+3)$	(d) $n(n+1)(2n+1)/6$
257.	$\frac{1^3 + 2^3 + 3^3 + 4^3 + \dots + 12^3}{1^2 + 2^2 + 3^3 + 4^2 + \dots + 12^2}$	- =		[MP PET 1998]
	(a) $\frac{234}{25}$	(b) $\frac{243}{35}$	(c) $\frac{263}{27}$	(d) None of these
258.	Sum of the squares of fin	est <i>n</i> natural numbers exceeds the	heir sum by 330, then <i>n</i> =	[Karnataka CET 1998]
	(a) 8	(b) 10	(c) 15	(d) 20
259.	$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n.(n)}$	+1) equals	[AMU 1995; Rajasthan	PET 1996; UPSEAT 1999, 2001]
	(a) $\frac{1}{n(n+1)}$	(b) $\frac{n}{n+1}$	(c) $\frac{2n}{n+1}$	(d) $\frac{2}{n(n+1)}$
260.	The sum to <i>n</i> terms of th	e infinite series $1.3^2 + 2.5^2 + 3.7^2$	$^{2}+\infty$ is	[AMU 1982]
	(a) $\frac{n}{6}(n+1)(6n^2+14n+7)$	(b) $\frac{n}{6}(n+1)(2n+1)(3n+1)$	(c) $4n^3 + 4n^2 + n$	(d) None of these
		Advance I	Level	
261.	The sum of all the produ	cts of the first <i>n</i> natural numbe	rs taken two at a time is	
	(a) $\frac{1}{24}n(n-1)(n+1)(3n+2)$) (b) $\frac{n^2}{48}(n-1)(n-2)$	(c) $\frac{1}{6}n(n+1)(n+2)(n+5)$	(d) None of these
262.	The sum of the series 1.	3. 5 + 2. 5. 8 +3. 7. 11+up to	-	[Dhanbad Engg. 1972]
	(a) $\frac{n(n-1)(9n^2+23n+13)}{6}$	(b) $\frac{n(n-1)(9n^2+23n+12)}{6}$	(c) $\frac{(n+1)(9n^2+23n+13)}{6}$	(d) $\frac{n(9n^2+23n+13)}{6}$
263.	The sum of first <i>n</i> terms	of the given series $1^2 + 2.2^2 + 3^2$	$+2.4^2+5^2+2.6^2+\dots$ is $\frac{n(n)}{2}$	$(\frac{n+1}{2})^2$, when <i>n</i> is even. When
	<i>n</i> is odd, the sum will be			2 [IIT 1988; AIEEE 2004]
	(a) $\frac{n(n+1)^2}{2}$	(b) $\frac{1}{2}n^2(n+1)$	(c) $n(n+1)^2$	(d) None of these

	$\frac{n}{r}$)				
264.	The value of $\sum_{r=1}^{n} \log \left(\frac{a^r}{b^{r-1}} \right)$	is				
	(a) $\frac{n}{2}\log\left(\frac{a^n}{b^n}\right)$	(b) $\frac{n}{2}\log\left(\frac{a^{n+1}}{b^2}\right)$	(c)	$\frac{n}{2}\log\left(\frac{a^{n+1}}{b^{n-1}}\right)$	(d)	$\frac{n}{2}\log\!\!\left(\frac{a^{n+1}}{b^{n+1}}\right)$
265.	The sum of the series $\frac{1}{1}$	$\frac{1}{+1^2+1^4} + \frac{2}{1+2^2+2^4} + \frac{3}{1+3^2+3^4} \dots$	1	to <i>n</i> terms is		
	(a) $\frac{n(n^2+1)}{n^2+n+1}$	(b) $\frac{n(n+1)}{2(n^2+n+1)}$	(c)	$\frac{n(n^2 - 1)}{2(n^2 + n + 1)}$	(d)	None of these
266.	For any odd integer $n \ge 1$	$1, n^3 - (n-1)^3 + \dots + (-1)^{n-1} 1^3 =$				[IIT 1996]
	(a) $\frac{1}{2}(n-1)^2(2n-1)$	(b) $\frac{1}{4}(n-1)^2(2n-1)$	(c)	$\frac{1}{2}(n+1)^2(2n-1)$	(d)	$\frac{1}{4}(n+1)^2(2n-1)$
267.	The sum of the infinite t	terms of the sequence $\frac{5}{3^2 \cdot 7^2} + \frac{5}{7^2}$	$\frac{9}{.11^2}$ +	$+\frac{13}{11^2.15^2}+$ is		
	(a) $\frac{1}{18}$	(b) $\frac{1}{36}$	(c)	$\frac{1}{54}$	(d)	$\frac{1}{72}$
268.	The sum of the infinite s	series $1^2 + 2^2 x + 3^2 x^2 + \dots$ is				
	(a) $(1+x)/(1-x)^3$	(b) $(1+x)/(1-x)$	(c)	$x/(1-x)^3$	(d)	$1/(1-x)^3$
269.	If in a series $t_n = \frac{n}{(n+1)!}$,	, then $\sum_{n=1}^{20} t_n$ is equal to				
	(a) $\frac{20!-1}{20!}$	(b) $\frac{21!-1}{21!}$	(c)	$\frac{1}{2(n-1)!}$	(d)	None of these
270.	$\sum_{r=1}^{n} r^2 - \sum_{m=1}^{n} \sum_{r=1}^{m} r$ is equal	to				
	(a) O	(b) $\frac{1}{2}\left(\sum_{r=1}^{n}r^{2}+\sum_{r=1}^{n}r\right)$	(c)	$\frac{1}{2}\left(\sum_{r=1}^{n}r^2 - \sum_{r=1}^{n}r\right)$	(d)	None of these
271.	For all positive integral	values of n , the value of $3.1.2 +$	3.2.3	+ 3.3.4 + + 3. <i>n</i> .(<i>n</i>	+1) is	[Rajasthan PET 1999]
	(a) $n(n+1)(n+2)$	(b) $n(n+1)(2n+1)$	(c)	(n-1)n (n+1)	(d)	$\frac{(n-1)\ n\ (n+1)}{2}$
272.	The sum of $(n+1)$ terms	of $\frac{1}{1} + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots$ is				[Rajasthan PET 1999]
	(a) $\frac{n}{n+1}$	(b) $\frac{2n}{n+1}$	(c)	$\frac{2}{n(n+1)}$	(d)	$\frac{2(n+1)}{n+2}$
273.	The sum of $(n-1)$ terms	of $1 + (1+3) + (1+3+5) + \dots$ is				[Rajasthan PET 1999]
	(a) $\frac{n(n+1)(2n+1)}{6}$	(b) $\frac{n^2(n+1)}{4}$	(c)	$\frac{n(n-1)(2n-1)}{6}$	(d)	n^2
274.	The sum $1(1!) + 2(2!) + 3(3)$!)++ <i>n</i> (<i>n</i> !) equals				[AMU 1999]
		(b) $(n+1)!-(n-1)!$		(n+1)!-1	(d)	2(n!) - 2n - 1
275.	Sum of the n terms of the	ne series $\frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2} + \frac{7}{1^2 + 2^2}$	$\frac{1}{3^2}$ +.	is	[Pb. CET 1	999; Rajasthan PET 2001]
	(a) $\frac{2n}{n+1}$	(b) $\frac{4n}{n+1}$	(c)	$\frac{6n}{n+1}$	(d)	$\frac{9n}{n+1}$
276.	The sum of the series 1 -	$+\frac{1.3}{6}+\frac{1.3.5}{6.8}+\infty$ is				[UPSEAT 2001]
	(a) 1	(b) O	(c)	∞	(d)	4
277.	$11^{3} + 12^{3} + \dots + 20^{3}$ (a) Is divisible by 5		(h)	Is an odd integer	-	997; Rajasthan PET 2002]
	(a) Is divisible by 5(c) Is an even integer w	hich is not divisible by 5		Is an odd integer		•
278.	-	between 100 and 10,000 which		-		[IIT 1989]
	(a) 55216	(b) 53261	(c)	51261	(d)	53216

