
Relations and Functions 
 

 A relation R from a set A to a set B is a subset of A × B obtained by describing a relationship 
between the first element a and the second element b of the ordered pairs in A × B. That 
is, R ⊆ {(a, b) ∈ A × B, a ∈ A, b ∈ B} 
 

 The domain of a relation R from set A to set B is the set of all first elements of the ordered 
pairs in R. 
 

 The range of a relation R from set A to set B is the set of all second elements of the ordered 
pairs in R. The whole set B is called the co-domain of R. Range ⊆ Co-domain 
 

 A relation R in a set A is called an empty relation, if no element of A is related to any 
element of A. In this case, R =  ⊂ A × A 

Example: Consider a relation R in set A = {3, 4, 5} given by R = {(a, b): ab < 25, 
where a, b ∈ A}. It can be observed that no pair (a, b) satisfies this condition. Therefore, R is 
an empty relation. 

 A relation R in a set A is called a universal relation, if each element of A is related to every 
element of A. In this case, R = A × A 

Example: Consider a relation R in the set A = {1, 3, 5, 7, 9} given by R = {(a, b): a + b is an 
even number}. 
Here, we may observe that all pairs (a, b) satisfy the condition R. Therefore, R is a universal 
relation. 

 Both the empty and the universal relation are called trivial relations. 
 

 A relation R in a set A is called reflexive, if (a, a) ∈ R for every a ∈ R. 

Example: Consider a relation R in the set A, where A = {2, 3, 4}, given by R = {(a, b): ab = 4, 
27 or 256}. Here, we may observe that R = {(2, 2), (3, 3), and (4, 4)}. Since each element 
of R is related to itself (2 is related 2, 3 is related to 3, and 4 is related to 4), R is a reflexive 
relation. 

 A relation R in a set A is called symmetric, if (a1, a2) ∈ R ⇒ (a2, a1) ∈ R, ∀ (a1, a2) ∈ R 

Example: Consider a relation R in the set A, where A is the set of natural numbers, given 
by R = {(a, b): 2 ≤ ab < 20}. Here, it can be observed that (b, a) ∈ R since 2 ≤ ba < 20 [since 
for natural numbers a and b, ab = ba] 
Therefore, the relation R is symmetric. 



 A relation R in a set A is called transitive, if (a1, a2) ∈ R and (a2, a3) ∈ R ⇒ (a1, a3) ∈ R for 
all a1, a2, a3 ∈ A 

Example: Let us consider a relation R in the set of all subsets with respect to a universal 
set U given by R = {(A, B): A is a subset of B} 
Now, if A, B, and C are three sets in R, such that A ⊂ B and B ⊂ C, then we also have A ⊂ C. 
Therefore, the relation R is a symmetric relation. 

 A relation R in a set A is said to be an equivalence relation, if R is altogether reflexive, 
symmetric, and transitive. 

Example: Let (a, b) and (c, d) be two ordered pairs of numbers such that the relation 
between them is given by a + d = b + c. This relation will be an equivalence relation. Let us 
prove this. 
(a, b) is related to (a, b) since a + b = b + a. Therefore, Ris reflexive. 
If (a, b) is related to (c, d), then a + d = b + c ⇒ c + b = d + a. This shows that (c, d) is related 
to (a, b). Hence, R is symmetric. 
Let (a, b) is related to (c, d); and (c, d) is related to (e, f), then a + d = b + c and c + f = d + e. 
Now, (a + d) + (c + f) = (b + c) + (d + e) ⇒ a + f = b + e. This shows that (a, b) is related to 
(e, f). Hence, R is transitive. 
Since R is reflexive, symmetric, and transitive, R is an equivalence relation. 

 Given an arbitrary equivalence relation R in an arbitrary set X, R divides X into mutually 
disjoint subsets Ai called partitions or subdivisions of X satisfying: 
 

o All elements of Ai are related to each other, for all i. 
o No element of Ai is related to any element of Aj , i ≠ j 
o ∪Aj = X and Ai ∩ Aj= ø , i ≠ j 

The subsets Ai are called equivalence classes. 
  

