Exercise 14.R

Answer 1CC.

(a)

A function of two variable is a rule that assigns to each ordered pair of real numbers (x, ¥) in a
set D a unigue real number denoted by f{x, y). The set D is the domain of f and its range is the
set of values that ftakes on.

This means that { f(x, y)| (x, ) € D}.

Here, the variables x and y are independent variables and z is the dependent variables.

(b)

One way of visualizing a function fis by an arrow diagram, where the domain D is represented
as a subset of the xy-plane and the range is a set of numbers on a real line, shown as a Z-axis.

Observe the below ammow diagram:
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Another method of visualizing a function is by the use of graphs.
The graph of 7is the set of all point (x, y, z) in g? such that z=f(x, y¥) and (x, y) isin D.
Observe the below graph:

The third method used to visualize a function is level curves. The level curves of  are the
curves with equation f{x, y) = k, where k is a constant in the range of 1.

Observe the below graph:
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level curves lifted up to form a surface
Answer 1E.
Consider the function,
Sf(xy)=In(x+y+1)
The domain of the function fof two variables is the set of all pairs (_r, y} for which the given
expression is a well-defined real number.
In general, logarithmic functions are undefined for 0 and negative values of x.
So, the expression for f makes sense if the expression inside the parentheses greater than 0.

Thus, the domain of fis
D={(x.y)lx+y+1>0}
={(x.)1y>-x-1}

The inequality y > —x—1describes the points that lie above the line y=—x-1.




The graph of the domain of the function f(x, y)=In(x+ y+1)as shown below:
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Answer 1P.

r~
e

X L.—X
The areas of the smaller rectangles are A1 =xy, A2 = (L - x)y, A3 = (L - x)(W -y), and

AM=x(W-y)For0=x=L 0=sy=<W let

f('r* v)= A+ 47+ A0+ 4,7

LS oA
=X’y +L—0 Y + L0 -y +x (W —y)’

=[Fra-o* [ r -]

=

Then we need o find the maximum and minimum values of f{(X.y). 50 here we have

X, _r] = |2x—2(L —_r)}i VAW =) |=0=4x—2L=0o0orx= —L, an

A L =

Jx

———
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We aiso have that
Fa=4"+ -] ry=4[x"+@ 0"} andfy=(4x—2L)(4v—
So then from this we know that

D=16[y* + (W=’ |[¥* + @ —0" |- @x—20)* 4y —2m)°

Therefore, when x = (1/2)L and y = (1/2)W. D > 0 and fx = 2W2 > 0. Therefore a minimum of f
i I N ) i i 1 2 ol
occurs at [ ?L& ?FF) and this minimum value is f( Y L, 5 ]Ip') = L W .

There are no other critical points, so the maximum must occur on the boundary.

Now along the width of the rectangile let g(y) =f0,y)=T(LY)=L2[y2 + (W-¥)2], 0<y=W
Then g'(yv) =L2[2y - 2(W-¥)] =0 «— y = (1/2)W and

g(1/2) = (1/2)L2W2.

Checking the endpoints, we get g(0) = g(W) = L2W2. Along the length of the rectangle let h(x)
=f(x.0)=T(xW)=W22 +(L-x)2), 0=x=L.

By symmetry, h'(x) = 0 < x = (1/2)L and h((1/2)L) = (1/2)L2W2. At the endpoints we have h(0)
= h(L) = L2w2.

Therefore L2W2 is the maximum value of f. This maximum value of f occurs when the "cutting”
lines correspond to sides of the rectangle.

Answer 1TFQ.

Given f£,(a, b)= Eﬂf{a,b+kg—f(a, b).

Lety=8+h Then, as A =0, y > &

Thus, we can write as

7,(a. b)= tig L (&:2) = T (@.8)
- y—&

Therefore the given statement is true.




Answer 2CC.

{a) A function of three variable 15 a rule that assigns to each ordered pair of real
numbers (x, ¥, 2) in a domain D C [ aunique real number denoted by Ax, ¥, 2).
The set L) 1s the domain of f and 1ts range 1s the set of values that ftakes on

(h} A function f of three wariables lies in a four-dimensional space. Such functions
can be wisualized by examining its level surfaces, with equation f (x, _}r,z) =k,

where k 15 a constant. Ifthe point (x, ¥, z) moves along a level surface, the value
of fix, ¥, z) remains fized.

Answer 2E.
Consider the function:

f{.r,y):J4—.r: -y +\J’I—_l.rI

The domain of the function f of two variables is the set of all pairs (x, y}fnr which the given

expression is a well-defined.

The expression for fis well defined if the expression under the square root is nonnegative.

Since the function has two expressions in the square root and both expression should be
greater than zero fur the function as a whole to be well defined.

So, examine two conditions to determine the domain of the function.
First condition is given by:
4-x-y*20
—x* “_}’1 >4
x+y <4
This indicates a disk with center (0,0)and radius 2.

Second condition is:
1-x* 20
12 x*
x' <1
x| <1
This gives:
=1=£x<1

So, the domain of the given function is:

D={{x,y]|f+_rzE-’-I,—IEJ:E'I} .




The graph of the domain of the function f{ x, .}’) - J4_ x - yz + .J] — x* as shown below:

x=1

xr=-1

of the function

Answer 2P.
(a)

F2 0 .l
The level curves of the function C(_-.-! _‘P) = e 7 ¥ are actually the curves

4

E—{I:— 2}'3}- " _ k- where k is a positive constant. The equation is equivalent to

R =K== —— + :=I_*whﬂrck'=—l{]*1nk_m-.imisa

family of ellipses.

We sketch level curves for K= 1,2.3, and 4. If the shark always swims in the direction of
maximum increase of blood concentration, its direction at any point would coincide with the
gradient vector.

Then we know the shark's path is perpendicular to the level curves it intersects. We sketch one
example of such a path.






(b)

;o2 o T

2 = 22 it
Vo= — 2 o=+ H [xf'i'g:ij .and W points in the direction of most rapid

-

10
increase in conceniration, which means ¥ (Tis tangent to the most rapid increase curve.

If r(t) = x(t) i + y(t) j is a parametrization of the most rapid increase curve, then

>t iJiistangenttnl the curve, so then we have that
dt d de

dr . dx . 2 {2+ z;—fj. i dy . 2 —(FP+)
—_— —_— —_— — ! = ST — —_— LN F,
w —AVC 5 .«[ o € }r and — .«1[ e

Therefore, we get

dyv dysdi ¥ d
dx dx/dt x

LY lnHz Zlnt_rl sothat |, = hzfnr some

¥ I

Fa

. -

Iu_

constant k. But we know that _p[_‘rﬂ] =¥ = Vo= kxﬂz = k=

2
Therefore, the path the shark will follow is along the parabola |, = o (L) -



Answer 2TFQ.
To determine that, whether the following statement is true or false:

“There exists a function f with continuous second-order partial derivatives such that

fi(xy)=x+y'.and f (x,y)=x-y"

If there is continuous second-order partial derivatives for f then,

gr_of
axdy  dyox
Here L{I!.}’}:I"'.FI

That is,

2 .
Therefore, u¢ﬁ
oxdy  dvéx

50, there 5 no fWI[h continuous second-order partial derivatives such that

fi(xy)=x+y*.and f (x,y)=x-)"

Hence the given statement is [false]



Answer 3CC.

{a) If /15 a function of two vaniable whose domain P includes poants arbitranily close

to (a, &), the that 11 = L.
{a, &), then we can say ('J}_u,%!.a}f (x.¥)

This means as (x, y¥) approaches (a, &), fix, ») tends to L.

®) If f(x.y) =L as (x,y) —(a.b) alongapath Cy and #(x,y) =L, as
(x.¥) —(a.b) alongapath Co, where I, # L,, then limix_r}_}(!_;}f(x, ¥) does
not exist.
Answer 3E.

Consider the following function:

f(xy)=1-y
Rewrite as:
z=1-y*

Where zis a function of x& y .

This is a function of three variables so the graph of this function will be a 3D graph.

The maple graph of f(x,y)=1 -y’ is as follows:




Answer 3P.

(a)

The area of the trapezoid is éﬁ( b, + b, ) where h is the height and b1, b2 are the

lengths of the bases. From the figure in the texi, we see that h=x5in 6, b1 = w- 2x, and

b2 = w - 2% + 2x cos 8. Therefore the cross-sectional area of the rain guiter is

Alx a) = %.rsinﬂ[{w—lt)-i-{u-'—lr -i-mesﬂ)}: (xsina)[w—zx +xl:usﬁ)

fd |k|

= wxsinf — 2x’sin# + x’sinfcosf, 0 <x < —w, 0 <4<

We now look for the critical points of A- dA/gx = w sin O - 4x 5in 6 + 2x sin 6 cos 6 and

8AJE0 = WX COS B - 2x2 c0S B + X2(C0528 - 5in20), S0 A/GX = 0 « Sin B(W - 4X + 2X c0s 0) = 0
COS B = (4X - W)/2X = 2 - (W/2X).

If, in addition, 2A/26 = 0, then we have

0= wxcusﬂ-lrzmsﬂ+x2(2 ms?'ﬁ'—l)

- m[z—i)—hz[z—i]fﬁ[z(z—i): —1}

:2«.11.':4:—%“'2—4.1'2 +wx-i—.rz|i8—%+ " —l]z —\VK‘E‘]IEZI[?LT_I-

2x

Since x = 0, we must have x= (1/3)w, in which case cos 8 =1/2, so 8 =m/3, 5N 8 =v3/2 k=
w36 w, b1 =(1/3)w, b2 = (2/3)w, and A = v3/12 w2



We can argue from the physical nature of this problem that we have found a local maximum of
A. Now checking the boundary of A, we let

(o) =4(30)-

So clearly g is maximized when sin 26 = 1 in which case A = (1/8)w2._ Also along the line

In-ll'*!

2 . P2 P2 P2
wosinf — —wsinf+ -wsinflcosf = —-wsin2f, 0 <

8 =12, we let

Ir[x)=zi(:r, %)= wx—2x", 0 {x*'-i%n- =+ h’(r]= w—=0x= %

4 i2

h[iu'] = ;1'[%11') —2(}1-.-)_ = %wz - Since % ;,1.-2 < WH M.-2 . we conclude that

the local maximum found earlier was an absolute maximum.