279.	The cubes of the natura group is	al numbers are grouped as 1^3 ,	$(2^3, 3^3), (4^3, 5^3, 6^3), \dots$ then sur	n of the numbers in the $n^{ m th}$
	(a) $\frac{1}{8}n^3(n^2+1)(n^2+3)$	(b) $\frac{1}{16}n^3(n^2+16)(n^2+12)$	(c) $\frac{n^3}{12}(n^2+2)(n^2+4)$	(d) None of these
280.	The value of the express	sion $2(1+\omega)(1+\omega^2) + 3(2\omega+1)(2\omega^2)$	$+1)+4(3\omega+1)(3\omega^{2}+1)++(n)$	$(n + 1)(n \omega + 1)(n \omega^2 + 1)$ is
		(b) $\left[\frac{n(n+1)}{2}\right]^2 + n$		(d) None of these
281.	If $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ up to	$\infty = \frac{\pi^2}{6}$, then $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ e	equals to	
	(a) $\pi^2/6$	(b) $\pi^2/16$	(c) $\pi^2/8$	(d) None of these
282.	The value of $\sum_{i=1}^{n} \frac{1}{\sqrt{a+rx}}$	$\frac{1}{\sqrt{a+(r-1)x}}$ is		
	<i>r</i> =1		$n(\sqrt{a+nx}-a)$	
	(a) $\frac{n}{\sqrt{a}+\sqrt{a+nx}}$	(b) $\frac{1}{x}$	(c) $\frac{n(\sqrt{a+nx}-a)}{x}$	(d) None of these
283.	Let $\sum_{n=1}^{n} r^4 = f(n)$. Then $\sum_{r=1}^{n} r^4 = f(n)$.	$(2r-1)^4$ is equal to		
	(a) $f(2n) - 16f(n)$, for all <i>n</i>	$n \in N$	(b) $f(n) - 16f\left(\frac{n-1}{2}\right)$, when	n is odd
	(c) $f(n) - 16f\left(\frac{n}{2}\right)$, when n	n is even	(d) None of these	
284.	The sum to n terms of the	he series $\frac{1}{1.2.3.4} + \frac{1}{2.3.4.5} + \frac{1}{3.4.5}$	$\frac{1}{5.6}$ + is	
	(a) $\frac{1}{3(n+1)(n+2)(n+3)}$	(b) $\frac{1}{6(n+2)(n+3)(n+4)}$	(c) $\frac{15}{4n(n+1)(n+5)}$	(d) None of these
(
			Relation betw	veen A.P., G.P. and H.P.
		Basic Le		veen A.P., G.P. and H.P.
			evel	
285.		ent positive real numbers, then	which of the following relat	tions is true[MP PET 1982,2002]
	(a) $2\sqrt{ab} > (a+b)$	ent positive real numbers, then (b) $2\sqrt{ab} < (a+b)$	evel	tions is true[MP PET 1982,2002] (d) None of these
	(a) $2\sqrt{ab} > (a+b)$ If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. as w	ent positive real numbers, then (b) $2\sqrt{ab} < (a+b)$ ell as in G.P., then	which of the following relat (c) $2\sqrt{ab} = (a+b)$	tions is true[MP PET 1982,2002] (d) None of these [MNR 1981; AMU 1998]
286.	(a) $2\sqrt{ab} > (a+b)$ If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. as w (a) $a = b \neq c$	ent positive real numbers, then (b) $2\sqrt{ab} < (a+b)$ ell as in G.P., then (b) $a \neq b = c$	which of the following relat (c) $2\sqrt{ab} = (a+b)$ (c) $a \neq b \neq c$	tions is true[MP PET 1982,2002] (d) None of these [MNR 1981; AMU 1998] (d) $a = b = c$
286.	(a) $2\sqrt{ab} > (a+b)$ If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. as w (a) $a = b \neq c$ If three numbers be in G	ent positive real numbers, then (b) $2\sqrt{ab} < (a+b)$ ell as in G.P., then (b) $a \neq b = c$ G.P., then their logarithms will b	which of the following relat (c) $2\sqrt{ab} = (a+b)$ (c) $a \neq b \neq c$ be in	tions is true[MP PET 1982,2002] (d) None of these [MNR 1981; AMU 1998] (d) $a = b = c$ [BIT 1992]
286. 287.	(a) $2\sqrt{ab} > (a+b)$ If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. as w (a) $a = b \neq c$ If three numbers be in G (a) A.P.	ent positive real numbers, then (b) $2\sqrt{ab} < (a+b)$ ell as in G.P., then (b) $a \neq b = c$ G.P., then their logarithms will b (b) G.P.	which of the following relat (c) $2\sqrt{ab} = (a+b)$ (c) $a \neq b \neq c$ be in (c) H.P.	tions is true[MP PET 1982,2002] (d) None of these [MNR 1981; AMU 1998] (d) $a = b = c$ [BIT 1992] (d) None of these
286. 287.	(a) $2\sqrt{ab} > (a+b)$ If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. as w (a) $a = b \neq c$ If three numbers be in G (a) A.P.	ent positive real numbers, then (b) $2\sqrt{ab} < (a+b)$ ell as in G.P., then (b) $a \neq b = c$ i.P., then their logarithms will b (b) G.P. etric and harmonic means betw	which of the following relat (c) $2\sqrt{ab} = (a+b)$ (c) $a \neq b \neq c$ be in (c) H.P.	tions is true[MP PET 1982,2002] (d) None of these [MNR 1981; AMU 1998] (d) $a = b = c$ [BIT 1992] (d) None of these
286. 287.	(a) $2\sqrt{ab} > (a+b)$ If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. as w (a) $a = b \neq c$ If three numbers be in G (a) A.P. If the arithmetic, geometric	ent positive real numbers, then (b) $2\sqrt{ab} < (a+b)$ ell as in G.P., then (b) $a \neq b = c$ i.P., then their logarithms will b (b) G.P. etric and harmonic means betw	which of the following relat (c) $2\sqrt{ab} = (a+b)$ (c) $a \neq b \neq c$ be in (c) H.P.	tions is true[MP PET 1982,2002] (d) None of these [MNR 1981; AMU 1998] (d) $a = b = c$ [BIT 1992] (d) None of these real numbers be <i>A</i> , <i>G</i> and <i>H</i>
286. 287. 288.	(a) $2\sqrt{ab} > (a+b)$ If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. as w (a) $a = b \neq c$ If three numbers be in G (a) A.P. If the arithmetic, geometres respectively, then the respectively, then the respectively.	ent positive real numbers, then (b) $2\sqrt{ab} < (a+b)$ ell as in G.P., then (b) $a \neq b = c$ G.P., then their logarithms will b (b) G.P. etric and harmonic means between them	which of the following relat (c) $2\sqrt{ab} = (a+b)$ (c) $a \neq b \neq c$ be in (c) H.P. ween two distinct positive relations	tions is true[MP PET 1982,2002] (d) None of these [MNR 1981; AMU 1998] (d) $a = b = c$ [BIT 1992] (d) None of these real numbers be <i>A</i> , <i>G</i> and <i>H</i> [MP PET 1984; Roorkee 1995] (d) $G > A > H$
286. 287. 288.	(a) $2\sqrt{ab} > (a+b)$ If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. as w (a) $a = b \neq c$ If three numbers be in G (a) A.P. If the arithmetic, geometrespectively, then the ref (a) $A > G > H$ If the arithmetic, geometrespectively	ent positive real numbers, then (b) $2\sqrt{ab} < (a+b)$ ell as in G.P., then (b) $a \neq b = c$ S.P., then their logarithms will b (b) G.P. etric and harmonic means between (b) $A > G < H$ tric and harmonic means between	which of the following relat (c) $2\sqrt{ab} = (a+b)$ (c) $a \neq b \neq c$ be in (c) H.P. ween two distinct positive relations	tions is true[MP PET 1982,2002] (d) None of these [MNR 1981; AMU 1998] (d) $a = b = c$ [BIT 1992] (d) None of these real numbers be <i>A</i> , <i>G</i> and <i>H</i> [MP PET 1984; Roorkee 1995] (d) $G > A > H$
286. 287. 288.	(a) $2\sqrt{ab} > (a+b)$ If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. as w (a) $a = b \neq c$ If three numbers be in G (a) A.P. If the arithmetic, geometrespectively, then the ref (a) $A > G > H$ If the arithmetic, geometrespectively	ent positive real numbers, then (b) $2\sqrt{ab} < (a+b)$ ell as in G.P., then (b) $a \neq b = c$ S.P., then their logarithms will b (b) G.P. etric and harmonic means betweenthem (b) $A > G < H$	which of the following relat (c) $2\sqrt{ab} = (a+b)$ (c) $a \neq b \neq c$ be in (c) H.P. ween two distinct positive relations	tions is true[MP PET 1982,2002] (d) None of these [MNR 1981; AMU 1998] (d) $a = b = c$ [BIT 1992] (d) None of these real numbers be <i>A</i> , <i>G</i> and <i>H</i> [MP PET 1984; Roorkee 1995] (d) $G > A > H$ rs be <i>A</i> , <i>G</i> and <i>H</i> , then
286. 287. 288. 289.	(a) $2\sqrt{ab} > (a+b)$ If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. as w (a) $a = b \neq c$ If three numbers be in G (a) A.P. If the arithmetic, geometrespectively, then the ref (a) $A > G > H$ If the arithmetic, geometrespectively	ent positive real numbers, then (b) $2\sqrt{ab} < (a+b)$ ell as in G.P., then (b) $a \neq b = c$ S.P., then their logarithms will b (b) G.P. etric and harmonic means between them (b) $A > G < H$ tric and harmonic means between (b) $H^2 = AG$	which of the following relat (c) $2\sqrt{ab} = (a+b)$ (c) $a \neq b \neq c$ be in (c) H.P. ween two distinct positive relation (c) $H > G > A$ there is the following relation (c) $H > G > A$	tions is true[MP PET 1982,2002] (d) None of these [MNR 1981; AMU 1998] (d) $a = b = c$ [BIT 1992] (d) None of these real numbers be <i>A</i> , <i>G</i> and <i>H</i> [MP PET 1984; Roorkee 1995] (d) $G > A > H$ rs be <i>A</i> , <i>G</i> and <i>H</i> , then [AMU 1979,82; MP PET 1993]
286. 287. 288. 289.	(a) $2\sqrt{ab} > (a+b)$ If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. as w (a) $a = b \neq c$ If three numbers be in G (a) A.P. If the arithmetic, geomerrespectively, then the respectively, then the respectively, then the respectively. (a) $A > G > H$ If the arithmetic, geomerrespectively. (a) $A^2 = GH$	ent positive real numbers, then (b) $2\sqrt{ab} < (a+b)$ ell as in G.P., then (b) $a \neq b = c$ S.P., then their logarithms will b (b) G.P. etric and harmonic means between them (b) $A > G < H$ tric and harmonic means between (b) $H^2 = AG$	which of the following relat (c) $2\sqrt{ab} = (a+b)$ (c) $a \neq b \neq c$ be in (c) H.P. ween two distinct positive relation (c) $H > G > A$ there is the following relation (c) $H > G > A$	tions is true[MP PET 1982,2002] (d) None of these [MNR 1981; AMU 1998] (d) $a = b = c$ [BIT 1992] (d) None of these real numbers be <i>A</i> , <i>G</i> and <i>H</i> [MP PET 1984; Roorkee 1995] (d) $G > A > H$ rs be <i>A</i> , <i>G</i> and <i>H</i> , then [AMU 1979,82; MP PET 1993] (d) $G^2 = AH$
286. 287. 288. 289. 290.	(a) $2\sqrt{ab} > (a+b)$ If a, b, c are in A.P. as w (a) $a = b \neq c$ If three numbers be in G (a) A.P. If the arithmetic, geometrespectively, then the refined (a) $A > G > H$ If the arithmetic, geometrespectively, then the refined (a) $A^2 = GH$ If a, b, c are in A.P. then (a) A.P.	ent positive real numbers, then (b) $2\sqrt{ab} < (a+b)$ ell as in G.P., then (b) $a \neq b = c$ 6.P., then their logarithms will b (b) G.P. etric and harmonic means between them (b) $A > G < H$ tric and harmonic means between (b) $H^2 = AG$ $\frac{a}{bc}, \frac{1}{c}, \frac{2}{b}$ are in	which of the following relat (c) $2\sqrt{ab} = (a+b)$ (c) $a \neq b \neq c$ be in (c) H.P. ween two distinct positive re- (c) $H > G > A$ teen two positive real number (c) $G = AH$ (c) H.P.	tions is true[MP PET 1982,2002] (d) None of these [MNR 1981; AMU 1998] (d) $a = b = c$ [BIT 1992] (d) None of these real numbers be <i>A</i> , <i>G</i> and <i>H</i> [MP PET 1984; Roorkee 1995] (d) $G > A > H$ rs be <i>A</i> , <i>G</i> and <i>H</i> , then [AMU 1979,82; MP PET 1993] (d) $G^2 = AH$ [MNR 1982; MP PET 2002] (d) None of these
286. 287. 288. 289. 290.	(a) $2\sqrt{ab} > (a+b)$ If a, b, c are in A.P. as w (a) $a = b \neq c$ If three numbers be in G (a) A.P. If the arithmetic, geometrespectively, then the refined (a) $A > G > H$ If the arithmetic, geometrespectively, then the refined (a) $A^2 = GH$ If a, b, c are in A.P. then (a) A.P.	ent positive real numbers, then (b) $2\sqrt{ab} < (a+b)$ ell as in G.P., then (b) $a \neq b = c$ c.P., then their logarithms will b (b) G.P. etric and harmonic means between them (b) $A > G < H$ tric and harmonic means between (b) $H^2 = AG$ $\frac{a}{bc}, \frac{1}{c}, \frac{2}{b}$ are in (b) G.P.	which of the following relat (c) $2\sqrt{ab} = (a+b)$ (c) $a \neq b \neq c$ be in (c) H.P. ween two distinct positive re- (c) $H > G > A$ teen two positive real number (c) $G = AH$ (c) H.P.	tions is true[MP PET 1982,2002] (d) None of these [MNR 1981; AMU 1998] (d) $a = b = c$ [BIT 1992] (d) None of these real numbers be <i>A</i> , <i>G</i> and <i>H</i> [MP PET 1984; Roorkee 1995] (d) $G > A > H$ rs be <i>A</i> , <i>G</i> and <i>H</i> , then [AMU 1979,82; MP PET 1993] (d) $G^2 = AH$ [MNR 1982; MP PET 2002] (d) None of these
286. 287. 288. 289. 290. 291.	(a) $2\sqrt{ab} > (a+b)$ If a, b, c are in A.P. as we (a) $a = b \neq c$ If three numbers be in G (a) A.P. If the arithmetic, geometric (a) $A > G > H$ If the arithmetic, geometric (a) $A^2 = GH$ If a, b, c are in A.P. then (a) A.P. The geometric mean of t (a) (3, 12) In the four numbers first	ent positive real numbers, then (b) $2\sqrt{ab} < (a+b)$ ell as in G.P., then (b) $a \neq b = c$ 3.P., then their logarithms will b (b) G.P. etric and harmonic means betwe etric and harmonic means betwe (b) $A > G < H$ tric and harmonic means betwe (b) $H^2 = AG$ $\frac{a}{bc}, \frac{1}{c}, \frac{2}{b}$ are in (b) G.P. two numbers is 6 and their arith (b) (4, 9) et three are in G.P. and last three	which of the following relat (c) $2\sqrt{ab} = (a+b)$ (c) $a \neq b \neq c$ be in (c) H.P. ween two distinct positive relation (c) $H > G > A$ ten two positive real number (c) $G = AH$ (c) H.P. numetic mean is 6.5. The num (c) (2, 18)	tions is true[MP PET 1982,2002] (d) None of these [MNR 1981; AMU 1998] (d) $a = b = c$ [BIT 1992] (d) None of these real numbers be <i>A</i> , <i>G</i> and <i>H</i> [MP PET 1984; Roorkee 1995] (d) $G > A > H$ rs be <i>A</i> , <i>G</i> and <i>H</i> , then [AMU 1979,82; MP PET 1993] (d) $G^2 = AH$ [MNR 1982; MP PET 2002] (d) None of these abers are [MP PET 1994] (d) (7, 6) fference is 6. If the first and
286. 287. 288. 289. 290. 291.	(a) $2\sqrt{ab} > (a+b)$ If a, b, c are in A.P. as we (a) $a = b \neq c$ If three numbers be in G (a) A.P. If the arithmetic, geometric geometric geometric mean of the arithmetic, geometric mean of the arithmetic geometric mean of the arithmetic mean	ent positive real numbers, then (b) $2\sqrt{ab} < (a+b)$ ell as in G.P., then (b) $a \neq b = c$ 3.P., then their logarithms will b (b) G.P. etric and harmonic means betwe etric and harmonic means betwe (b) $A > G < H$ tric and harmonic means betwe (b) $H^2 = AG$ $\frac{a}{bc}, \frac{1}{c}, \frac{2}{b}$ are in (b) G.P. two numbers is 6 and their arith (b) (4, 9) et three are in G.P. and last three	which of the following relat (c) $2\sqrt{ab} = (a+b)$ (c) $a \neq b \neq c$ be in (c) H.P. ween two distinct positive relation (c) $H > G > A$ ten two positive real number (c) $G = AH$ (c) H.P. numetic mean is 6.5. The num (c) (2, 18)	tions is true[MP PET 1982,2002] (d) None of these [MNR 1981; AMU 1998] (d) $a = b = c$ [BIT 1992] (d) None of these real numbers be <i>A</i> , <i>G</i> and <i>H</i> [MP PET 1984; Roorkee 1995] (d) $G > A > H$ rs be <i>A</i> , <i>G</i> and <i>H</i> , then [AMU 1979,82; MP PET 1993] (d) $G^2 = AH$ [MNR 1982; MP PET 2002] (d) None of these thers are [MP PET 1994] (d) (7, 6)

