Relations and Functions

- A relation R from a set A to a set B is a subset of $A \times B$ obtained by describing a relationship • between the first element a and the second element b of the ordered pairs in $A \times B$. That is, $R \subseteq \{(a, b) \in A \times B, a \in A, b \in B\}$
- The domain of a relation *R* from set *A* to set *B* is the set of all first elements of the ordered • pairs in R.
- The range of a relation *R* from set *A* to set *B* is the set of all second elements of the ordered ٠ pairs in *R*. The whole set *B* is called the co-domain of *R*. Range \subseteq Co-domain
- A relation *R* in a set *A* is called an empty relation, if no element of *A* is related to any element of *A*. In this case, $R = \Phi \subset A \times A$

Example: Consider a relation R in set $A = \{3, 4, 5\}$ given by $R = \{(a, b): a^b < 25\}$ where $a, b \in A$. It can be observed that no pair (a, b) satisfies this condition. Therefore, R is an empty relation.

A relation *R* in a set *A* is called a universal relation, if each element of *A* is related to every element of A. In this case, $R = A \times A$

Example: Consider a relation R in the set $A = \{1, 3, 5, 7, 9\}$ given by $R = \{(a, b): a + b \text{ is an } a$ even number}.

Here, we may observe that all pairs (*a*, *b*) satisfy the condition *R*. Therefore, *R* is a universal relation.

- Both the empty and the universal relation are called trivial relations. ٠
- A relation *R* in a set *A* is called reflexive, if $(a, a) \in R$ for every $a \in R$.

Example: Consider a relation R in the set A, where $A = \{2, 3, 4\}$, given by $R = \{(a, b): a^b = 4, b\}$ 27 or 256}. Here, we may observe that $R = \{(2, 2), (3, 3), and (4, 4)\}$. Since each element of *R* is related to itself (2 is related 2, 3 is related to 3, and 4 is related to 4), *R* is a reflexive relation.

A relation *R* in a set *A* is called symmetric, if $(a_1, a_2) \in R \Rightarrow (a_2, a_1) \in R, \forall (a_1, a_2) \in R$ •

Example: Consider a relation *R* in the set *A*, where *A* is the set of natural numbers, given by $R = \{(a, b): 2 \le ab < 20\}$. Here, it can be observed that $(b, a) \in R$ since $2 \le ba < 20$ [since for natural numbers *a* and *b*, *ab* = *ba*]

Therefore, the relation *R* is symmetric.

• A relation *R* in a set *A* is called transitive, if $(a_1, a_2) \in R$ and $(a_2, a_3) \in R \Rightarrow (a_1, a_3) \in R$ for all $a_1, a_2, a_3 \in A$

Example: Let us consider a relation *R* in the set of all subsets with respect to a universal set *U* given by $R = \{(A, B): A \text{ is a subset of } B\}$ Now, if *A*, *B*, and *C* are three sets in *R*, such that $A \subset B$ and $B \subset C$, then we also have $A \subset C$.

Now, if *A*, *B*, and *C* are three sets in *R*, such that $A \subset B$ and $B \subset C$, then we also have $A \subset C$. Therefore, the relation *R* is a symmetric relation.

• A relation *R* in a set *A* is said to be an equivalence relation, if *R* is altogether reflexive, symmetric, and transitive.

Example: Let (a, b) and (c, d) be two ordered pairs of numbers such that the relation between them is given by a + d = b + c. This relation will be an equivalence relation. Let us prove this.

(a, b) is related to (a, b) since a + b = b + a. Therefore, *R* is reflexive.

If (a, b) is related to (c, d), then $a + d = b + c \Rightarrow c + b = d + a$. This shows that (c, d) is related to (a, b). Hence, *R* is symmetric.

Let (a, b) is related to (c, d); and (c, d) is related to (e, f), then a + d = b + c and c + f = d + e. Now, $(a + d) + (c + f) = (b + c) + (d + e) \Rightarrow a + f = b + e$. This shows that (a, b) is related to (e, f). Hence, R is transitive.

Since *R* is reflexive, symmetric, and transitive, *R* is an equivalence relation.

- Given an arbitrary equivalence relation *R* in an arbitrary set *X*, *R* divides *X* into mutually disjoint subsets *Ai* called partitions or subdivisions of *X* satisfying:
- All elements of *Ai* are related to each other, for all *i*.
- No element of Ai is related to any element of Aj, $i \neq j$
- $\square Aj = X and Ai \cap Aj = \emptyset$, $i \neq j$

The subsets *Ai* are called equivalence classes.

- A function *f* from set *X* to *Y* is a specific type of relation in which every element *x* of *X* has one and only one image *y* in set *Y*. We write the function *f* as $f: X \to Y$, where f(x) = y
- A function $f: X \to Y$ is said to be one-one or injective, if the image of distinct elements of X under f are distinct. In other words, if $x_1, x_2 \in X$ and $f(x_1) = f(x_2)$, then $x_1 = x_2$. If the function f is not one-one, then f is called a many-one function.

The one-one and many-one functions can be illustrated by the following figures:

• A function $f: X \to Y$ can be defined as an onto (surjective) function, if $\forall y \in Y$, there exists $x \in X$ such that f(x) = y.