(b)

If the metal were bent into a semi-circular gutter of radius r, then we would have w = TiT and
A= Lt = %ﬂ-(i)_ = * Since ¥ > W

2
-
2 s 2z x 2

it would be better to bend the metal into a gutter with a semi-circular cross-section.

Answer 3TFQ.

‘We know that
Io = (-};),
d(&f
)
&f
T

The given statement 1s false.
Answer 4CC.

{a) A function f of two vanables 1s called continuous at {a, b ) 1if

L1 = B). W 15 contin Dif f1s contin at
(:._r}-ltr%u.a} Fi (x, _}r) Fi (a, ) e say f 15 continuous on {15 conhinuous

every point (a, &) in [}

(b} The graph of a continuous function has no gaps or breaks in the curve.



Answer 4E.

We have z = f(x.y) = x2 + (y - 2)2, which is a circular paraboloid with vertex (0,2.0) and axis
paraliel to the z-axis.




Answer 4P.

Since L:ﬂ‘ is a rational function with domain {(x. y, 2)|(x, v, 2) # (0, 0, 0)} - then

J::—_r'+ z
f is continuous on R3 if and nnly if

lime , 500 0f(xy.2)=70,0,0)=0

Recallthat (, 4 bf < 24° + 2p° and a double application of this inequality to

(x+y+z2gives (x+y+z)° <4’ +4y° +42° £4(:3 +7 +z"') - Now for each

r, we have

Gy +a|= () = [+’ < [ 45742

Therefore, from this we obtain

Gryrzf | (F+y+27) 2, 2
(r.y.2)—0j=|—— = ——— <2/ —— } =2r(x " -

¥y +5 Ty +z r Gy iz

Thus, T (F2)-1=0,orr =2, then 2r{x2 + y2 + 22){rf2)-1 — 0 as (x,y.Z) — (0,0,0) and s0

M ;5.0 0 L_*}_' = (). Therefore, for r > 2, fis continuous on R3. Now if r <

2 ]
T ;}- + =z

2, then as (x.y.Z) — (0,0,0) along the x-axis, f(x,0,0) =x/x2=xr- 2 for x # 0.
Sowhenr=2 f{xyz)— 1F0as(xy.zZ) — (0,0,0) along the x-axis and when r < 2 the limit of

f(>x.y.z) as (x.y.Z) — (0,0,0) along the x-axis doesn't exist and therefore can't be zero.
Therefore, for r < 2, Tisn't continuous at (0,0,0) and therefore is not continuous on R3.



Answer 4TFQ.
If f 1s a differentiable function of two wariables x and y ,then f has a directional

denivative in the direction of any unit vector u = (a, b} and
.EL{[I, y) = _}:,(x y)msﬂ +_};|:x,_}r)sinﬂ.

We have to find DJ(I,_}?,Z).

This means that u =01+ 0j+0k

Then, Bf(x.5.2) = £ (5. .2)(0) + 7, (x.5. 2)(0) + £(x. . 2)(1) ox
Bi(xyz)= L(xrz)(1)

Therefore the given statement 1s true.

Answer 5CC.

{a)

{b)

{c)

If # 15 function of two vanables, then the partial denivative of f with respectto x at
{(a, &) 15 given by
+h B)— b
Fola, b) = lim‘f(a .8) — fla. )
E>0 P
Similarly, the partial derivative of # with respect to y at (a, &) 1s

e j(a,b+k)—f(a,b)
f(a.5) = tim ) |

Let z = f (x.) represent a surface S.
If j(a,b)= ¢ , then the point Pla, &, ¢) lies on the surface 5
Let C; be the trace of 5 in the plane y = & and C be the trace of 5 in the plane

X=da.

The partial derivatives £, (a.d) is the slope of the tangent lines at P(a, &, c) to Ci
in the plane y=4%.

Simlarly, f, (a.b) is the slope of the tangent lines at P(a, &, ) to C3 in the plane

X=a.

Also, the partial derivative 7 (x,y) or % represents the rate of change of z with

: oz i
respect to x, when y 1s a constant and g represents the rate of change of z with

respect to y, when x 15 a constant.

If f(x.y) is givenby a formula, then £, {x.y) is givenby % and f, (x.y) is

given by g
oy



Answer 5E.

Consider the function:

fxy)=yax +y*

Write the above function in the form of the level curves.

1.,’413 +y =¢

Take square root both sides.

4 +y* =¢

Thus, the level curve for the function is ellipse.

Use Maple to sketch level curves of the function for different values of C.




Answer 5P.
aor) (2 o2) () o (2] ) o(2)-
Therefore, the tangent plane at {I{h Yo, Z {}} on the surface has equation

cmxar(2)= [(2) ~vora™r (2 e ) 47 (2 )(r-r0)
= [z mrennr (b (2)peme

But any plane whose equation is of the form gy +by +cz = ( passes through the origin.
Therefore, the origin is the common point of intersection.

Answer 5TFQ.

Given f(x.y)—L as (x,¥)—>(a.b)and Lim(uHu)f (z.»)=L
The limit as (x, y) tends to (a,b) should exist uniquely in every curve being traveled not
only on straight lines.
Therefore the given statement 1s false.
Answer 6CC.

The Clairaut’s Theorem states that suppose f1s defined on a disk £) that contains the point
(a, &) and if the functions £, and £,, are both continucus on [, then fla, £) = f.(a, &).



Answer 6E.

The level curves are ex + ¥y = k or y = -ex + k, which is a family of exponential curves.
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Answer 6P.
(a)

At (x1,y1,0) the equations of the tangent planes to z =1f(x.y) and z = g(x,y) are
Py 1f_f{-'l'hj‘i}=f:fl'hj"!}(x_l'i}"i'fj-{l'hj't}{‘*_j*!} and
Py :z—glxy, vi) = g.(xy. ¥y x—x) +g,(x,. ¥,y — ¥,) respectively -
P1 intersects the xy-plane in the line given by
Sxlxy, yi)a—x))+f,(xy, yi)Xy—yi)= —f(xy, ¥1),z=0; and
P2 intersects the xy-plane in the line given by
g:{xy, yido—x ) +g,(xy, i y—yi)= —glxi, yi).z=0.

The point {x2,y2,0) is the point of intersection of these two lines since (x2.y2,0) is the point
where the line of intersection of the two tangent planes intersects the xy-plane. Therefore,

(x2,y2) is the solution of the simultaneous equations
Ty, pi)lxz —x)) +f ,0xy, »i)y2 —¥)= —f(xy, ¥y) and

g lxp, vl —x)) g, (xp, »i )2 —yy) = —glxy, »i1)

For simplicity, rewrite fx(x1,y1) as fx and similarly fy, gx, gy. f. and g and solve the equations

(f < Mx> *—_r;}'ir(f_._,}{_v: —vy)= —fand(g, Nx; —x;) 'i”(g;,-}(_!’z )= -,



gf . —fg: Egf . —FE: {fruﬂ-r_
YVa—wm=s —— o=y ———,—and (fr)[.l'z —x;)+'—

Erf_: _.—'r =Ey .-'- By — g'ur-_:: Srf_: _.—'r
! el [ 8 e —FEINES y— T 2N -

Xy —X) = — I Nefc—Sedies ok B S8 . Therefore, we have

Fe gr_-lr_r_.rtg_r
g, —f.g
Xo =Xy ———— -
- . .f':gr_g:f[
(b)

Let f(x, _i-') = x" +y’ —1000 and g(x, y) = x’ +y* —100.

Then we wish to solve the system of equations f(x.y) = 0, g(x.y) = 0. Recall
di[:rr]= ,rr(l —anj . so then from this we get

fr(x, j—') = xr(l +ln,r),f_,. (.r, y) = y}'(l +Iny), 2. (.r, ,v) =yw '+y'm

Looking at the graph given in the text, we estimate the first point of intersection of the curves,
and thus the solution to the system, to be approximately (2.5, 4.5).

Then following the method in part (a), x1 =2.5. y1 =4.5 and

f(25,45)g,(25 43)—f (25, ,45)g(25, 435}
F25,45)g,(25 45)—f,(25 45)g, (25, 4.5)

X2=25— = 2447674117

1",_.{2_5, 4525 -1,5}—_1"{25, 45} 2.5, 4.5%
31y = 45 = 5 & =~ 4555657467

fA25,45)g,(25 45)—f (2.5 45)g, (25, 45)

Continuing this procedure, we arrive at the following values.



x1=25 y1=25
X2 = 2. 447674117 y2 = 4. 555657467
X3 = 2.449614877 y3 = 4551969333
x4 = 2.449624628 y4 = 4551951420
X5 = 2.449624628 y5 = 4551951420

Therefore, to six decimal places, the point of intersection is (2.449625, 4.551951). The second
point of intersection can be found similarly, or, by symmefry it is approximately

(4.551951, 2.449625).

Answer 6TFQ.

If the partial derivatives £, (a,f.:-) and f’ (a,b) exists near [a,b) and are continuous at
(a,b) ,then f 1s differentiable at (a,b)_
Therefore the given statement is false.



Answer 7CC.
{a) Assume f has continuous partial denvatives.
As equation of the tangent plane to the surface z=f (x,y) at the point
P(x.%0.7)15
z-2zy= f,(x= % )+ 1, (¥y-2).

{h} The tangent plane to the level surface F(x,y,z) =k at P(xﬂ,yn,zu) 15 a plane

that passes through P and has normal vector ?F(xu, Yoo zﬂ,) and 1s given by the
equation

F, (%0.70.20) (x— %)+ F, (%5520 ) (7 —30) + F, (%0. 70,20 ) (2 —2, )= 0

Answer 7E.

The contour map of function 1s: -



"l

"L



Answer 7P.

Given that the ellipse ~— + 1 = | istoendose thecircle y* 4 7 = 2y,

] -_
a

For the circle

2

X +y —2y=0
X FEY =22y +1=0+1

CHE=1=1

We have a circle with center (0,1) and radius 1, so the circle lies above the x-axis, and we can
conclude that the ellipse will intersect the circle for only one value of y.

The value of y must satisfy both equations.