293.	If A_1, A_2 are the two	A.M.'s between two numbers	a and b and G_1, G_2 be two	G.M.'s between same two
	numbers, then $\frac{A_1 + A_2}{G_1 \cdot G_2}$	=		
	$G_1 \cdot G_2$			
				[Roorkee 1983; DCE 1998]
	(a) $\frac{a+b}{ab}$	(b) $\frac{a+b}{2ab}$	(c) $\frac{2ab}{a+b}$	(d) $\frac{ab}{a+b}$
294.	If the A.M. and H.M. of	two numbers is 27 and 12 respe	ctively, then G.M. of the two	numbers will be [Rajasthan PET 19
-51	(a) 9	(b) 18	(c) 24	(d) 36
		1 1		
295.	The A.M., H.M. and G.I	M. between two numbers are $\frac{1}{2}$	$\frac{1}{15}$, 15 and 12, but necessari	ly in this order. Then H.M.,
	G.M. and A.M. respectiv	vely are		
	(a) $15,12,\frac{144}{15}$	(b) $\frac{144}{15}$,12,15	(c) $12,15,\frac{144}{15}$	(d) $\frac{144}{15}$,15,12
296.	If G.M. =18 and A.M.=2	7, then H.M. is		[Rajasthan PET 1996]
	(a) $\frac{1}{18}$	(b) $\frac{1}{12}$	(c) 12	(d) $9\sqrt{6}$
297.	If sum of A.M. and H.M.	. between two numbers is 25 an	d their G.M. is 12, then sum (of numbers is
	(a) 9	(b) 18	(c) 32	(d) 18 or 32
298.	If $\frac{a+bx}{a-bx} = \frac{b+cx}{b-cx} = \frac{c+dx}{c-dx}$	$(x \neq 0)$, then <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are in		[Rajasthan PET 1986]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
299.	The numbers 1,4, 16 car	n be three terms (not necessarily	y consecutive) of	
	(a) No A.P.	(b) Only one G.P.	(c) Infinite number of A.P	's. (d)Infinite numbers of G.P's.
300.	In a G.P. of alternately common ratio is	positive and negative terms, a	any terms is the A.M. of the	e next two terms . Then the
	(a) – 1	(b) - 3	(c) – 2	(d) $-\frac{1}{2}$
301.	If <i>a, b, c</i> are in A.P., the	n $a + \frac{1}{bc}, b + \frac{1}{ca}, c + \frac{1}{ab}$ are in		
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
302.	0	positive numbers is 2. If the lat M. of the given numbers. Then t	0	
	(a) $\frac{3}{2}$	(b) $\frac{2}{3}$	(c) $\frac{1}{2}$	(d) None of these
		Advance	Level	
303.	If $p^{ m th}$, $q^{ m th}$, $r^{ m th}$ and $s^{ m th}$ te	erms of an A.P. be in G.P., the	en $(p-q), (q-r), (r-s)$ will be in
	(a) G.P.	(b) A.P.	(c) H.P.	(d) None of these
304.	If <i>a</i> , <i>b</i> , <i>c</i> are the positive	e integers, then $(a+b)(b+c)(c+a)$	is	[DCE 2000]
	(a) < 8 <i>abc</i>	(b) $> 8abc$	(c) $= 8abc$	(d) None of these
305.	If <i>a</i> , <i>b</i> , <i>c</i> are in A.P., the			[Pb. CET 1990]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these $(1^2 - 2^2 + 1^2) + 0$
306.	If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> and <i>p</i> are di <i>c</i> , <i>d</i> are in	fferent real numbers such that	$(a^{2} + b^{2} + c^{2})p^{2} - 2(ab + bc + cd)$	$p + (b^2 + c^2 + d^2) \le 0$, then <i>a</i> , <i>b</i> ,
	c, u al e III			[IIT 1987]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) $ab = cd$
307.		terms of an A.P., G.P. and H.P.	are equal and their $n^{\rm th}$ term	
	then		(z) L^2 (z)	[IIT 1985,88]
		(b) $a+c=b$	(c) $ac - b^2 = 0$	(d) (a) and (c) both
308.		nd $(r+1)^{th}$ terms of an A.P. are i to the terms of the A.P. is	n G.P. and <i>m, n, r</i> in H.P., tl	hen the value of the ratio of [MNR 1989; Roorkee 1994]