The onto and many-one (not onto) functions can be illustrated by the following figures:

• A function $f: X \rightarrow Y$ is said to be bijective, if it is both one-one and onto. A bijective function can be illustrated by the following figure:

Example: Show that the function $f: \mathbb{R} \to \mathbb{N}$ given by $f(x) = x^3 - 1$ is bijective.

Solution:Let $x_1, x_2 \in \mathbf{R}$ For $f(x_1) = f(x_2)$, we have $x_1^3 - 1 = x_2^3 - 1$ $\Rightarrow x_1^3 = x_2^3$ $\Rightarrow x_1 = x_2$ Therefore, *f* is one-one. Also, for any *y* in **N**, there exists $\sqrt[3]{y+1}$ in **R** such that

$$f\left(3\sqrt{y+1}\right) = \left(3\sqrt{y+1}\right)^3 - 1 = y$$

Therefore, *f* is onto. Since *f* is both one-one and onto, *f* is bijective.

• **Composite function:** Let $f: A \to B$ and $g: B \to C$ be two functions. The composition of *f* and *g*, i.e. *gof*, is defined as a function from *A* to *C* given by *gof* (*x*) = *g* (*f*(*x*)), $\forall x \in A$

Example: Find *gof* and *fog*, if $f: \mathbf{R} \to \mathbf{R}$ and $g: \mathbf{R} \to \mathbf{R}$ are given by $f(x) = x^2 - 1$ and $g(x) = x^3 + 1$.

Solution:

$$gof(x) = g(f(x))$$

= $g(x^2 - 1)$
= $(x^2 - 1)^3 + 1$
= $x^6 - 1 - 3x^4 + 3x^2 + 1$
= $x^2(x^4 - 3x^2 + 3)$
fog(x) = $f(g(x))$
= $f(x^3 + 1)^2$
= $(x^3 + 1)^2 - 1$
= $x^6 + 2x^3 + 1 - 1$
= $x^3(x^3 + 2)$

- A function $f: X \to Y$ is said to be invertible, if there exists a function $g: Y \to X$ such that $gof = I_X$ and $fog = I_Y$. In this case, g is called inverse of f and is written as $g = f^{-1}$
- A function *f* is invertible, if and only if *f* is bijective.

Example: Show that $f: \mathbb{R}^+ \cup \{0\} \to \mathbb{N}$ defined as $f(x) = x^3 + 1$ is an invertible function. Also, find f^{-1} .

Solution:Let $x_1, x_2 \in \mathbf{R}^+ \cup \{0\}$ and $f(x_1) = f(x_2)$

 $\therefore x_1^{3} + 1 = x_2^{3} + 1$ $\Rightarrow x_1^{3} = x_2^{3}$ $\Rightarrow x_1 = x_2$ Therefore, *f* is one-one. Also, for any *y* in **N**, there exists $3\sqrt{y-1} \in \mathbb{R}^+ \cup \{0\}$ such that $f(3\sqrt{y-1}) = y$. $\therefore f$ is onto. Hence, *f* is bijective. This shows that, *f* is invertible. Let us consider a function $g: \mathbb{N} \to \mathbb{R}^+ \cup \{0\}$ such that $g(y) = 3\sqrt{y-1}$ Now, $gof(x) = g(f(x)) = g(x^3 + 1) = 3\sqrt{(x^3 + 1) - 1} = x$ $fog(y) = f(g(y)) = f(3\sqrt{y-1}) = (3\sqrt{y-1})^3 + 1 = y$ Therefore, we have $gof(x) = I_{\mathbb{R}^+} \cup \{0\}$ and $fog(y) = I_{\mathbb{N}}$ $\therefore f^{-1}(y) = g(y) = 3\sqrt{y-1}$

- **Relation:** A relation *R* from a set A to a set B is a subset of the Cartesian product A × B, obtained by describing a relationship between the first element *x* and the second element *y* of the ordered pairs (*x*, *y*) in A × B.
- The image of an element x under a relation R is y, where $(x, y) \in \mathbb{R}$
- **Domain:** The set of all the first elements of the ordered pairs in a relation R from a set A to a set B is called the domain of the relation R.
- **Range and Co-domain:** The set of all the second elements in a relation R from a set A to a set B is called the range of the relation R. The whole set B is called the co-domain of the relation *R*. Range ⊆Co-domain

Example: In the relation X from **W** to **R**, given by $X = \{(x, y): y = 2x + 1; x \in W, y \in R\}$, we obtain $X = \{(0, 1), (1, 3), (2, 5), (3, 7) \dots\}$. In this relation X, domain is the set of all whole numbers, i.e., domain = $\{0, 1, 2, 3 \dots\}$; range is the set of all positive odd integers, i.e., range = $\{1, 3, 5, 7 \dots\}$; and the co-domain is the set of all real numbers. In this relation, 1, 3, 5 and 7 are called the images of 0, 1, 2 and 3 respectively.

• The total number of relations that can be defined from a set A to a set B is the number of possible subsets of A × B.

If n(A) = p and n(B) = q, then $n(A \times B) = pq$ and the total number of relations is 2^{pq} .