2
d‘r

I 4= (1)
a” &

=1 =1
= X =1—@-1) @
Substituting (2) into (1)

b—— ”2 j.': _
ﬂ'." fi



From algebra we know that if the discnminant 1s zero. there 1s exactly one distinct root. and
that root 1s a real number.

o (3] =) ]

f 2 g2
i -'E..l.n B ) _ n
.l'.l-t ﬂ:-b:
1 -ﬂ':—b:
> + > =5 ﬂ
a” b
I3 —.:l“—.n::ll.!:l1
33 - ﬂ
a b

b'—a b +a =0

The area of the ellipse is given by A=Traband we use g(a.b)= 5% — 2 p2 + 4% =0



Since A=A
=h . =4
2af 22— b lb‘I _at

=
Pt
~—
—
|
8
]
p—
I
=]
bl
—
Y
=]
|
=
]
—r

b’ —b’a’= 24" —a’b’

b’ =2a"
Substitutinginto 52 — 2 p2 4 24 =
Za‘{ _azizai) _i_aqt =0

3a* —24"=0

a*(a —Eaj) =0



a*=0°3-2a"=0

Since a > 0 the only solution that we need is

substituting into  p? — 9 4%

b=3MN2

-1}

-] P TP TP B B




Answer 7TFQ.

If 7 15 a function of two vanables x and vy, then the gradient of f 1s the vector
. ¥

function Vf defined by Vf(x y) = (f,[x,y:],_}‘;[x,y:l) or Vf(x ¥) = %1+5j_

Since f has a local mimimum at (a,b), we can say that (a,b) 1s the critical point.
This means that f, (a,b) =0 and f’ (a,b) =0.

Then, Vf(a,8) = {/,(a.B). /(. 5)) or ¥f(a,5) = {0,0}.

Therefore the given statement is true.

Answer 8CC.

A linear function whose graph 1s a tangent plane given by

Lz, y)=fla. B)+ f(a. &)(x—a)+ f,(a. B)(y—b)

15 called the ineanzation of £ at (a, &).

The linear approximation or the tangent plane approzimation of f at (a, &) 1s given by
F(xy)s fla.b)+ f(a.b)(x—a) + £, {a.2) (¥ - B).

The linear approzimation is the tangent plane approximation of f at (a, &).

Answer SE.
When the three dimensional images are not fully able to visualize, then contour map is an

important tool that depict the function with a two dimensional input and a one dimensional
output.



Consider the contour map of the function f given in the problem,

Observe that the level curves of the function centered at y - axis and radius of the circle
decreases as its centered moves near the origin.

So the level curve satisfies the equation,

-

:[ 1)' 1
X +|y—-——| =—
c c"

Or,
, 2 1 1

X +J1"- ——J’+—1 =

[ C c

y

Simplify this equation,

2 2_2
X+y =—y
c
or,
2y
¥ > =c
x“+y

Hence, the required function is,

2y

r)
X +y

f(x.y)=

The rough sketch of the graph of the function is shown below,




Answer 8P.

Among all planes that are tangent to the surface n_.j 31 = | . We need to find the ones
that are farthest from the origin.

We can write the equation of the tangent plane to the level surface F(x.y.z) = kK at the point

{I{h Yo, :{i} as

F(xg, ¥o. zo)(x —xp) TF,(x0, Yo, 200y —¥o) TF.(x0, ¥o. 2oz —20)
=1

The tangent plane to the surface n,.j 32 = | . at the point {I{h Yos 2 ﬂ} is

_t-'ﬂz zﬂz(:—xﬂ) +2xov0 zﬂz(}r—yﬂ) +2xn_v{;jzﬂ (:—zﬂ) =10

2 2 2 2 2 2
Yo Zo x *2xoypzo ¥y t2xg¥e zoz = Sxp¥ypzy
Since 2.2 _ 4 then .

xy z =1 Xog¥o 2o =1

2 2 2 2

Yo Zo X T2xpypzo v T2xp¥p 2gz =5

The distance from (0,0,0) to this tangent plane is given by

¥ 3 3
E 51‘1]-1]:.15

Di xg, vo, Zp

-

L R R T
Fofe, T {“TaFeZe,; T | “F0oFo 0]

-] -] -]
2 2% s e w22 e e vt Y
WFoa] ™ {<To¥e%a)} T | ToFe0)



When D is a maximum, then D2 is a maximum and v DZ =0

Now we use
25
27
DIﬂPﬂ'ﬂ)z c 22 o2 xaY .z a2
* S0 = R T < 2421
\ (¥aZa ) T14xaraza |+ i4xgy,7, |
LY rs LN J
25
D[Iﬂ Vo -{}): - S R N S | Y I
il 2N U3 el 2200 222 Waxdy? |
oe | ’-.‘}" "j‘ L 4 ﬂj -‘J'n “j’-.‘ Xaka |
Dz( 25
Iﬂ?,pﬂ!:ﬂ): o2 ay[o232 2.2 2 21
L “'n:n: 1¥oZa T 4xp7y FAxgyg ¢
s g .
XoVo Zo =1 = =
a.¥o 0 Xa¥s
25
2 = =
D Iﬂ. Pﬂ.. :.I} — I ] 4xg 3 3
S | —+ — +dxpy,
i 2 |
i i
1 |
23 xg¥,

Dz[xﬂ, Yo :ﬂ) =

2 3 4
I+ -11".' + -iru_j.'“

2 2
VD=0 — D, =02ad D, =0

T S DR T L N AU B L I 11
o 50xgygi ¥a~ + 41, -11'0_}‘” i Br, i'—tﬂ-‘ﬂ,ﬁ. ;51'1]_1.“';

(2, 4.2, 2 3 442
-'x""' -‘h’u :Iﬂ}ﬂ;

4 4 6
XoVo —2Xg¥ =0



,rn_t-'ﬂ*(l —Z,r;;y;) =

3 2_ 1
_T“_y.'} - 9

2 _ Soperi(re+4sd+ asdnd)— (re+ 16503)(B553r2)
D= -

e

(FaTdxg+dxay, |

- _2F 2, - S BoAN i 3 AN e 22N
ygxgl ¥a- T Hxg Ay, i 2vag tﬁIn-‘uji ;51'“.1“;;

e o)
(ri+ad+ a3l)
4 s 5
4: ﬂ_}!ﬂ _4."{}'1}{}: ﬂ
4 4y
4 xp Yo (I _I{}}!{;)_ 0
4
Xo¥Vg — ]
Substituting Xp = — into x> y2 = -
Xg = Xo¥Vp = —
a0 XeXe=
[
¥a 2
0 _
Yo =2
]




Substituting into ., 0% 7, = 1

20 325 21
21
“0 LA
i
=0 i =i/

So, the tangent planes that are farthest from the origin are at the four points

(2_2'5, iz“"! if'm).the minimum distance occurs when xg =0 or y3 =10 .

thatiswhen D=0

Substituting the values (1_”, +2V° 4+ 2”“) into

22 2 2
Vo zZp X F2xgvpeze v F2x9vp zpz =5
The equations are

2 +2" 42" =5

22.—5_1__20-:0_‘?_2'1-!1:-:: 5
925 %10, _ 910 _ &
935 4 9910, _ 59110 _ ¢



Answer 8TFQ.

‘We know that for a function f n::-ftwnvariablt:sif[ l]"_uin{:l a:'_J}"(Jr,_:r,if:] = f(ﬂ,b),ﬂmnf
. Fr{a.

15 conbinuous at (a,b). But, it 15 also possible that f 1s discontinuous at some interval

Therefore, there are cases in which the given statement does not hold true.
Therefore the given statement 1s false.

Answer 9CC.

{a) If z = f (x.y) thenfis differentiable at (g, &) if Az can be expressed in the form
Az = f'(a, b)ﬁx +_j‘_’,(a,b)ﬁ_}r + g;hx + £,Ay where § and £ — 0 as

(Ax, &) — (0, 0).
(h} Ifthe partial derivatives £, and £, exist near (g, ) and are continuous at (a, &), then
f1s differentiable at {a, &).
Answer 9E.

Consider the following limit-

2xy
im ——
(L0} x° 4 2"

To evaluate the above limit note that if the function of two variables whose limit has to be
evaluated is defined on {aﬁ.ﬁ}then the limit can be evaluated by direct substitution.

Since, the given function is defined on [ ],I]. so apply the limits directily:

2y 2()()
(0 +2y7 (1) +2(1)
2

T1+2
2

3

Therefore, the final answer Is:

2xy

mm -—— =3
(z.¥}{L1) x° +2J!‘ 3




Answer 9TFQ.
Given f(x.y)=Ilny and"i"_f(x_}r)—
¥

If f 1s a funchion of two vanables x and y , then the gradient of # 1s the vector

function Vf defined by Vf(x ) = ( (% 7). 5 (x y]) or Vf(x ¥) = i1+i].

3
Find ¥ and &
=

¥ _9°
7wl
=0
& 3
¥ _
% @,[ ]
_1
Y

. 1. 1.
Thus, we get Vi (x ») = (0)i +;] or Vf(x ¥) = ;]-
The given statement 1s false.
Answer 10CC.

If z =f(x,y) 15 a differentiable function, then the differentials dx and dy are defined to

be two independent vaniables that can be given values of any real number.
Then, dz 1s called the total differential and 15 defined by

dz = f,(x y)dx+ _}’;(x y)d_)r or

dzr = de + %dy
&x ey
Answer 10E.

Consider the funciion,

2xv
lim a2
(. -i—qnmx + 21

Show that the limit does not exist.

Letf{ry}- _+2 -

First let’s approach {{],ll]} along the x-axis.
Then y=0 gives
2x(0)
¥ +2(0)
0

-

x
=0

Thus, f(x,y)—0as (x,y)—(0,0)along the x-axis

f{.r,ﬂ)=




MNow, approach along the y-axis by putling xy=1).

Then
__2(0)y
f{ﬂ'f)‘(n_}z+2y:
_ 0
.
=0

Thus, f(x,y)—0as (x,y)—(0,0)along the y-axis
Here, obtained identical imits along the axes, that does not show that the given limit is 0.
The value of the limit must be same from all paths that approach the origin.

Now, approach ({1_[!} along another line, say y=x.

Forall x=0,

211

Fsx)=5 00

Thus, f(x,y)— % as (x,y)—(0,0)along ¥ =x.



Recall that,
it f(x,y)— Las (x,y)—>(a,b)alongapath C and f(x,y)—=L,as (x,y)—>(a,b)

along apath C,,where L, # L,.then lim _f(x,y)does not exist

=,
In present case, diferent limits are obtained along different paths.