	(a) $-\frac{2}{n}$	(b) $\frac{2}{n}$	(c) $-\frac{n}{2}$	(d) $\frac{n}{2}$
309.	Given $a^x = b^y = c^z = d^u$ as	nd a , b , c , d are in G.P., then x ,	<i>y, z, u</i> are in [Dhanbad Eng	g. 1972; Roorkee 1984; Rajasthan PET :
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
		$\log a - \log 2b, \log 2b - \log 3c$ and 1	$\log 3c - \log a$ are in A.P., the	n <i>a, b, c</i> are the length of the
	sides of a triangle which (a) Acute angled	(b) Obtuse angled	(c) Right angled	(d) Equilateral
	•	d are in G.P. and c, d, e are in H		[AMU 1988,2001; MP PET 1993]
	(a) No particular order	(b) A.P.	(c) G.P.	(d) H.P.
312.	If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. and	a^2, b^2, c^2 are in H.P., then		[MNR 1986,88; IIT 1977,2003]
	(a) $a = b = c$	(b) $2b = 3a + c$	(c) $b^2 = \sqrt{(ac/8)}$	(d) None of these
313.		two numbers is 4 and the	arithmetic and geometric	means satisfy the relation
	$2A + G^2 = 27$, the number	s are		
	(a) 6, 3	(b) = 4		[MNR 1987; UPSEAT 1999,2000]
		(b) 5, 4 e numbers is 14, if 1 is added to	(c) 5, - 2.5) first two numbers and sul	(d) – 3, 1 btracted from third numbers.
		then the greatest number is		[Roorkee 1973]
	(a) 8	(b) 4	(c) 24	(d) 16
315.	If a, b, c are in G.P. and	<i>x, y</i> are the arithmetic means b	etween a, b and b, c respec	tively, then $\frac{a}{a} + \frac{c}{a}$ is equal to
	[Roorkee 1969]			x y
	(a) 0	(b) 1	(c) 2	(d) $\frac{1}{2}$
		a, b, d in G.P., then a, a – b, d –		2
	(a) A.P.	(b) G.P.	(c) H.P.	[Ranchi BIT 1968] (d) None of these
		x, 2, z are in G.P., then x, 4, z		[IIT 1965]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
318.	x + y + z = 15, if $9, x, y, z, a = 15$	are in A.P.; while $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{5}{3}$ i	if $9, x, y, z, a$ are in H.P., then	n the value of a will be [IIT 1978]
	(a) 1	(b) 2	(c) 3	(d) 9
		are inserted between the 2 an	d 3 and if the harmonic	mean H is corresponding to
	arithmetic mean A, then	$A + \frac{0}{H} =$		[Dhanbad Engg. 1987]
	(a) 1	(b) 3	(c) 5	(d) 6
320.	If the p^{th} , q^{th} and r^{th} term	n of a G.P. and H.P. are <i>a, b, c,</i> tl	hen $a(b-c)\log a + b(c-a)\log b$	$+ c(a-b)\log c =$ [Dhanbad Engg. 1976]
	(a) - 1	(b) 0	(c) 1	(d) Does not exist
	be in A.P., then the number	erms of G.P. is 512. If 8 added to pers are	o first and 6 added to seco	nd term, so that number may [Roorkee 1964]
	(a) 2, 4, 8,	(b) 4, 8, 16	(c) 3, 6, 12	(d) None of these
322.	If the ratio of H.M. and (G.M. between two numbers a an	d b is $4:5$, then ratio of the	e two numbers will be [IIT 1992; MP
			,	
	(a) 1:2	(b) 2:1	(c) 4:1	(d) 1:4
323.	If the A.M. and G.M. of r be [Pb.CET 1990]	(b) 2:1 oots of a quadratic equations ar	(c) 4:1 re 8 and 5 respectively, the	n the quadratic equation will
323.	If the A.M. and G.M. of r be [Pb.CET 1990] (a) $x^2 - 16x - 25 = 0$	(b) 2:1 oots of a quadratic equations ar (b) $x^2 - 8x + 5 = 0$	(c) 4:1 re 8 and 5 respectively, the (c) $x^2 - 16x + 25 = 0$	in the quadratic equation will (d) $x^2 + 16x - 25 = 0$
323. 324.	If the A.M. and G.M. of r be [Pb.CET 1990] (a) $x^2 - 16x - 25 = 0$ Let a_1, a_2, \dots, a_{10} be in A.P.	(b) 2:1 oots of a quadratic equations at (b) $x^2 - 8x + 5 = 0$ and h_1, h_2, \dots, h_{10} be in H.P. If a	(c) 4:1 re 8 and 5 respectively, the (c) $x^2 - 16x + 25 = 0$	the quadratic equation will (d) $x^2 + 16x - 25 = 0$ then a_4h_7 is [IIT 1999]
323. 324.	If the A.M. and G.M. of r be [Pb.CET 1990] (a) $x^2 - 16x - 25 = 0$ Let a_1, a_2, \dots, a_{10} be in A.P. (a) 2	(b) 2:1 oots of a quadratic equations and (b) $x^2 - 8x + 5 = 0$ and h_1, h_2, \dots, h_{10} be in H.P. If a (b) 3	(c) 4:1 re 8 and 5 respectively, the (c) $x^2 - 16x + 25 = 0$ $a_1 = h_1 = 2$ and $a_{10} = h_{10} = 3$, t (c) 5	the quadratic equation will (d) $x^{2} + 16x - 25 = 0$ then $a_{4}h_{7}$ is [IIT 1999] (d) 6
323. 324. 325.	If the A.M. and G.M. of r be [Pb.CET 1990] (a) $x^2 - 16x - 25 = 0$ Let a_1, a_2, \dots, a_{10} be in A.P. (a) 2 If $\ln(a+c), \ln(c-a), \ln(a-2b-c)$	(b) 2:1 oots of a quadratic equations an (b) $x^2 - 8x + 5 = 0$ and h_1, h_2, \dots, h_{10} be in H.P. If a (b) 3 + c) are in A.P., then	(c) 4:1 re 8 and 5 respectively, the (c) $x^2 - 16x + 25 = 0$ $a_1 = b_1 = 2$ and $a_{10} = b_{10} = 3$, f (c) 5 [IIT Scree]	the quadratic equation will (d) $x^{2} + 16x - 25 = 0$ then $a_{4}h_{7}$ is [IIT 1999] (d) 6 ning 1994; Rajasthan PET 1999]
323. 324. 325.	If the A.M. and G.M. of r be [Pb.CET 1990] (a) $x^2 - 16x - 25 = 0$ Let a_1, a_2, \dots, a_{10} be in A.P. (a) 2 If $\ln(a+c), \ln(c-a), \ln(a-2b-c)$ (a) <i>a</i> , <i>b</i> , <i>c</i> are in A.P.	(b) 2:1 oots of a quadratic equations an (b) $x^2 - 8x + 5 = 0$ and h_1, h_2, \dots, h_{10} be in H.P. If <i>a</i> (b) 3 + <i>c</i>) are in A.P., then (b) a^2, b^2, c^2 are in A.P.	(c) 4:1 re 8 and 5 respectively, the (c) $x^2 - 16x + 25 = 0$ $a_1 = h_1 = 2$ and $a_{10} = h_{10} = 3$, f (c) 5 [IIT Scree (c) <i>a, b, c</i> are in G.P.	n the quadratic equation will (d) $x^{2} + 16x - 25 = 0$ then $a_{4}h_{7}$ is [IIT 1999] (d) 6 ning 1994; Rajasthan PET 1999] (d) <i>a, b, c</i> are in H.P.
323. 324. 325.	If the A.M. and G.M. of r be [Pb.CET 1990] (a) $x^2 - 16x - 25 = 0$ Let a_1, a_2, \dots, a_{10} be in A.P. (a) 2 If $\ln(a+c), \ln(c-a), \ln(a-2b-c)$ (a) <i>a</i> , <i>b</i> , <i>c</i> are in A.P. If $A_1, A_2; G_1, G_2$ and <i>H</i>	(b) 2:1 oots of a quadratic equations an (b) $x^2 - 8x + 5 = 0$ and h_1, h_2, \dots, h_{10} be in H.P. If a (b) 3 + c) are in A.P., then	(c) 4:1 re 8 and 5 respectively, the (c) $x^2 - 16x + 25 = 0$ $a_1 = h_1 = 2$ and $a_{10} = h_{10} = 3$, f (c) 5 [IIT Scree (c) <i>a, b, c</i> are in G.P.	n the quadratic equation will (d) $x^{2} + 16x - 25 = 0$ then $a_{4}h_{7}$ is [IIT 1999] (d) 6 ning 1994; Rajasthan PET 1999] (d) <i>a, b, c</i> are in H.P.
323. 324. 325.	If the A.M. and G.M. of r be [Pb.CET 1990] (a) $x^2 - 16x - 25 = 0$ Let a_1, a_2, \dots, a_{10} be in A.P. (a) 2 If $\ln(a+c), \ln(c-a), \ln(a-2b-c)$ (a) <i>a</i> , <i>b</i> , <i>c</i> are in A.P.	(b) 2:1 oots of a quadratic equations an (b) $x^2 - 8x + 5 = 0$ and h_1, h_2, \dots, h_{10} be in H.P. If <i>a</i> (b) 3 + <i>c</i>) are in A.P., then (b) a^2, b^2, c^2 are in A.P.	(c) 4:1 re 8 and 5 respectively, the (c) $x^2 - 16x + 25 = 0$ $a_1 = h_1 = 2$ and $a_{10} = h_{10} = 3$, f (c) 5 [IIT Scree (c) <i>a, b, c</i> are in G.P.	n the quadratic equation will (d) $x^{2} + 16x - 25 = 0$ then $a_{4}h_{7}$ is [IIT 1999] (d) 6 ning 1994; Rajasthan PET 1999] (d) <i>a, b, c</i> are in H.P.
323. 324. 325.	If the A.M. and G.M. of r be [Pb.CET 1990] (a) $x^2 - 16x - 25 = 0$ Let a_1, a_2, \dots, a_{10} be in A.P. (a) 2 If $\ln(a+c), \ln(c-a), \ln(a-2b-c)$ (a) <i>a</i> , <i>b</i> , <i>c</i> are in A.P. If $A_1, A_2; G_1, G_2$ and <i>H</i>	(b) 2:1 oots of a quadratic equations an (b) $x^2 - 8x + 5 = 0$ and h_1, h_2, \dots, h_{10} be in H.P. If <i>a</i> (b) 3 + <i>c</i>) are in A.P., then (b) a^2, b^2, c^2 are in A.P.	(c) 4:1 re 8 and 5 respectively, the (c) $x^2 - 16x + 25 = 0$ $a_1 = h_1 = 2$ and $a_{10} = h_{10} = 3, 1$ (c) 5 [IIT Scree (c) <i>a, b, c</i> are in G.P. nd H.M's between two	n the quadratic equation will (d) $x^{2} + 16x - 25 = 0$ then $a_{4}h_{7}$ is [IIT 1999] (d) 6 ning 1994; Rajasthan PET 1999] (d) <i>a, b, c</i> are in H.P.