 A function f from set X to Y is a specific type of relation in which every element x of X has 
one and only one image y in set Y. We write the function f as f: X → Y, where f (x) = y 
 

 A function f: X → Y is said to be one-one or injective, if the image of distinct elements 
of X under f are distinct. In other words, if x1, x2 ∈ X and f (x1) = f (x2), then x1 = x2. If the 
function f is not one-one, then f is called a many-one function. 

The one-one and many-one functions can be illustrated by the following figures: 



  

 A function f: X → Y can be defined as an onto (surjective) function, if ∀ y ∈ Y, there 
exists x ∈ X such that f (x) = y. 

The onto and many-one (not onto) functions can be illustrated by the following figures: 
  

  

 A function f: X → Y is said to be bijective, if it is both one-one and onto. A bijective function 
can be illustrated by the following figure: 

 
  

Example: Show that the function f: R → N given by f (x) = x3 – 1 is bijective. 
  

Solution:Let x1, x2 ∈ R 
For f (x1) = f (x2), we have 

 
Therefore, f is one-one. 

Also, for any y in N, there exists   in R such that 



.  
Therefore, f is onto. 
Since f is both one-one and onto, f is bijective. 

 Composite function: Let f: A → B and g: B → C be two functions. The composition 
of f and g,i.e. gof, is defined as a function from A to C given by gof (x) = g (f (x)), ∀ x ∈ A 

 
Example: Find gof and fog, if f: R → R and g: R → R are given by f (x) = x2 – 1 and g (x) 
= x3 +1. 

  
Solution: 

 

 
  

 A function f: X → Y is said to be invertible, if there exists a function g: Y → X such that gof = 
IX and fog = IY. In this case, g is called inverse of f and is written as g = f–1 

 
 A function f is invertible, if and only if f is bijective. 



Example: Show that f: R+ ∪ {0} → N defined as f (x) = x3 + 1 is an invertible function. Also, 
find f–1. 

  
Solution:Let x1, x2 ∈ R+ ∪ {0} and f (x1) = f (x2) 

  

 
Therefore, f is one-one. 

Also, for any y in N, there exists  R+ ∪ {0} such that  = y. 
∴ f is onto. 
Hence, f is bijective. 
This shows that, f is invertible. 

Let us consider a function g: N → R+ ∪ {0} such that  
Now, 

 
Therefore, we have 

 and fog (y) = IN 

 
  

 Relation: A relation R from a set A to a set B is a subset of the Cartesian product A × B, 
obtained by describing a relationship between the first element x and the second 
element y of the ordered pairs (x, y) in A × B. 
 

 The image of an element x under a relation R is y, where (x, y) ∈ R 
 

 Domain: The set of all the first elements of the ordered pairs in a relation R from a set A to 
a set B is called the domain of the relation R. 
 

 Range and Co-domain: The set of all the second elements in a relation R from a set A to a 
set B is called the range of the relation R. The whole set B is called the co-domain of the 
relation R. Range ⊆Co-domain 

  
Example: In the relation X from W to R, given by X = {(x, y): y = 2x + 1; x ∈ W, y ∈ R}, we 
obtain X = {(0, 1), (1, 3), (2, 5), (3, 7) …}. In this relation X, domain is the set of all whole 
numbers, i.e., domain = {0, 1, 2, 3 …}; range is the set of all positive odd integers, i.e., range = 
{1, 3, 5, 7 …}; and the co-domain is the set of all real numbers. In this relation, 1, 3, 5 and 7 
are called the images of 0, 1, 2 and 3 respectively. 



 The total number of relations that can be defined from a set A to a set B is the number of 
possible subsets of A × B. 

If n(A) = p and n(B) = q, then n(A × B) = pq and the total number of relations is 2pq. 