The graphical representation as shown below

) 2xy
Therefore, the limit lm ———
(=.xH00) ¥ 4 Iy~

Need to sketch the graph of the above function and also find the t _I}i_Twl ‘ i [Tl}

To graph f(x, ). use computer algebraic system.
First load the package. with( plots);

After that use the following command, to plot the function

= p."ai‘.?d[sin{%} - cus( Il],r=-3_3._r=-3._’r]:

The graph of f(x, ;.~}as shown in below:

Z

(x V\—sin 1 1
x.y|=sinz+coss



Definition:

Let f be a function of iwo variables whose domain D includes points arbitrary close o {a,b) .
Then say that the limit of f(x,y)as (x,y) approaches (a,b) is L and write

errtesy’ (xy)=L

However, from the graph of f (x. y}_ it seems reasonable that the limit does not exist at 0.
Verify:
First, note that
: 1 : 1
lm |sin—|=o and lm |cos— |=w=
(x.x)-{0.0) X (r.x}=+{0.0) x

So, the limit laws can't be applied to infinite imit because oo IS not 3 number
((o0+20) can't be defined)

The limit can be writien as,

1 N 1 ) .1 1
lim (sm - +ms—] = lim [sm —(I + cnl—]:|
(=.p)+{0.0) X X (=.x)+{0.0) X X
=a0

Because both sini and 1+ cot lbemmes arbitrarily large
X X

Thus, the values of f(x, y)becomes larger and larger (or “increase without bound) as (x, y)

approaches (0,0).

Therefore, f(x,y)=sin 1 icoslis |does not exists|
X X

Answer 10TFQ.

Giventhat £, (2. 1)7,(2 1) < [/ (2 )]
We know that 1f D[a,b) <0, then f (a,b) 15 not a local maximum or mimmum and
(a,b) 1s called the saddle point.

Also, D(a,b) is givenby f,(a.3)f,,(a. b) [ /o (a. )]

It is giventhat 7 [2, l)f_u- (2, 1) < [_,1',“F [2, I)T
This means that D(E,l) <0.

Therefore, f (2, 1) 15 not a local mazimum or minimum and has a saddle point at (2, 1) .
The given statement is true.



Answer 11CC.
If =z =_f(x,_}r) 15 a differentiable function of x and y, where x= g(.f) and y= k(.t) are
both differentiable functions of £, then z 1s a differentiable function of £ given by

Now, consider = =f(x,_}r) 1s a differentiable function of x and y, where x= g(s,.ﬁ) and
y=£h (S,I) are both differentiable functions of s and £, then z 15 a differentiable function of

sand ¢ given by
& _FE FTF 4

ds  xads dyas
& _dax FYy
i &xa a

Answer 11E.

L= T(I,_}i')

(A)
T(x+k,y) = T( x,y)

k
T(6+4,4)-T(6,4)
h

Then T,(x,y)z]iiﬂ

Then 7.(6.4)=lim
=0

By taking h=2 and -2 and using given table,
T, (6,4): T(BA);T(E,-!I)
_86—80

2
7.(6.4)= T[4,4)—2T(6,4)
_ 72—-80 _4
-2
On averaging we find; T;(ﬁ,4)=3.5

3




(B)

(©)

Now T, (5,4):HmT(5-4+31)—T[6,4)
k=0 k

By taking h=2, -2 and using table
T(6,6)-T(6,4) 75-80 _

T,(6.4)= -
»(6.4) . .
7.(6.4)- 7(6,2) —ET(EA) _ 3?_230 .-
On averaging we find 7, (6,4) =—3.0
Heace T,(6.4)=EFcln]
?;(ﬁr'#): —3.0%im
T
= 4=
i JE _J’E
Then D;T(ﬁ,i'l): {T;[ﬁ’g‘),?; (6,4)};
11
B ":3_5, —3 S 4
272
353
2 A2
_05
2
1
=——==1035
22
Hesie: BLT(EA)= [P35 clm
Now T, (6.4)=lim =0 +) = (6.4)
E-=0 b
By taking h=2, -2
T, (6.6)-T,(6.4
7, (6.4)= =L )2 (6.4)
And T, (6.4)=% (6.2) —2?; (6.4)
Now 7,(66) = T T Bl s
ans (66 =T SR

On am‘a,ging T;(ﬁ,ﬁ) =3 0% m



Ao T.(62)= T(4,2)_—T(6,2) _74-87 _

6.5
2 -2
And T(6,2)= T(B’z);T(ﬁ’z) = gﬂ;m -15
On averaging T;(E,E)=4.ﬂ"cfm
Hence 7,(6,4)= (66 L(64) 3-35_ 405
2
T, (6.4)= Z(62) _;'(6’4) = 4'0_23'5 =—0.25

On averaging we find
T, (6.4)=

Answer 11TFQ.

Let D.f(x,_}r)zfz (x,y)a+f’(x,_}r)b,where uz(a,b) 1s a unit vector.

‘We have %zcosx and gzcos_y.

Then, D.f(x,y) = cosxcosB 4+ cosysing.

Now, D _f (x, _}r) is maximum at |?f (x, _}r) | and it occurs when & = (cos & sin H) and
has the same direction as Vf (x, _}r).

In the given case D.f(x,_}r) 1s maximum at & = :;_r
Thus, we get D.f(x,y) = %+% or D.f(x,y)zl.
We also have |?f(x,y)|= JZ.

Therefore the given statement is true.
Answer 12CC.

If z 15 given implicitly as a function z = f (x, _}r) by an equation of the form
F(x.y.z)=0,

oF
& _ &
ﬂ:l.ﬂﬂa— E

5%



Answer 12E.
‘We know the linear approzimation of °f at (@, &) 1s
f(zy)=7(ab)+ fi(a.b)(x—a)+ 1, (a.2)(»-B)
Then hinear approximation of T(x, ) near (6, 4) 1s
T(x,y)=T(6.4)+T,(6.4)(x—6)+T,(6,4)(y-4)

Using results obtained 1n exercise 11
T.(6.4)=3.5°c/m
7,(6,4)=—3.0°c/m

Then T(x,y)=80+3.5(x—6)-3(y—4)

Then 7/(5.3.8)=80+3.5(5-6)—3(3.8-4)
=80+35(-1)-5(-02)
=80-35406
=771

Hence 7(5,38)=[771]
Answer 12TFQ.

Consider the function given by f(x,y) =1UIJ_]-?—SIJ —4_}?2 -x - 2_}?4.
‘We note that the function has four local mazima and no local minima.
Its not necessary that it should have local minima if it has local mazima
The given statement is false.

Answer 13CC.
(a) Let z = f(x.y). The directional derivative of f at (xg, yu) in the direction of a unit
vector m = (a, E:-} 15

Df () = i L2200+ 22 /G ).

The directional derivative of £ in the direction of w 15 the rate of change of z 1n the
direction of 0

A geometric interpretation of a directional derivative of z=f (x, _]r) 15 a tangent
to the surface at point P.

b} If £ 15 a differentiable function of x and y, then fhas a directional derivative 1n the
direction of a unit vector m = (a, .-5} and D‘f(x _}r) = 7, (x, _}r)a +_};(x, _}r)b_



Answer 13E.
Let us start by finding f;,

‘We know that f, = %f(x y)_

fo= 25y +asty)
= 8(5_}r3+ 212_1?)? (ﬂ + 41}?)

= 32m(5° + 22

We get |/, = 32xy (5y3 + Exzy):r |

Now, we have f, = %f(x ¥).
d
5= g[5y3+ 25%)’

= 8(5% + 22%y) (15 + 22°)
= (5% + 22%) (1205* + 162%)

Thus, we get |/, = (5% + 2%y (1205° + 162°)|

Answer 14CC.
a.
Consider a function 7 of two variables x and y.

The gradient of fis the vector function Vf defined as shown below:

Vf (x.3)=(£.(x.). £, (x.))
%375
b.
Consider a function f of two variables x and y.
Consider a unit vector: u = (a, b)
The directional derivative in the direction of a unit vecior m = (a, b} is expressed as the

scalar projeciion of the gradient vector on to W

D,f(x.y) =Vf(x,y) u



C.

Consider a funciion  of two variables x and y.

of. of ..
The gradient vecior Vf {.r, _r} = __—fl + c?;.': ) is the normal vector to the tangent plane.
cx oy

Answer 14E.

Let us start by finding g,
d
We know that f, = aj[;r ).

_ dlut+
Se Aul u? 2

1 2u(u + 2v)
u'+ v (z.|:2+'|\;'2)2

_ui—v2+4m:'

(s +?)

_uz—vz+*&n’

et &S ALY

i
Now, ha e — . V).
ow, we have g apg(u v)

_ dfu+2v
. avlu+

2 _2v(u+2v)
S+ [z.|:2+v2:|2

B 2(:.:2— v —:nr)
[uj+v2)

2(::2— v —:w)
(u2+v2)

Thus, we get |2, =

Answer 15CC.

{a) A function of two variables has a local mazimum at (a, &) if f(x _}r) = f(a, b)
when (x,_}r) 15 near [a,b)_ This means that f(x _}r) = f(a, b) for all points
(x,») 1n some disk with center (g, £). The number f (a,b) 15 the mazimum value.



(b} A function of two waniables is said to have absolute mazimum at (a,b) if
_}’(I,y) = _f(a,b) for all (x,y) in the domain of f.

ic) If f/{x.y) 2 f(a.?) when (x,y) is near (a,b), then f has alocal minimum at
(a,b) and f(a,b) 1s the local minimum walue.

(d) Iff(x,y) = f(a,b) for all point (x,_}r) in the domain of £ then f hasa

absolute minimum at (a,ﬁ:-) .

(el If f(a,b) 1s not a local maximum or minimum, then (a,b] is called a saddle

point of F and the graph of f crosses its tangent plane at (a,b) :
Answer 15E.

Let us start by finding #__

We lnow that 7, = %f[x,y).

F= [+ )]

2a’

= Ecrln[a"+ﬁ’)+a2+ﬁa

2a’
&+ 8|

Weget |F_ = 2£t'ln[£1'1+ﬁ2)+

Now, we have F, = %F(rx, ,ﬁ‘)_

£ = (e £)]

£

2a* B8
ot + g2

2a’
Thus, we get FF= ﬁ

Answer 16CC.