327.	If $x > 1, y > 1, z > 1$ are in (G.P., then $\frac{1}{1+\ln x}, \frac{1}{1+\ln y}, \frac{1}{1+\ln z}$	are in	[IIT 1998; UPSEAT 2001]
	(a) A.P.	(b) H.P.	(c) G.P.	(d) None of these
328.	If <i>p</i> , <i>q</i> , <i>r</i> are in one geom	etric progression and a, b, c in	another geometric progress	ion, then <i>cp</i> , <i>bq</i> , <i>ar</i> are in
				[Roorkee Qualifying 1998]
	(a) A.P.	(b) H.P.	(c) G.P.	(d) None of these
329.	If first three terms of se	equence $\frac{1}{16}$, $a, b, \frac{1}{6}$ are in geome	etric series and last three te	erms are in harmonic series,
	then the value of a and	<i>b</i> will be		[UPSEAT 1999]
	(a) $a = -\frac{1}{4}, b = 1$	(b) $a = \frac{1}{12}, b = \frac{1}{9}$	(c) (a) and (b) both are tr	ue (d) None of these
330.	If $a^x = b^y = c^z$ and a, b, c a	re in G.P., then x, y, z are in	[Pb. C	ET 1993; DCE 1999; AMU 1999]
	(a) A. P.	(b) G. P.	(c) H. P.	(d) None of these
331.		eometric means and A the ari	thmetic mean inserted betw	veen two numbers, then the
	value of $\frac{G_1^2}{G_2} + \frac{G_2^2}{G_1}$ is			
				[DCE 1999]
	(a) $\frac{A}{2}$	(b) <i>A</i>	(c) 2 <i>A</i>	(d) None of these
332.	If $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in	H.P., then a, b, c are in		[Rajasthan PET 1999]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
333.	If a, b, c are in A.P., the	n $\frac{1}{\sqrt{a} + \sqrt{b}}$, $\frac{1}{\sqrt{a} + \sqrt{c}}$, $\frac{1}{\sqrt{b} + \sqrt{c}}$ are i	n	[Roorkee 1999]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
334.	The sum of three decrea	asing numbers in A.P. is 27. If	-1, -1, 3 are added to then	n respectively, the resulting
	series is in G.P. The num	ibers are		[AMU 1999]
	(a) 5, 9, 13	(b) 15, 9, 3	(c) 13, 9, 5	(d) 17, 9, 1
335.	If in the equation $ax^2 + ax^2 + ax^2 + bx^2 + ax^2 + bx^2 + bx$	bx + c = 0, the sum of roots is e	qual to sum of square of th	eir reciprocals, then $\frac{c}{a}, \frac{a}{b}, \frac{b}{c}$
				[Rajasthan PET 2000]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
336.	If a, b, c are in A.P., then	$2^{ax+1}, 2^{bx+1}, 2^{cx+1}, x \neq 0$ are in		[DCE 2000; Pb. CET 2000]
	(a) A.P.	(b) G.P. only when $x > 0$	(c) G.P. if $x < 0$	(d) G.P. for all $x \neq 0$
225		-		
33/•	If $b + c$, $c + a$, $a + b$ are r	n H.P., then $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ ar	e III	[Rajasthan PET 2000]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
338.	The common difference are in G.P., is	of an A.P. whose first term is	unity and whose second, te	enth and thirty fourth terms
				[AMU 2000]
	(-) 1	(h) ¹	(1)	
	(a) $\frac{1}{5}$	(b) $\frac{1}{3}$	(c) $\frac{1}{6}$	(d) $\frac{1}{9}$
339.		cutive terms in a geometric pro ed from the third, the resultin rm is		
				[MP PET 2001]
	(a) 1	(b) 2	(c) 4	(d) 8
340.	a,g,h are arithmetic m	ean, geometric mean and har	rmonic mean between two	positive numbers x and y
		ify the correct statement among		[Karnataka CET 2001]
	(a) <i>h</i> is the harmonic me	ean between a and g	(b) No such relation exists	s between a, g and h

