WAVE OPTICS

Interference of waves of intensity I_1 and I_2 :

resultant intensity, I = I₁ + I₂ + $2\sqrt{I_1I_2} \cos(\Delta\phi)$ where, $\Delta\phi$ = phase difference.

 $I_{max} = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2$ For Constructive Interference : $I_{min} = \left(\sqrt{I_1} - \sqrt{I_2}\right)^2$ For Destructive interference : If sources are incoherent $I = I_1 + I_2$, at each point. YDSE: Path difference, $\Delta p = S_2 P - S_4 P = d \sin \theta$ d < < D = $\frac{dy}{D}$ if if v << D for maxima, \Rightarrow y = n β n = 0, ±1. ±2 $\Delta p = n\lambda$ for minima $\Delta p = \Delta p = \begin{cases} (2n-1)\frac{\lambda}{2} & n = 1, 2, 3..., \\ (2n+1)\frac{\lambda}{2} & n = -1, -2, -3..., \\ \end{cases}$ $\Rightarrow \qquad y = \begin{cases} (2n-1)\frac{\beta}{2} & n = 1, 2, 3..., \\ (2n+1)\frac{\beta}{2} & n = -1, -2, -3..., \end{cases}$ where, fringe width $\beta = \frac{\lambda D}{d}$ Here, λ = wavelength in medium. $n_{max} = \left| \frac{d}{\lambda} \right|$ Highest order maxima : total number of maxima = $2n_{max} + 1$ $n_{max} = \left[\frac{d}{\lambda} + \frac{1}{2}\right]$ Highest order minima : total number of minima = $2n_{max}$.

Intensity on screen : $I = I_1 + I_2 + 2\sqrt{I_1I_2} \cos(\Delta \phi)$ where, $\Delta \phi = \frac{2\pi}{\lambda} \Delta p$

If
$$I_1 = I_2$$
, $I = 4I_1 \cos^2\left(\frac{\Delta\phi}{2}\right)$

YDSE with two wavelengths $\hat{\lambda}_1 \& \lambda_2$: The nearest point to central maxima where the bright fringes coincide: $y = n_1\beta_1 = n_2\beta_2 = Lcm \text{ of } \beta_1 \text{ and } \beta_2$

The nearest point to central maxima where the two dark fringes coincide.

y =
$$(n_1 - \frac{1}{2}) \beta_1 = n_2 - \frac{1}{2} \beta_2$$

Optical path difference

$$\Delta p_{opt} = \mu \Delta p$$

$$\Delta \phi = \frac{2\pi}{\lambda} \Delta p = \frac{2\pi}{\lambda_{vacuum}} \Delta p_{opt.}$$

$$\Delta = (\mu - 1) t. \frac{D}{d} = (\mu - 1)t \frac{B}{\lambda}.$$

YDSE WITH OBLIQUE INCIDENCE

In YDSE, ray is incident on the slit at an inclination of θ_0 to the axis of symmetry of the experimental set-up

We obtain central maxima at a point where, $\Delta p = 0$.

 $\theta_2 = \theta_0$. or This corresponds to the point O' in the diagram. Hence we have path difference.

 $d(\sin \theta_0 + \sin \theta) - for points above O$ $\Delta p = \begin{cases} d(\sin \theta_0 - \sin \theta) - \text{for points between O \& O'} \\ d(\sin \theta - \sin \theta_0) - \text{for points below O'} \end{cases}$... (8.1)

THIN-FILM INTERFERENCE

nλ

for interference in reflected light 2µd

for destructive interference

for constructive interference

 $=\begin{cases} 1^{1/\lambda}\\ (n+\frac{1}{2})\lambda \end{cases}$ for interference in transmitted light

for constructive interference

2µd

 $=\begin{cases} n\lambda & \text{for constructive interference} \\ (n + \frac{1}{2})\lambda & \text{for destructive interference} \end{cases}$

Polarisation

•
$$\mu = \tan$$
 .(brewster's angle)
 $\theta \rho + \theta_r = 90^{\circ}$ (reflected and refracted rays are mutually perpendicular.)

Law of Malus.

 $I = I_0 \cos^2$

 $I = KA^2 \cos^2$

Optical activity

$$\left[\alpha\right]_{t^{\circ C}}^{\lambda} = \frac{\theta}{\mathsf{L} \times \mathsf{C}}$$

 θ = rotation in length L at concentration C.

Diffraction

a sin
$$\theta$$
 = (2m + 1)/2 for maxima. where m = 1, 2, 3...

 $\sin \theta = \frac{m\lambda}{a}$, m = ± 1, ± 2, ± 3..... for minima.

Linear width of central maxima = $\frac{2d\lambda}{a}$

Angular width of central maxima = $\frac{2\lambda}{a}$

•
$$I = I_0 \left[\frac{\sin \beta / 2}{\beta / 2} \right]^2$$
 where $\beta = \frac{\pi a \sin \theta}{\lambda}$

• Resolving power.

$$\mathsf{R} = \frac{\lambda}{\lambda_2 - \lambda_1} = \frac{\lambda}{\Delta \lambda}$$

where ,
$$\lambda = \frac{\lambda_1 + \lambda_2}{2}$$
 , $\Delta \lambda = \lambda_2 - \lambda_1$