{a) According to the Second Denivative Test, if fhas a local mazimum at (a, &), then
D=0 and fix(a, &) < 0, where

2
D = D(a,b) = f.(a.8)f,(a.0) - [/, (a.B)]"
b} Suppose that the second partial denivatives of f are continucus on a disk with
center (a, &) and f;(a, &) =0 and f,(a, &) =0, then (a, &) 15 the cribical point of
Answer 16E.

Let us start by finding 5,

We know that f, = %f(xy)

o al"= ()
s

We get |G, = ze" sin [z) !

o

Now, we have G, = %G(I, ¥, z) .

Thus, we get |G, = E—cos[z)_

]
%
[
M,
=
~—
|t
M
I
%
N.,\ ]
Loy
&
~—
N
o T

"
Therefore, we get |G, = &= [Isin (l] - ijcns £):l i

4 \ Z




Answer 17CC.

Suppose that the second partial derivatives of f are continuous on a disk with center (g,
b)(cnitical point), and suppose that fi(a, &)= 0 and f(a, &) =0. Let

2
D = D(a) = fu(a.5)Sp(a.5) - [fp (e B)]"
Then, the Second Denvative Test states that
(a) If D= 0 and fix(a, £) = 0, then fla, &) 15 a local minimum.
ih} If D > 0 and fii(a, &) < 0, then fla, £) 15 a local mazimum.

ich If D < 0, then fla, &) 1s not a local mazimum or minimum. The point (a, &) 15
called the saddle point of f and the graph of f crosses its tangent plane at (a, &).

Answer 17E.
Let us start by finding S,,.

d
We know that £, = a_f(x, _}r).
8, = %[u arctan (v\-"r_r)]
S—

We get |5, = an:tan(v\/;)_

How, we have 5, = %S(u, v, w).

5 = %I:u arctan (vv";)]
u~w 2
s
u-fw

1+v'w




1 uv
Therefore, we get = [ )

Answer 18CC.

(a) A boundary point of I 15 a point (a, &) such that every disk with center (a,b)
contains point in ) and also points notin D).
A closed setin ¥ is one that contains all its boundary points.

ib}) The extreme value theorem for functions of two vanables states that if f 1s
continuous on a closed, bounded set D in I, then J attains an absolute
maximum value f(xl,_}rl) and an absolute minimum value _}"(;lr2 ,yz) at some

points (x,5) and (x,5,) in D.

ich In order to find the absolute mazimum and minimum wvalues of a continuous
function f on a closed bounded set D)

(1) Find the values of f at the cnitical points of f 1n D).
i} Find the eztreme values of f on the boundary of D).

(m) The largest of the values from steps (i) and {11) 1s the absolute mazimum

walne the emalle ot af theer waluee 12 the shealnte minimum walne



Answer 18E.

= 14492 +4 6 T— 0.05572 +0.000297
+(1.34-0.017)(3.35) +0.016D

;

STRZT I

=4.6—(0.0557) 2+ 3(0.00029) 7*
+(5-35)(-0.01)

=(1.34-0.017)(1)

=0.016

When T =10°C, 5 =3)parts per thousand
D=100m

Then g=4_6—2(U_ﬂﬁﬁ)[lﬂ)+3(ﬂ.ﬂﬂﬂ29)[10)2
+(35-35)(~0.01)
=4 6-1.1+0087
=3.587
% _(1.34-0.01x10)
as
=1.34-01
=1.24
£=l:I.l:I16
o

Nowgis the rate of change of speed of sound with respect to temperature T

when the salinity of water 5 and depth of ocean below water D remains constant.

Similarly %15 the rate of change of speed of sound with respect to

salinity of water 5 when the temperature and depth D remains constant
And %iﬁ the rate of change of speed of sound with respect to depth of ocean

under water when the salimty S and temperature T remains constant.

Since % ﬁandﬁare all positive, then we see that the speed of the sound

ar’ as 8D
increases with the increase in T, S or D when the other two quantities remain
constant.



Answer 19CC.

Let us assume that the extreme values of f(x,y,z) exist and Vg # 0 on the surface
g(x.y.z)=k_In order to find the maximum and minimum values of f(x,y,2) subject
to the constraint g (x,_}r,z) = k , we have two methods.

{a) Find all values of x, 3, z, and 2 suchthat Vf(x, y,z) = AVg(x, y, 2) and
glx.y.z)=k.

ih}) Ewaluate f atall points (x, _}r,z) that result from step (a). The largest of these
values 15 the mazimum value of 7 ; the smallest 1s the minimum value of 7.

Answer 19E.

flzy)=4’-»n" ——— (n

Differentiating (1) partially with respectto y
L= 3
Sy =—2x

Differentiating (2) partially with respectto y

Jo =2y
Dufferentiating (3) partially with respectto x
=2y

Hence |f, =24z, f,="2x, fy,=fe="2¥




Answer 20E.

#z
w

Differentiating (1) partially with respect to y

oz
a7 - (S (3)
v
& =4z
&
Differentiating (2) partially with respect to y
313 _ _23_1'
ay ox
Differentiating (3) partially with respectto x
322 _ _22_1’
ox dy
Hence 32_2,2'= 0, &= Az &z — &z S, P
3x 3 Sxdy dydx
Answer 21E.
f(x,y,z) =z _:l.rI Y e o (1)
A
Then i Ex® Lyt seeseccae 2
&

E=k(k—1)x""y‘z'
Differentiating (1) partially with respectto y
%zfx" [ e (3)

ng(f—l)ff‘z'




Differentiating (1) partially with respectto z
%: 0 i A S — )

g—m(m 1)]")’12._2

Differentiating (2) partially with respectto y

&f _ :
ﬁ_.r;:.hr‘“y'-z-

Differentiating (2) partially with respectto z
FS ematyf =

ox

Differentiating (3) partially with respectto =

&f o
ax—@r_ka‘* yiz=

Differentiating (3) partially with respectto z
32f = Imx* =1

oy

Differentiating (4) partially with respectto x
TGS ey

Differentiating (4) partially with respectto y
32}' l 2 L=

Hence f,=k(k-10)x"y' 2", f,=1{i-1)z" 7"
zzm(m—l)x _}rz ’fv =Hx"1y“z'=f!
fnzbﬂxk—lylz-—lzfn,fnzfmxiyt—lz._lzf

Ir
Answer 22E.
v= rcos(s+3) —————— (1)
Then 1w =cos (S-l' 2:) —————— (2)
v, =0

Differentiating (1) partially with respectto s
W, =—r5in(s+2t) —————— (3)

v, =—rcos(s+2£)



Differentiating (1) partially with respectto t
v, =—2rsin (s+ 2:) —————— 4)

v, =—4rcos [s+ Ef)

Differentiating (2) partially with respectto s andt,
¥, =—sin (S-l' 2:)
¥, =—2s5n (s+ 2:)

Differentiating (3) partially with respectto r and t,
v, =—sin (s+ 2:)

v, =—2rcos(s+2)

Differentiating (4) partially with respectto r and s
v, =—2sin(s+2¢)
v, =—2rcos(s+2t)

Hence v, =0, v, =—rcos(s+2t)
v, = —4rcos(s+2t)

v, = —sin (s +2¢)
v, =—2sin (s+2)
W, = —2rcos (S-l' 2!)

vﬂ
VY

VY




Answer 23E.

Consider the equation
E
Z=xy+xe*

& &
Now, show that x—+ y—=xy+z.
éx oy

The partial derivative of z with respect to xis

& a +IE':
ax axl

-2 () 2

== . !

et eaet {-2)

¥
_"’EI

X

Multiply both sides by x.

z
+e*

=y-—

z
x r
IE=I y—'w +e*

cx -

L L

x—=xy—ye* +xe* - (1)



The partial derivative of zwith respectto yis

Efa,:i(xymf]
a o

=x+e’

Multiply both sides by y.

& _ [;J
bl

¥

(34 z
—=xy+ye* ... (2)

Add equations (1) and (2).

Iaz‘”?& = Xy-ye* +Xe* +xy+ ye*
ox oy

=1]r+1}r+.re;
=Xy+z

Therefore,

.r?f+ & +z
pe J’ay Ay

Answer 24E.
Consider the equation

Z=sin (r+ sin!]

Now, show that E ¢z =EE

ax oxdt 8t éx’
The partial derivative of z with respectto xis
% =§(sin(1+s:im))

=cos(x+sint)-(1+0)

=cos(x+sinr) .. (1)



The second partial derivative of z with respectto x is

= ala)
o axlédx
=§ms[r+sinf}

=—sin(x+sint)-(1+0)
=-sin(x+sint) ...... (2)

The partial derivative of z with respect to ris

oz 0. i

E=§(sm(1+smr})
=cos(x+sin7)-(0+cost)

=cos(x+sinr)cost ...... (3)

The partial derivative of %wrth respectto xis

Z:_oa)
oxor  oxl o
=§[m{x+sim)mst]

=msf{—sin{:c +sin r))~(] +0)
=—cost-sin(x+sint) ... (4)

Multiply equation (1) and (4).

&z &z : : .
g =[cos(x+sint) |-[ —cos-sin (x+sinz)]
=—costsin(x+sinr)-cos(x+sinr) ... (3)

Multiply equation (2) and (3).

%‘Gﬁ% =[ cos(x+sint)coss |-[ —sin(x+sinr)]
i
=—costsin(x+sinr)-cos(x+sinr) . (6)

From equations (5) and (6), conclude that

&0 _ao:
Ox éxér ot &x’




Answer 25E.