	(c) <i>g</i> is the geometric m		(d) <i>a</i> is the arithmetic me	<u> </u>					
341.	-	s a, b, c, d be in A.P., then abc, a		[IIT Screening 2001]					
342.	(a) Not in A.P./G.P./H.P. If $(y - x) = 2(y - a)$ and $(y - a)$	<i>z</i>) are in H.P., then $x - a, y - a, z - a, y - a, z - a, y - a, z - a, z - a, y - a, z - a$	(c) In G.P.	(d) In H.P. [Rajasthan PET 2001]					
5421	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these					
3/12		c and geometric means and x^2 -		[UPSEAT 2001]					
545.	(a) $A = G$	(b) $A > G$	(c) $A < G$	(d) $A = -G$					
244		roots of the equation $x^2 - 2ax$							
344.	$x^{2} - 2bx + a^{2} = 0$, then	$\frac{10015}{10015} \text{ of the equation } x = 2ax$	+v = 0 and 0 is the G.M. C	of the roots of the equation					
				[UPSEAT 2001]					
	(a) $A > G$	(b) $A \neq G$	(c) $A = G$	(d) None of these					
345.	If a,b,c are three unequ	al numbers such that a,b,c are	in A.P. and <i>b</i> – <i>a</i> , <i>c</i> – <i>b</i> , <i>a</i> are	e in G.P., then a : b : c is [UPSEAT 2					
	(a) 1:2:3	(b) 2: 3 : 1	(c) 1:3:2	(d) 3:2:1					
246	If a,b,c are in A.P. and a		(0) 1.3.2						
340.	If a, b, c are in A.P. and a			[UPSEAT 2001]					
	(a) $a \neq b \neq c$	(b) $a^2 = b^2 = \frac{c^2}{2}$	(c) a,b,c are in G.P.	(d) $\frac{-a}{2}$, b, c are in G.P.					
347.	Let a_1, a_2, a_3 be any posit	ive real numbers, then which o	f the following statement is	not true [Orissa JEE 2002]					
			$a_1 a_2 a_3$						
	(a) $3a_1a_2a_3 \le a_1^3 + a_2^3 + a_3^3$		(b) $\frac{a_1}{a_2} + \frac{a_2}{a_3} + \frac{a_3}{a_1} \ge 3$						
	(c) $(a_1 + a_2 + a_3) \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \frac{1}{a_4} + \frac{1}{a_4} \right)$	$\left(\frac{1}{1}\right) > 0$	(d) $(a_1 + a_2 + a_3) \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} \right)$	$\left(\frac{1}{2}\right)^{3} \le 27$					
	(c) $(a_1 + a_2 + a_3) \left(\frac{a_1}{a_1} + \frac{a_2}{a_2} \right)$	$\left(\frac{1}{a_3}\right)^2$	(u) $(a_1 + a_2 + a_3) \left(\frac{a_1}{a_1} + \frac{a_2}{a_2} + \frac{a_3}{a_3} \right)$	$\left(\frac{1}{3}\right) \leq 27$					
348.	If a_1, a_2, \dots, a_n are positive	ve real numbers whose produ	ict is a fixed number c, t	hen the minimum value of					
	$a_1 + a_2 + \dots + a_{n-1} + 2a_n$ is								
				[IIT Screening 2002]					
	(a) $n(2c)^{1/n}$	(b) $(n+1)c^{1/n}$	(c) $2nc^{1/n}$	(d) $(n+1)(2c)^{1/n}$					
349.	Suppose $a.b.c$ are in A.P	. and a^2, b^2, c^2 are in G.P. If a <	$b < c$ and $a + b + c = \frac{3}{2}$, then	the value of <i>a</i> is					
010			2 '						
	_			[IIT Screening 2002]					
	(a) $\frac{1}{2\sqrt{2}}$	(b) $\frac{1}{2\sqrt{3}}$	(c) $\frac{1}{2} - \frac{1}{\sqrt{3}}$	(d) $\frac{1}{2} - \frac{1}{\sqrt{2}}$					
	2,2			V 2					
350.	Two sequences $\{t_n\}$ and	$\{s_n\}$ are defined by $t_n = \log\left(\frac{5^{n+1}}{3^{n-1}}\right)$	$-$, $s_n = \left\lfloor \log\left(\frac{5}{3}\right) \right\rfloor$, then	[AMU 2002]					
	(a) $\{t_n\}$ is an A.P., $\{s_n\}$ i	s a G.P.	(b) $\{t_n\}$ and $\{s_n\}$ are both G.P.						
	(c) $\{t_n\}$ and $\{s_n\}$ are bo	th A.P.	(d) $\{s_n\}$ is a G.P., $\{t_n\}$ is neither A.P. nor G.P.						
	$\begin{bmatrix} a & b & a\alpha - b \end{bmatrix}$								
351.	If $\begin{vmatrix} a & c & b\alpha - c \\ b & c & b\alpha - c \\ 2 & 1 & 0 \end{vmatrix} = 0$ and	$\alpha \neq 1/2$, then <i>a</i> , <i>b</i> , <i>c</i> are in							
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these					
352.	If <i>x, y, z</i> are in G.P. and	$\tan^{-1} x$, $\tan^{-1} y$, $\tan^{-1} z$ are in A.P.,	then						
	(a) $x = y = z$ or $y \neq 1$		(b) $z = 1/x$						
		ommon value is not necessarily	zero (d)	x = y = z = 0					
				-					

