E-3-C

Roll No..

Total No. of Questions: 40]

[Total No. of Printed Pages : 8

XKDAR21

5503-C

MATHEMATICS

[Maximum Marks: 80 Time: 3 Hours] 1 each Section-A The prime factors of 39 are : (A) 3, Π 3, 13 (B) (C) 9, 13 None of these (D) A polynomial of degree 3 is called: (B) Zero polynomial (A) Quadratic polynomial None of these. (C) Linear polynomial (D) A quadratic equation $ax^2 + bx + c = 0$ ($a \ne 0$) has two non-real roots if: (B) D < 0(A) D = 0(C) D > 0(D) None of these

4.	The common difference of the A.P.	series	1, 3, 5, 7, is
	(A) 2	(B)	-2
	(C) 0	(D)	None of these
جر	A(-4, 5) lies in:		
	(A) 1st quadrant	(B)	3rd quadrant
	(C) 4th quadrant	(D)	None of these
<i>J</i> 6.	A tangent to a circle intersects it in	:	
	(A) No point.	(B)	One point
	(C) Two points	(D)	None of these
7.	Area of a circle of radius 2 cm is:		
	(A) 8π	(B)	6π
	(C) 4π	(D)	None of these
8.	Which of the following can not be t	he pro	obability of an event?
	(A) $\frac{1}{3}$	(B)	$\frac{2}{3}$
, <u></u>	(C) $\frac{4}{3}$	(Ď)	0

9.	tan	Α	is	not	defined at	
, ,					wellich at	

(A) 45°

(B) 30°

(C) 90°

(D) 0°

10. Class mark is always equal to :

- (A) $\frac{\text{Upper classmark} \text{Lower classmark}}{2}$
- (B) $\frac{\text{Upper classmark} + \text{Lower classmark}}{2}$
- (C) Upper classmark \times Lower classmark $\frac{2}{2}$
- (D) None of these

11. $\sqrt{3}$ is an number.

(Fill in the blank)

- 12. For unique solution in $a_1x + b_1y = c_1$ and $a_2x + b_2y = c_2$ if $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}.$ (True/False)
- 13. If $a_n = 5n + 2$, find a_2 .

Or

is the 10th term of the A.P.: 2, 7, 12,?

14.	The value of $\cos \theta$ increases as θ increases.	(True/False)
	All courses are (similar/congruent)	correct word)
16.	The distance between $P(x_1, y_1)$, and $Q(x_2, y_2)$ is (Fill	in the blank)

Or

Write the formula for find the area of a triangle whose vertices are $P(x_1, y_1)$, $Q(x_2, y_2)$ and $R(x_3, y_3)$.

- 17. Write one application of Trigonometry.
- 18. Define Concentric circles.
- 19. If P(A) = 0, write $P(\overline{A})/P(\text{Not } A)$.
- 20. Length of an arc of a circle with radius r and angle with degree measure θ is (Fill in the blank)

Section-B

2 each

- 24. Find H.C.F. and L.C.M. of 26 and 91 using prime factorisation.
- 22. A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm. Find the total suruface area of the toy.
- Find whether the pair of linear equations are consistent or inconsistent:

$$2x - 3y = 8$$

$$4x - 6y = 9$$

24. Find the value of $\frac{2 \tan 30^{\circ}}{1 + \tan^2 30^{\circ}}$

Or

Find the value of $\frac{\tan 65^{\circ}}{\cot 25^{\circ}}$.

- 25. One card is drawn from a well shuffled deck of 52 cards. Calculate the probability that the card will:
 - (i) be an ace
 - (ii) not be an ace
- The marks obtained by 30 students of class 'X' of a certain school in a Mathematics paper consisting of 100 marks are presented in table below. Find the mean of the marks obtained by the students:

Marks Obtained (x_i)	10	20	36	40	50	56	60	70	72	80	88	92	95
Number of Studnets (f_i)	l	1	3	4	3	2	4	4	1	1	2	3	1

Section-C

3 each

27. Find the zeroes of the quadratic polynomial $x^2 + 7x + 10$ and verify the relationship between zeroes and the coefficients.

Or

Similarly $2x^2 + 3x + 1$, by x + 2 and find the quotient and the semainder.

28. Solve the pair of linear equations by substitution method :

$$7x - 15y = 2$$

$$x + 2y = 3$$

- 29. Find the roots of the quadratic equation using the quadratic formulae $3x^2 5x + 2 = 0$.
- 30. How many terms of the A.P.: 24, 21, 18, must be taken so that their sum is 78.

Or

Find the sum of the odd numbers between 0 and 50.

31. Prove the identity:

$$\frac{\cos A}{1+\sin A} + \frac{1+\sin A}{\cos A} = 2\sec A$$

32. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Or

Prove that the parallelogram circumscribing a circle is a rhombus.

33. Find the area of the sector of a circle with radius 4 cm and of angle 30°. Also find the area of the corresponding major sector (using 3.14).

34. A metallic sphere of radius 4.2 cm is melted and recast into a shape of a cylinder of radius 6 cm. Find the height of cylinder.

Section-D

4 each

35. Find the roots of the equation $5x^2 - 6x - 2 = 0$ by the method of completing the square.

Or

The difference of squares of two numbers is 180. The square of the smaller number is 8 times the larger number. Find the two numbers.

- 36. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of the foot is 45°. Determine the height of the tower.
- 37. Find the point on the Y-axis which is equidistant from the points A(6, 5) and B(-4, 3).

0r

Find the value of k if the points A(2, 3), B(4, k) and C(6, -3) are collinear.

38. In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. Prove it.

0r

In an equilateral triangle ABC, D is the point on side BC. Such that $\frac{1}{3}$ BC. Prove that $9(AD)^2 = 7(AB)^2$.

- 39. Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.
- 40. A survey conducted on 20 households in a locality by a group of students resulted in the following frequency table for the number of family members in a household:

Family Size	1-3	3-5	5-7	7-9	9-11
Number of Families	7	8	2	2	1

Find the mode of this data.