Give that z =32 — " +2x
Take j[x,_}r,z)=3xz—_}r:+21—z
Then £, =6x+2

Jp=—2y

f=-=1

{a). The equation of tangent plane at (xl, J’l-%) 15
L (mna)(xz-x5)+ 5 (mon.0) )+ L(mma)(z-7)=0
So the equation of tangent plane at (1, -2, 1) 15
£ (-2 (x-1+, (-2 (r+2)+ £ (L- 2 (z -1 =0
ie. (6+2)(x-1)+{D(y+2)+(-1)(z-1)=0
LE. 8x—-8+4y+8—-z+1=0
LE 8x+4y—z+1=0
Or z=8x+4y+1

(b). The equation of normal line at (x,y,.2, )is
—-x5 _ _}r+_}rl _ Z—Z,
L(mna) SLH{monza) Llxnonz)
So the equation of normal line 1s
x—1 B y+2 B z—1
A (L— 2,1) _f,(l,—E,l) _;’;(1,—2,1)
x—1 y+2 =z-1

LE.
8 4 -1
3 4
(B)
The equation of normal line 1s
=1  y+2  z-1
f,(],— 2,1) = (1,—2,1) L(l,—?,l)
ie x—1:y+2:z—1
3 4 -1
3 4




Answer 26E.
z=¢e cosy
Take f (x,y,z) =g cosy—z

Then £, =&"cosy

_};z—e:sin_}r

f=-1
(A)

The equation of tangent plane at (0, 0, 1) 1s
£.(0,0,0)(x— ﬂ)+_}‘; (0,0,1)(—-0)+ £,(0,0,1)(z—1)=0
1(x-0)+(0)( y—0)+(-1){z-1)=0
x—z+1=0

Or

(B)
The equation of normal hne 1s
-0  y-0 = z-0
£#(0.0.) £(0.01) 1 (001)

pe o2l
1 0 -1

1E. ?zl—z, y=0

Answer 27E.
242t -322=3

Take f{zy.z)=x+2y"-3" -3

Then f =2x
Sy=%

J,=—"06z
(A

The equation of tangent plane at (2, -1, 1) 15
£, 21D (x-2)+ £, (2- LY (41 + £ (2-11) (z-1) =0
LE. 4(;{— 2)+(—4)(y+1)+(—6)(z—1)=ﬂ
LE. dx—4y—-bz—8—-4+6=0
LE. 4x—4y—bz—6=0

Le. 2x—2y—3z=3




(B)
The equation of normal line 1s

-2  y+l  z-1
L(2-1Y) £, (2-1) f(2-11)
x—2 y+l1 =z-1

4 4 6

1E

Answer 28E.

y+yztzx=3

Take f(x,_}r,z)z y+yz+zx—3
Then f,=y+z

Sfp=x+z
Je=xty
(A)
The equation of tangent plane at (1, 1, 1) 1s
£LDE-D+4,LL) - D+ A LLD-1=0
LE. 2(x—l)+2(y—1)+2(z—1)=ﬂ
LE x=1+y-14+z-1=0
Or x+y+z=3
(B)
The equation of normal hine is
-1 y-1  z-1
L1y £(LL1) £(LL1)
e 1—1:_]:—1:2—1
2 2 2
Answer 29E.

sin (xyz) =x+2y+3z

Take f(I,_]J,Z)=Siﬂ(A:}E)—I— 2y—3z
Then f, =_}rzcos(1yz)—1

5= :IZ[:OS(I_}E)— 2

F= 1_'}?[:05(19!2)—3



(&)
The equation of tangent plane at (2, -1, 0) 15

£(2.-10)(x—2)+ £,(2.-L0) (»+1)+£.(2.-1L0)(z—-0) =0
ie  (—D){x—2)+(-2)(y+1)+(-2-3)(z—0)=0

LE. —x+2—y—2-5z=10
i1e |x+2y+5z=ﬂ|
(B)
The equation of normal hne 1s
x—2 _ y+1 _ z—0
210 7(2-10) %(-10)
x—2 y+1_ =z
-1 —2 =5
Answer 30E.

Let fipLy) =x2 +y4 Then x(xy) = 2x and fy{xy) = 4y3, so ™x(1,1) =2, fy(1,1) = 4 and an
equation of the tangent plane isz-2=2(x- 1) + 4(y - 1) or 2x + 4y - Z = 4. A normal vector fo
the tangent plane is <2, 4, -1> so the normal line is given by

L 5': = "‘f orx=1+2Ly=1+4tz=2-1




Answer 31E.
Consider the hyperboloid
Cr4y' -z =4
And the plane
2x+2y+z=5
Recall that,
Let §be a surface with equation F(x,y,z)=k.and p(x,,y,,z,)be apointof §.

The tangent plane to § at (x,,¥,,2,)is

F;{In'fntzu}{x- n]"'Fy (I.,j’u.-ﬁ.}{_}’—yu}‘i'F_. (Imfn-zn}(z_zn }: 0

In present case,

F(x,y,z) =x +4y' -7

The partial derivatives of the function F(x,y,z)=x"+4y" —z* with respectio x is

a » ¥ >
F D)= (P 44y -2
(xy.z)=—(x +4y* =)
=2x
The partial derivatives of the function F(x,y,z)=x"+4y’ —z" with respectto y is
Fr(x,_}r,z}=£(f +4y= _zz)
' oy
=4(2y)
=8y
The partial derivatives of the function F {x, ¥, z} =x +4_p: —z* with respectto z is

'F; {Iy_}’,f] =£(_T3 +4_]": __z:}
=-2z

The direction of the normal line is the gradient vector VF(x, y,z).
For a function F of three variables, the gradient vector is
VF(x,y,z)= (Fr (x. v, z],F;_ (x,y,z),ﬂ{x,y,z]}
Thus, the normal vector of the tangent plane to the hyperboloid at [x, y,z]is

(2x,8y,-2z)



The normal vecior of the plane 2x+2y+z=5is

(2.2.)
It is given that; the tangent plane to the hyperboloid is parallel to the plane
2x+2y+z=5

So, the normal vector of the tangent plane to the hyperboloid is parallel to the normal vector of
the given plane.

Mote that, two non-zero vectors are parallel if they are scalar muliiple of one another

Thus,

(2x.8y,-2z) =k (2,2,1)
{Z.t, 8y, *Zz) = {Zk,zk,k}
Where k is any arbitrary scalar
2x =2k
8y=2k
2z=k
From first equation,
2x=2k
x=k

From second equation,
8y=2k
2
="k
o

=l,{'
4

From third equation,
=2z=k

Ly

z=—



Substitute I=.ﬁ',}?‘=&k andz:—%kiﬂlﬂ _;[: +4y2 —z: =4.

el (4

k=12

Substitute k=2in I=ﬁ',}?=&k andz:—%k. Then

(v22)=(23.-1)

Substitute k =-2in ,r=_.t,_p=iﬁ- andz=—%.l'- Then

s y.z]z(—l,-%,l)

Therefore, the points on the hyperboloid x* + 4y” — z* = 4 where the tangent plane is parallel

CEEEED

fothe plane 2x+2y+z=35 are

Answer 32E.
Consider the following function:

u=In (1 +se” )
Recall that, for a differential function of two variables, z = f(x,y), the differential g . also

called the total differential is defined by the following equation:

&, &
dz=—dx+—dy (1
pw +®,d}’ (1)

In present case, v is a function of two variables s and L.
By using (1), the differential gy, is defined by the following equation:

du =@dt+@dr e (2)
as ot



The partial derivative of u with respect to s is as follows:
()
(n(1+se¥))
1

2|
1
e @|le

= — (e”) Since: i(lr}_r:l=l
1+ se” dx X

The pariial derivative of u with respect o 1 is a5 shown below:

ou &
—_— =
ct 61'{ )
¢ :
=—/|In|1+se”
2 (in1+5¢%)
1 3 , d 1
= — | 2s5e” Since: —(Inx)=—
l+se"( ] .-.ir{ ) X
substitute ¥ _ € ang M _ 25 i equation (1).
as l+se” or  1+se”
du =2 ds + 2 gy
ds cr

e 2se™
N [I +5e” )dH{ 1+ se™ ]dl'

- [ . )(e"e& +25¢¥dt)

1+ se™

1
1+ se™

Therefore, |du = [ ](e”a& + Zse"dt) I

Answer 33E.

‘We know the linear approximation at point (@, &, ¢) 15 given by
Fxy.2)= fla.b.c)+f (a.b.c)(x—a)+ f,(a.b.c)(y—2)+ £ (a.b.c)(z—¢)

HNow _,1'(;«:,_113,2."):;J|:3«.J_:r,if2+zr:2
Then f,zzf,(y’ﬂ’

f=rt2
g Jy‘+z"
P

:

v 422



The given point 1s (2, 3,4)
Then f,{2,3,4)=3(2) J9+16
= 60

_0
H@3H=Fc

_ 24
==
L(Eﬂﬂk%

32
5

Then the line ar appro=zimation at (2, 3,4) 15

f(zy.2)= f(2,3,4)+5“(I—2)+?(y—3)+3_52(z_4)

=40+ \‘.':FIZIJE—12[:I+§_jy,r—E+E:er—E
5 5 5 5

f(x,_}r,z) = ﬁﬂx+?y+3—522—120

Then (1.98)°J(3.01)" +(3.97)
= 7(1.98, 3.01, 3.97)
— 60(1.98)+ ?(3_01)+§(3.9?)—120
=

Answer 34E.

C

¥Y=5m

A x=12m B



(A)
The area of the triangle 1s

1
4=2()0)

Then dd=22ar+%s
ox ay

. 1 1
1e dd =—ydr+—xd
2_}' 2 =

Now dx=dy=02cm
And x=1200cm, y=500cm

Thea dA:%(500)(0.2)+%(12m)(ﬂ.2)

=50+120
=170 cm?
Therefore the error 1n area of the triangle 15
170 cm?
(B)
The length of the hypotenuse 1s
L= JE+)
Then dﬂz%dx+%@
o
X y
= dx+ dy
Jx’ +5° 1’xz+y:
Now x=1200cm , y=500cm,6 dx=dy=02cm
Then dL=—200(0.2)+—2 (0.2)
1300 1300
12 5
=—{02)+—[0.2
_24+1
13
= ki =02615cm
13

Then the error in the length of hypotenuse 1s
0.2615 cm

Or 0.002615 m



Answer 35E.

Consider the function

u=xy +2°

Where x=p+3p°, y=pe’ and z = psinp
Recall that, the chain rule

Suppose that z = f(x, y) is differentiable function of x and y. where x= g{:]and y =h(r)
are both diferentiable functions of . Then =z is differentiable function of ¢ and

e —— (1)

The partial derivative of g = x*y* + z* with respect to x is
ou &
(u)

ox ox
é s
=a{fy’ +z )
=2xy’

The partial derivative of g = x*y* + z* with respectto y is
cu @&
—:_u
o é‘.v{)
d s s
=5{ry’+z')
=3x"y*

The partial derivative of g = x*y* + z* with respectto z is
ou ©

2 =)

oz o
= %(I:yi +E-‘]

=4z’



The derivative of I=p+3pf with respectto pis
dv _d X)
dp dp
=—|p+3p°
< (p+3p)
=1+6p
The derivative of y = pe” with respectto pis

Lv]

:E(‘WP )

= pe’ +e”
The derivative of z = psin p with respect to p
dz _d
» ")

=E(P5in P)

= pcos p+sinp
Subsiitute the values of ﬁ g —— amlE into equation (1)
dp’ =
=(207")(1+6p)+(3x"y*)( pe” +&” ) +(4z")( pcos p+sin p)

=2xy°(1+6p)+3x°y’( pe” +¢” )+ 4z’ (pcos p+sin p)

Therefore, the derivative of the function uwith respectto p

=27 (1+6p)+3x°y"( pe” +¢” )+ 42 (pcos p+sin p)

dp




Answer 36E.