353.	If in a progression a_1 , progression are in	$(a_2, a_3, \dots, \text{ etc.}, (a_r - a_{r+1}))$ bears	a constant ratio with a_r .	a_{r+1} then the terms of the
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
354.	If $\frac{a_2a_3}{a_1a_4} = \frac{a_2 + a_3}{a_1 + a_4} = 3\left(\frac{a_2 - a_3}{a_1 - a_4}\right)$	$\left(\frac{-a_3}{-a_4}\right)$ then a_1, a_2, a_3, a_4 are in		
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
355.	If $a, a_1, a_2, a_3, \dots, a_{2n-1}, b$ a	are in A.P., $a, b_1, b_2, b_3, \dots, b_{2n-1}, b$ a	re in G.P. and $a, c_1, c_2, c_3,, c_4$	b_{2n-1}, b are in H.P., where <i>a</i> , <i>b</i>
	are positive, then the e	quation $a_n x^2 - b_n x + c_n = 0$ has its	s roots	
	(a) Real and unequal	(b) Real and equal	(c) Imaginary	(d) None of these
356.	If <i>a, x, b,</i> are in A.P., <i>a</i> ,	<i>y, b</i> are in G.P. and <i>a, z, b</i> are i	n H.P. such that $x = 9z$ and z	a > 0, b > 0 then
	(a) $ y = 3z$	(b) $x = 3 y $	(c) $2y = x + z$	(d) None of these
357.	If <i>a, b, c</i> are in G.P. and is	d a, p, q in A.P. such that $2a, b +$	p, c + q are in G.P. then the c	common difference of the A.P.
	(a) $\sqrt{2}a$	(b) $(\sqrt{2} + 1)(a - b)$	(c) $\sqrt{2}(a+b)$	(d) $(\sqrt{2}-1)(b-a)$
			Appl	ications of Progressions
		Basic I	level	
		Basic I	Level	
358.	If <i>x, y, z</i> are positive th	Basic I en the minimum value of $x^{\log y - \log y}$		
358.	If <i>x, y, z</i> are positive th (a) 3			(d) 16
	(a) 3	en the minimum value of $x^{\log y - k}$	$\int_{c}^{bg z} + y^{\log z - \log x} + z^{\log x - \log y}$ is (c) 9	(d) 16
	(a) 3 <i>a, b, c</i> are three positiv	en the minimum value of $x^{\log y - k}$ (b) 1	$y^{\log z} + y^{\log z - \log x} + z^{\log x - \log y}$ is (c) 9 atest value $\frac{1}{64}$. Then	(d) 16 (d) None of these
359.	(a) 3 <i>a</i> , <i>b</i> , <i>c</i> are three positive (a) $a = b = \frac{1}{2}, c = \frac{1}{4}$	en the minimum value of $x^{\log y - k}$ (b) 1 <i>w</i> e numbers and abc^2 has the gree	$p^{\log z} + y^{\log z - \log x} + z^{\log x - \log y}$ is (c) 9 eatest value $\frac{1}{64}$. Then (c) $a = b = c = \frac{1}{3}$	(d) None of these
359.	(a) 3 <i>a</i> , <i>b</i> , <i>c</i> are three positive (a) $a = b = \frac{1}{2}, c = \frac{1}{4}$	en the minimum value of $x^{\log y - k}$ (b) 1 we numbers and abc^2 has the gree (b) $a = b = \frac{1}{4}, c = \frac{1}{2}$	$p^{\log z} + y^{\log z - \log x} + z^{\log x - \log y}$ is (c) 9 eatest value $\frac{1}{64}$. Then (c) $a = b = c = \frac{1}{3}$	(d) None of these
359. 360.	(a) 3 <i>a</i> , <i>b</i> , <i>c</i> are three positive (a) $a = b = \frac{1}{2}, c = \frac{1}{4}$ If $a > 0, b > 0, c > 0$ and to (a) 2	en the minimum value of $x^{\log y - k}$ (b) 1 we numbers and abc^2 has the gree (b) $a = b = \frac{1}{4}, c = \frac{1}{2}$ the minimum value of $a(b^2 + c^2)$	$p^{\log z} + y^{\log z - \log x} + z^{\log x - \log y}$ is (c) 9 atest value $\frac{1}{64}$. Then (c) $a = b = c = \frac{1}{3}$ $+b(c^2 + a^2) + c(a^2 + b^2)$ is λabc , (c) 6	(d) None of these then the λ is (d) 3
359. 360.	(a) 3 <i>a</i> , <i>b</i> , <i>c</i> are three positive (a) $a = b = \frac{1}{2}, c = \frac{1}{4}$ If $a > 0, b > 0, c > 0$ and to (a) 2	en the minimum value of $x^{\log y-k}$ (b) 1 we numbers and abc^2 has the gree (b) $a = b = \frac{1}{4}, c = \frac{1}{2}$ the minimum value of $a(b^2 + c^2)$ (b) 1	$p^{\log z} + y^{\log z - \log x} + z^{\log x - \log y}$ is (c) 9 atest value $\frac{1}{64}$. Then (c) $a = b = c = \frac{1}{3}$ $+b(c^2 + a^2) + c(a^2 + b^2)$ is λabc , (c) 6	(d) None of these then the λ is (d) 3
359. 360. 361.	(a) 3 <i>a</i> , <i>b</i> , <i>c</i> are three positive (a) $a = b = \frac{1}{2}, c = \frac{1}{4}$ If $a > 0, b > 0, c > 0$ and to (a) 2 If <i>x</i> , <i>y</i> , <i>z</i> are three real (a) $[2,+\infty)$	en the minimum value of $x^{\log y-k}$ (b) 1 we numbers and abc^2 has the gree (b) $a = b = \frac{1}{4}, c = \frac{1}{2}$ the minimum value of $a(b^2 + c^2)$ (b) 1 numbers of the same sign then	$p^{\log z} + y^{\log z - \log x} + z^{\log x - \log y}$ is (c) 9 atest value $\frac{1}{64}$. Then (c) $a = b = c = \frac{1}{3}$ $+b(c^2 + a^2) + c(a^2 + b^2)$ is λabc , (c) 6 the value of $\frac{x}{y} + \frac{y}{z} + \frac{z}{x}$ lies in (c) $(3, +\infty)$	(d) None of these then the λ is (d) 3 the interval (d) $(-\infty,3)$
359. 360. 361.	(a) 3 <i>a</i> , <i>b</i> , <i>c</i> are three positive (a) $a = b = \frac{1}{2}, c = \frac{1}{4}$ If $a > 0, b > 0, c > 0$ and to (a) 2 If <i>x</i> , <i>y</i> , <i>z</i> are three real (a) $[2,+\infty)$	en the minimum value of $x^{\log y-k}$ (b) 1 we numbers and abc^2 has the gree (b) $a = b = \frac{1}{4}, c = \frac{1}{2}$ the minimum value of $a(b^2 + c^2)$ (b) 1 numbers of the same sign then (b) [3,+ ∞)	$p^{\log z} + y^{\log z - \log x} + z^{\log x - \log y}$ is (c) 9 atest value $\frac{1}{64}$. Then (c) $a = b = c = \frac{1}{3}$ $+b(c^2 + a^2) + c(a^2 + b^2)$ is λabc , (c) 6 the value of $\frac{x}{y} + \frac{y}{z} + \frac{z}{x}$ lies in (c) $(3, +\infty)$	(d) None of these then the λ is (d) 3 the interval (d) $(-\infty,3)$
359. 360. 361. 362.	(a) 3 <i>a, b, c</i> are three positive (a) $a = b = \frac{1}{2}, c = \frac{1}{4}$ If $a > 0, b > 0, c > 0$ and the (a) 2 If <i>x, y, z</i> are three real (a) $[2,+\infty)$ The sum of the product (a) 165 Let S_1, S_2 be squares	en the minimum value of $x^{\log y-4x}$ (b) 1 we numbers and abc^2 has the gree (b) $a = b = \frac{1}{4}, c = \frac{1}{2}$ the minimum value of $a(b^2 + c^2)$ (b) 1 numbers of the same sign then (b) $[3,+\infty)$ ets of the ten numbers $\pm 1, \pm 2, \pm 3$	$p^{gz} + y^{\log z - \log x} + z^{\log x - \log y}$ is (c) 9 eatest value $\frac{1}{64}$. Then (c) $a = b = c = \frac{1}{3}$ $+b(c^2 + a^2) + c(a^2 + b^2)$ is λabc , (c) 6 the value of $\frac{x}{y} + \frac{y}{z} + \frac{z}{x}$ lies in (c) $(3, +\infty)$ $a, \pm 4, \pm 5$ taking two at a time (c) 55 ength of a side of S_n equals	 (d) None of these then the λ is (d) 3 the interval (d) (-∞,3) e is (d) None of these s the length of a diagonal of
359. 360. 361. 362.	(a) 3 <i>a, b, c</i> are three positive (a) $a = b = \frac{1}{2}, c = \frac{1}{4}$ If $a > 0, b > 0, c > 0$ and the (a) 2 If x, y, z are three real (a) $[2,+\infty)$ The sum of the product (a) 165 Let S_1, S_2 be squares S_{n+1} . If the length of a set	en the minimum value of $x^{\log y-k}$ (b) 1 we numbers and abc^2 has the gree (b) $a = b = \frac{1}{4}, c = \frac{1}{2}$ the minimum value of $a(b^2 + c^2)$ (b) 1 numbers of the same sign then (b) $[3,+\infty)$ ets of the ten numbers $\pm 1, \pm 2, \pm 3$ (b) -55 is such that for each $n \ge 1$, the left	$p^{gz} + y^{\log z - \log x} + z^{\log x - \log y}$ is (c) 9 eatest value $\frac{1}{64}$. Then (c) $a = b = c = \frac{1}{3}$ $+b(c^2 + a^2) + c(a^2 + b^2)$ is λabc , (c) 6 the value of $\frac{x}{y} + \frac{y}{z} + \frac{z}{x}$ lies in (c) $(3, +\infty)$ $a, \pm 4, \pm 5$ taking two at a time (c) 55 ength of a side of S_n equals	(d) None of these then the λ is (d) 3 (d) 3 (d) $(-\infty,3)$ (d) $(-\infty,3)$ (e) is (d) None of these s the length of a diagonal of these of <i>n</i> is the area of <i>S_n</i> less
359. 360. 361. 362. 363.	(a) 3 <i>a, b, c</i> are three positive (a) $a = b = \frac{1}{2}, c = \frac{1}{4}$ If $a > 0, b > 0, c > 0$ and the (a) 2 If x, y, z are three real (a) $[2,+\infty)$ The sum of the product (a) 165 Let S_1, S_2 be squares S_{n+1} . If the length of a set then 1 <i>sq cm</i> (a) 7 Jairam purchased a hor	en the minimum value of $x^{\log y-k}$ (b) 1 we numbers and abc^2 has the gree (b) $a = b = \frac{1}{4}, c = \frac{1}{2}$ the minimum value of $a(b^2 + c^2)$ (b) 1 numbers of the same sign then (b) $[3,+\infty)$ ets of the ten numbers $\pm 1, \pm 2, \pm 3$ (b) -55 is such that for each $n \ge 1$, the less side of S_1 is 10 <i>cm</i> , then for	$p^{g_z} + y^{\log z - \log x} + z^{\log x - \log y}$ is (c) 9 eatest value $\frac{1}{64}$. Then (c) $a = b = c = \frac{1}{3}$ $+b(c^2 + a^2) + c(a^2 + b^2)$ is λabc , (c) 6 the value of $\frac{x}{y} + \frac{y}{z} + \frac{z}{x}$ lies in (c) $(3, +\infty)$ $b_x \pm 4, \pm 5$ taking two at a time (c) 55 ength of a side of S_n equals which of the following value (c) 9 5000 at once. Rest money h	(d) None of these then the λ is (d) 3 (d) 3 (d) (- ∞ ,3) (e) is (d) None of these (f) None of these (f) the length of a diagonal of the so f n is the area of S_n less [IIT 1999] (d) 10 the promised to pay in annual

(c) Rs. 20500

(d) Rs. 20700

(a) Rs. 21555 (b) Rs. 20475

365.	The sum of the integers	from 1 to 100 which are not divi	sible by 3 or 5 is	[MP PET 2000]								
	(a) 2489	(b) 4735	(c) 2317	(d) 2632								
366.	The product of n positive numbers is unity. Their sum is											
	(a) A positive integer	(b) Equal to $n + \frac{1}{n}$	(c) Divisible by <i>n</i>	(d) Never less than n								
367.	If a,b,c,d are positive re-	al numbers such that $a+b+c+d$	l = 2, then $M = (a+b)(c+d)$ satisfies $M = (a+b)(c+d) + (a+b)(c+d)$	tisfies the relation [IIT Screening								
	(a) $0 < M \le 1$	(b) $1 \le M \le 2$	(c) $2 \le M \le 3$	(d) $3 \le M \le 4$								
368.	The sum of all positive d	ivisors of 960 is		[Karnataka CET 2000]								
	(a) 3048	(b) 3087	(c) 3047	(d) 2180								
369.	$2^{\sin\theta} + 2^{\cos\theta}$ is greater than [AMU 2000]											
	(a) $\frac{1}{2}$	(b) $\sqrt{2}$	(c) $2^{\frac{1}{\sqrt{2}}}$	(d) $2^{\left(1-\frac{1}{\sqrt{2}}\right)}$								
370.	If the altitudes of a trian	gle are in A.P., then the sides of	f the triangle are in	[EAMCET 2002]								
	(a) A.P.		(b) H.P.									
	(c) G.P.		(d) Arithmetico-geometric	progression								
371.	A boy goes to school from average speed is given by	m his home at a speed of <i>x km/</i> y	<i>hour</i> and comes back at a s	peed of <i>y km/hour</i> , then the								
	(a) A.M.	(b) G.M.	(c) H.M.	(d) None of these								
372.		o reach the top of a pole height i he pole. The number of jumps re	•									
	(a) 6	(b) 10	(c) 11	(d) 12								
373.	Balls are arranged in rows to form an equilateral triangle. The first row consists of one ball, the second row of two balls and so on. If 669 more balls are added then all the balls can be arranged in the shape of a square and each of the sides then contains 8 balls less than each side of the triangle did. The initial number of balls is [Roorkee 1]											
	(a) 1600	(b) 1500	(c) 1540	(d) 1690								
374.	If <i>a, b</i> and c are three po	sitive real numbers, then the mi	inimum value of the express	sion $\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c}$ is								
	(a) 1	(b) 2	(c) 3	(d) 6								
375.	If $x_1 > 0, i = 1, 2, \dots, 50$ and	$x_1 + x_2 + \dots + x_{50} = 50$, then the m	ninimum value of $\frac{1}{x_1} + \frac{1}{x_2} + .$	$\dots + \frac{1}{x_{50}}$ equals to								
	(a) 50	(b) $(50)^2$	(c) $(50)^3$	(d) (50) ⁴								
376.	If <i>a</i> , <i>b</i> and <i>c</i> are positive	real numbers, then least value o	of $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$ is									
	(a) 9	(b) 3	(c) 10/3	(d) None of these								
377.	In the value of 100 ! the	number of zeros at the end is										
	(a) 11	(b) 22	(c) 23	(d) 24								
378.	If $(1-p)(1+3x+9x^2+27x^3)$	$+81x^4 + 243x^5) = 1 - p^6, p \neq 1$ then	the value of $\frac{p}{x}$ is									
	(a) 1/3	(b) 3	(c) 1/2	(d) 2								
379.	Let $f(n) = \left[\frac{1}{2} + \frac{n}{100}\right]$ where	e[x] denotes the integral part of	f x. Then the value of $\sum_{n=1}^{100} f(n)$) is								
	(a) 50	(b) 51	(c) 1	(d) None of these								
380.		points on the parabola y^2 , and $x_1 = 1, x_2 = 2$, then y_n is equivalent		ant. If $A_r = (x_r, y_r)$, where								

n+1			n
(a) $-2^{\overline{2}}$	(b) 2^{n+1}	(c) $(\sqrt{2})^{n+1}$	(d) $2^{\overline{2}}$

- **381.** The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm^3 and the total surface area is 252 cm^2 . The length of the longest edge is
 - (a) 12 cm (b) 6 cm (c) 18 cm (d) 3 cm
- **382.** ABC is right-angled triangle in which $\angle B = 90^{\circ}$ and BC = a. If *n* points L_1, L_2, \dots, L_n on AB are such that AB is divided in n+1 equal parts and $L_1M_1, L_2M_2, \dots, L_nM_n$ are line segments parallel to BC and M_1, M_2, \dots, M_n are on AC then the sum of the lengths of $L_1M_1, L_2M_2, \dots, L_nM_n$ is
 - (a) $\frac{a(n+1)}{2}$ (b) $\frac{a(n-1)}{2}$ (c) $\frac{an}{2}$ (d) Impose

(d) Impossible to find from the given data

Assignment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	b	b	а	b	b	а	b	b	а	а	с	а	с	а	с	а	с	b	d
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
с	а	c,d	d	d	b	с	b	с	а	b	а	b	d	d	d	d	d	b	a
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	с	b	с	с	b	а	b	d	а	d	b	с	d	d	b	b	с	d	a
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
d	d	b	b	b	b	a	d	d	b	а	с	с	с	b	с	d	а	e	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
b	а	а	b	с	с	b	d	с	а	а	b	d	с	b	d	а	а	b	d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	а	а	с	а	а	a,d	с	d	b	а	с	b	b	с	с	с	а	с	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
с	а	b	а	а	b	b	а	а	а	а	с	b	b	с	с	b	а	d	a
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
d	d	d	d	d	с	b	a,b	а	d	d	с	с	с	b	d	а	а	d	d
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
b	с	а	d	с	с	а	b	с	а	d	а	d	d	с	b	b	с	b	b
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
с	с	а	b	с	d	b	с	а	b	а	с	с	b	а	с	а	а	с	b
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
а	b	b	d	а	d	с	а	b	b	b	b	а	d	с	а	с	b	с	с
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
с	с	b	d	с	с	с	b	b	с	d	b	с	d	d	b	а	а	с	d
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
с	b	d	с	с	а	b	с	b	b	с	b	d	b	с	d	а	b	b	а
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
а	а	b	с	b	d	d	а	b	с	а	d	с	с	с	d	b	b	а	b
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
с	a,b	а	d	b	d	а	а	d	d	b	d	а	b	b	с	с	b	а	с
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
а	а	а	b	b	b	d	а	с	b	с	а	а	а	с	b	с	а	с	b
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
b	c,d	с	d	d	а	b	с	с	с	с	с	а	d	а	d	а	b	b	с
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
d	b	b	с	а	d	d	а	d	а	b	а	с	с	с	b	b,d	а	b	с
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
b	b	b,c,d	с	d	d	а	а	d	b	с	с	с	d	а	а	d	b	b	с
381	382																		

a c