Consider the function:
v=x siny+ ye”
Where x=s+2r,and y = st

The partial derivative of y= x?sin y+ ye™ with respect fo xis:

v ¢

x o)
¢ .
=E(_tzsmy+ye”}
=2xsiny+ye -y
=2xsin y+ y’e”

The partial derivative of y= x* sin y+ ye” with respectto y is:

v @

224

o o
=§(12$in_}-+ye‘:']

=x"cosy+1-e” +ye” -x
=x" cos y+e” + yxe”

The partial derivative of x = 54 2y with respectto s is:
dx 0
oy
os Os
c
=—|s+2
~(s+2)

=]
The partial derivative of y = g+ 2y with respectto 1 is

& 8

a )
=§(s+lr]
=2



The partial derivative of y = st with respect to s is:
é
2-20)
s Os

é
=—(st)
cs
={
The partial derivative of y = sf with respect to ris:

& _20
o)

=< (1)

=5

Now, by the chain rule:

ov_ovax vy

ds dxds oyés

Substitute the values of Ei& andﬁ as evaluated above:
as s ox oy

ov

= (szin_}r)(l)+{fcus_r+e“ -1-_m'e"’)(r)
g=215iny+t{fmsy+e’-' +_1¢re"']

Therefore, the partial derivative of the function wwith respectto s

%=2:5iny+l(.t’msy+e” +}r:re"’]




Again, by the chain rule:

,E, zmdE into the above equation:
ox oy
ov

ér =(2xsiny)(2)+(x* cos y+e” + yxe” )(s)
g:4xsiny+s(fm.}""fq"‘m¥)

Therefore, the partial derivative of the function wwith respectto ¢

g=4:siny+s{fmsy+e" +}are"*"]

Now, as the partial derivative has been obtained, find the value of ﬁ and ﬂat f=lands=0

cs ct
To do this, find the valuesof xand yat y =]l and s =0:
x=5+2
=0+2(1)
=2
Also,

yv=si

=(0)(1)

=0

Substitute x=2,y=0,5=0, and 7 =1 info g

%Lm.. =2(2)sin(0)+ {1}((1}2 cos(0)+ 220 {{I}{E]eilw)

=0+(1)(4(1)+¢" +0)
=0+(1)(4(1)+1+0)
=5

Therefore,

ov
=3
EI! ==l




Similarly, Substitute x=2,y=0,5=0, and7=1 into 2~
ot

%: :4(2]sin(ﬂ}+{ﬂ}({1fm{u}_l_e(zxnl +(“}(2}El_3[n|)
G el =]

..g =0+0

Ot |, g,

ot w=lr=1

Therefore,

ol gl r=]
Answer 37E.

z=f(x.y)

Where x= g(s,.ﬁ), y= k(s,t)

Then by chain rule

Now whens=1,:=2
§=J’=(Lz)g§(1,2)+;;(1,2)h, (12)

= f.(2(1.2).2(1.2)) g, (1.2)+ £, (g(1.2).2(L2))A,(12)
= £ (3.6)g,(1.2)+7,(3.6)4(1.2)

= 7(-1)+8(-5)

= —7-40=—-47



hd o719 (12419412

= 7(2(1.2).5(12)) g (1.2)+ 7, (2 (12).5(1.2)) & (1.2)
= £:(3.6)2.(L.2)+ £, (3.6)%(1.2)

=T[4)+E(lﬂ)
=284+80=108
Hence E=—4‘Ir', E=1lIIE‘!
s &
Answer 38E.

This is the tree diagram for the chain rule for the case:

L]

On using tree diagram we have



Answer 39E.

z=_}r+j(12—y:)
& 3
Then a:ﬂ+af(xz—y:) ————— 4]
3 3
And ==1+—f[-»") = ——u
o ny( ) 2
Consider f (< —»*)
Puu x*—y* =t
Thens Tt #F_ -1
dt 2x dt 2y
Therefore gzgﬁ
3x 3 dx
(As fis aﬁmctinnoftonlythen%zi%zf‘(ﬁ))
= f'(£)(2x)
=7 (@-r)em) ®
And T T2
& &t dy
=7'{0(-2)
=/ () @
Then =2x7'(x*~»") {From (1) and (3)}

Consider y%+x%
=2my (- >") - 2w/ (2 - ) 4x
=X

Hence yE+xE= x
ax

G g



Answer 40E.

!

Area of triangle isrl=%xysin9
Now A—A(I ¥, E)

Then 4_24dx 4dy 2446

d: Bx dt oy df 08 dt

Then %: %ysinﬂ(3)+%xsin H(—2)+%xyms H(U_ﬂﬁ)

When x=40, y=5ﬂand9=%

mhen 2= L)L) 22
Wil

= %(40) (50)>(0.05)
~375-20+4330

= |ﬁﬂ_3in‘fs




Answer 41E.

z=f (u.v)
Where u=xy, v=yfx

ie. u=u(xy),v=v(zy)

Then Z_Z& &
oxr dudx dvix
_az az( J’)

3 k2

oz _}r&

Again differentiating partially with respect to x
8z B’zE_I_ Fz v Eyﬂz
w2 |l ox movex| v

Y| T u P
| udvdxr H &
2z Fz (—J’] _I_ii
Na Tmale) | T

_»[ &= +ﬁ(‘_]
= AT

, &z y‘* Fr 2y %y P
Bt P Audv x v z udv




Again differentiating partially with respectto v
E.Fz_ a’za;. 3z v
@»’_I[a:‘@r'aua@]
+l[ 5z E+&E]
x|lduwdy




Answer 42E.

The partial derivative of a function in two or more variables with respect to a variable is
determined by keeping the other variables as a constant in the function.

Consider the function:
cos(xz)=1 +xy +z
Differentiate both sides of the equation with respect x (keeping y as constant):
cos(xz)=1+x"y" +2°

%{m(m}] =§[I +x'y° +zz]

_sin{:}z}[g[m}] =0+y" %(12)1’%(22}

—sin (m)[ y%{xz)] - y(2)+2:Z

Continue further to evaluate the partial derivative:

. oz cx ] 2 o
— = _+z_ = '+ = —
sm(.xy'}‘ _'P{.t ]_ =2xy" +2

) & oz
i am—— — 2 S ——
Slﬂ{{}E)[lj’dt+}E- 207 + zax

—[.lj.?sil'l [J}E]]%—}ESEI‘I (oz)=29" +22§

-yzsin(9z)-207 = k§+[@sin{m)]§

Determine the value of the partial derivative from the above equation:
. . dz : oz
—)zsin(xz)-29" = lza-s—[xysm (A}E)]E

'—[_}E sin(xyz)+ L\yz] = [lz +1y5m(m}]?§

& _ (207 +)zsin(nz))
ax 2z + xysin(xz)




Differentiate both sides of the equation with respect y (keeping x as constant):
I:‘.'JI:IIS(JL].F'_?)=|+::r2yz+z1

a u a 5 5
—|cos{oz) |=—]|1+xy +=z°
oyLestoa)] =2 ]

_ @ | 28y, @[

=sin{0z)| —(0z) |=0+x"—|y" )]+—|2z°

( )Lyt ) [0 i)

—sin [m}[r%{yz} =f[1_}*)+ Zz%

Continue further to evaluate the partial derivative:
. oz J 2 oz
—smloz)| x| y—+z ||=2x"y+ 22—
e
. oz X 2 (3.1
—xysin(xz)—-xzsin(nz)=2x"y+ 2z —
(0=) > (0z) >

-2x’y—xzsin(9z) =[Zz+1}'sin (J}?g)]%

& (zxzy+xzsin{1}’z)]
oy 2z + xysin(xz)
Hence, the final value of the partial derivatives is:
& _ _{2;}'3 +_vzsin(.13’z})
dx 2z +xysin(xz)
. {Z.I:y+.r:sin (m))
E T2z +xysin(xz)




Answer 43E.

If f 15 a function of two vanables x and y, then the gradient of £ 1s the vector function Vf

is definedby V(% 3) = {4 (x.2). f(n7)) o W(x2) = Lir L5

oy
Find L ¥ ma ¥
v oz
& 0
Togl=" |
= 2%
g _ 22
&
= P
& 0
= al” ]
= 25y
Thus, we get |Vf(x y,2) = (EJW'"2 szje"',, Exzyzg"’)
Answer 44E.
The directional denvative of a function “f” 1n the direction of a umit vector 1s
given by
D. f=Vfz

=|ﬁf||£|mse
(Where is the angle between V £ and )
:Iaflcosﬂ {Asl;lzl}
ie. Df-= vf|cosa

That 15 the walue of directional denvative of function “f” 1n the direction of unit
vector u varies with Sthe angle between ﬁf and u.

(&)

Cos &1s mazimum when 8=10 {cosd=1}

Hence [ f1s mazimum when



(B)
Minimum wvalue ofcos & =—1and it occurs when &=

Hence 7). fis minimum when
(C)
; Fi 3
Cos H1s 0 when &= E
; F 3
Hence 7L f1s 0 when H=5
(D)
The mazimum walue of cos & =1 and half of the mazimum wvalue 1s %which oCcCurs
ag==
3
Hence D; F 15 half of its maximum walue when H:g
Answer 45E.

We knowthat I, f{x, ) = ¥f(x. y) - u, where u is the unit vector and
Y (z ) = {£(= ). £ (= ¥)).

Find fi(x. y) and f(x, »).
Llxy) = %[x’e" )
- Oxe”

2
ryl= —[2e”
5(xy) =5 (%)
= -xe”
Now, compute £:(—2, 0) and £,(—2, 0).

£(-2,0) = 2(-2)e™
= -4

£,(-2.0) = —(-2)’¢ "
= -4



Then, V/(-20) = (-4,-4).

Find ¥ in the direction towards (2, —3) from (-2, 0).
¥ = (2 +2 -3- ﬂ)
- (4.-3

‘We have to find the unit vector u in the direction of ¥ givenby u = 1.

I+
{3}

Substitute the known values in I, f(x. ) = ¥f{x. ¥) -u.

Bs(29) = (4.4 (3.-3)

5
16,1
55
_ 4
5
4
Thus, we get I-Lf(—z.ﬂ)=—§.

Answer 46E.

_f(x,_}r,z) =x'y+ xdi+z

Then f, =2xy+ '\“i+2.'

S=x

X
J:= 21+ z




Then gradient of /" Vf (x.3.2)=<f,. /.. [ >

=<2y +-fl+z, 2, >
214z

At(12,3), ¥F(1,23)=<6,1, 41;-,-

The given wector ¥ is not a unit vector then we will find a unit vector i in the

5

direction of v where z =

Now [|=v4+1+4
-
=3

Then E=%{2,L—2}

Hence the directional denivative of “f” in the direction ofi1s
D 7=Vf(1,23)d
1

=—-u:ﬁ,],l>_-::2,1, —2>
3 4

= l[12+1—1]
3 2

25

6

Answer 47E.

Given function isf(x,y)=xzy+-\!;

1
.I'hﬂﬂ frzz;{}l‘,j;:_xj+—
2.0y

The gradient of “f” is; V.f (x.7)=</f,. £, >

1
=< 2%y, r—>

ENE

Then gradient f at (2,1} is V.£(2,1)=<4, ;’"



The rate of change of “f” at (2, 1) has mazimum value Ff(l l)land it takes place
in the direction of V5
That 15 maximum rate of change of “f" 15

81
[vr (2 1= ,,16+I
V145

2

And it takes place in the direction of | <4, — >|.

Answer 48E.

Sflxy.z)=2z"

The gradient of 7" 15
Vi(xy.2)=<f fp fi>
= <zye®, zxe”,e” >
=¥ <zy, zx, 1>
At point (U,l, 2)

v7(0.12)=<2,0,1>

We know “f increases most rapidly in the direction of ﬁf and the maxzimum rate
of change of 7" is Ff|

That 15 °f increases most rapadly in the direction

<201>
And the mazimum rate of change of °f 15

V£ (2,0.1)|=+2+0+
=5




Answer 49E.

First of all we draw a line through place H in the direction of the eye of hurricane.
‘We approzimate the directional denivative of wind speed (5) by the average rate
of change of the wind speed between the points where this line intersects the
contour lines S=45 and 5S=2350

The wind — speed at the point east of place H 1s S =45 knots and the wind
— speed at the point west of place h 1s 5 =50 knots. The distance between these
two points looks to be about 8 miles. So the rate of change of wind speed 1n the
direction of hurricane 15

D.S= 50-45

= g knot fmi

70

Answer 50E.

The given surface isz =2x% — 32

Take f(x,y,z)zz—212+y2
Then f,=-4x, f,=2y, ;=1



And thus the gradient of “f" 15
Vi(xy.z)=<f f f>

LE. Ef(x,y,z)z <4z, 2y, 1>

Andthen V£(-2,24)=<8 41>

Now the given plane 1s z=4

Take g(x,_}r,z)zz—4

Then g,=0,g,=0, g, =1

AndthenVg(x,y.2)= <g,. g,.8, >
=<0,0,1>

And Vg{-224)=<0,01>

The tangent at the point of intersection of two curves 1s perpendicular to
both V £ and Vg at(—2, 2, 4) and therefore the vectorv = V f x Vg will be parallel

to the tangent hine
-~ } £
v=VixVg=R 4 1
0 0 1
=47 -87
=<4 —-8,0>

Then the direction numbers of the tangent line are same as of";" 1e. =4 —8. 0>
Now the direction numbers of tangent line are <4,—8, 0 > and 1t passes
through (—2, 2, 4)
And therefore 1ts parametric equation 15
+2 y-2 z-4

4 —8 0
Or |x=4f—2,_}r=2—&,z=4

Answer 51E.

_f(x,y) =x* —.1|:_;r,if+_:r,if2 +9x—6y+10

Then f, =2x—-y+9
fp=—x+2y-06



First we find critical points by setting £/, =0, £, =0
LE. 2x—y+9=0

And —x4+2y-6=0

On solving these equations we find, y=1,x=-4
Then the only critical point 15 (-4, 1)

Now f.=2, f,=2, f,=-1
Then D= fofp—Ffy
=2{2)-1
=3

Now f,=2, f,=2, f,=-1
Then D=f.f,—f,
=2(2)-1
=3
Answer 52E.

f(x,y)=x3—ﬁ;w+8y3

Then £, (x,y)szj—ﬁ_}r
_};(x,_}r)z—ﬁx+24_}rn

First we find the critical points by setting £, =0, £, =0
ie. 3x—6y=0

And —6x424y%=0

Le. x3-2y=0

And x-4y*=0

On solving these equations we find the critical points are; (0,0), (1, %]

Now f,=6x, f,=48y, f,=—6
Then D=f, f,—f,
= 288x—36

At (0, 0); D=-36 <0
Thatisis a saddle point



m(L%]; D=108>0 and £ _=6>0

That 1s (], %] .15 a point of local minima and the minimum value of “f" 15

f(], 3 =(1)* - 6(1)(1/2)+8(1/8)
-H

Answer 53E.

F(xy)=3-xy-n*

Then f,=3y-2z-y°
5= 31—12—2@'

First we find the critical points by setting f, =0, £, =0
LE Iy—2xp—yi=0

And Zx—x"-2xy=0

LE _}r(3— 21—_}?):0

And x(3—x—2y)=ﬂ

On solving we find the cnitical points

(0.0). (3.0).(0.3). (L)

Now f,=-2r, f,=—2x, fp=3-2x-2y
Then D=f, f,—fy"
=dxy—(3-2x-2y)"

At(0,0, D=0-(3)°
=-9<0
That 15 (0, 0), 15 a saddle point
At(3,0,  D=0-{3-6)"
=-9<0
That 15 (3, 0), 15 a saddle point
At (0, 3); D=0-(3-6)
=-9<0
That 15 (0, 3), 15 a saddle point



At(1,1,  D=4-(3-2-2)°
—4-1
=3>0

And  fo=-2<0

That 15 (1, 1), 15 a point of local mazimum
And the mazimum value of “f” 15

F{L1)=1
Hence saddle points; Kﬂ, 0y, (3, 00, (0, 31
And point of local mazimum 1s (1, 1) with f1, 1) =

Answer 54E.

Find the local maximum and local minimum values and saddle points of the
. ., L/
Function f(x.y)= {x 3 y)e- /2

First, find the partial derivatives of the function f (x.¥)= ( i }'}e %

1. =£((1 *+y)e % ]Trcaty constant

oz d d
=e”? a{x *+y) Usethe I'mnula;(k -f(x))=k -E(f(x)}
Use the formula

%
=e ?(2x+0) i(f):,,.f"
dx

L7
4

= 2xe 2 Simplify
Hence. f —2ye %
1= %[(: *+y)e 'H] Treat x constant
Use product rule
g -%U )

d

Ll (FE TR Y OO (. %))
g{: +) )+( +y}{_#(e ] %{ﬁg]:
+f'£'[§]

i(enrl) - e’"'f{x}

=e”2 +("’ ';}’ ]e & Simplify

=[]+"|.-‘+I:]e{.§
2

)- Use chain rule

=£'F'§{U+l]+(x1+y}er::(§




. 2
Hence | f,_=(1+'} +II }3

Find the critical points of the function Flx,y)= (.r 2, y)ef’i x
Solve the equations f =0and f, =0 to get the coordinates of the critical points.
£,=0
L 74
2xe’2 =0

x=0 Sinl;:t:e}'.'l 20

f,=0
2
]+I +'F E"J;zzﬂ
2
1+X %Y _0 Sincee”2 20
1+9%% 0 Putx=o0

y=-2 Solve for y

Hence, the critical point is (0,-2).
Find the second derivatives of the function f{I.}') — (.r 2, PJE{& .

fa= %(er % ] Treat y constant

Use the formula
k£ () =k-2 (1 ()
[Use the formula

=2e” La

_(_t"]= n-x""

¥ g
= 2 R L
e’ (x)




Hence. s =3 ei‘i:
2 -

Continue the above

_O|[y xxx7) %
f}y—@’[(]"‘ ) ]E‘ ]

: : A LA le of
=Ezqi|:l+}'+x :|+(l+y+:r ]i[e{l{l]ﬁ:plﬂuﬂmen
ay

differentiation

Use chain rule

£l _}’+Iz 1 = d ) Fr
Aezy) [
for the last term
4 2\ %
AShgase Simplify
4
Hence [4+F+Iz]€ o
g 2
Fs ) ¥/
fo= —[21& "1] Treat x constant
Ty
. [Use the formula
=2.xi(e£{’) i d d
e k' _ :k-_
¥ 2 (k7 () =k-—=(7(x))
%y + [Use chain rule
=21E-1[_] 4 d fix) S
2) | 5(@)=r ()
) [Use the formula
—aye A (1) s
2 —{.r")=nv.r"'
L dx
=xe Simplify

Hence fw=xef’£_



Hence. s =3 ei‘i:
2 -

Continue the above

_O|[y xxx7) %
f}y—@’[(]"‘ ) ]E‘ ]

: : A LA le of
=Ezqi|:l+}'+x :|+(l+y+:r ]i[e{l{l]ﬁ:plﬂuﬂmen
ay

differentiation

Use chain rule

£l _}’+Iz 1 = d ) Fr
Aezy) [
for the last term
4 2\ %
AShgase Simplify
4
Hence [4+F+Iz]€ o
g 2
Fs ) ¥/
fo= —[21& "1] Treat x constant
Ty
. [Use the formula
=2.xi(e£{’) i d d
e k' _ :k-_
¥ 2 (k7 () =k-—=(7(x))
%y + [Use chain rule
=21E-1[_] 4 d fix) S
2) | 5(@)=r ()
) [Use the formula
—aye A (1) s
2 —{.r")=nv.r"'
L dx
=xe Simplify

Hence fw=xef’£_



Use the second derivative test.

According to the second derivative test, if f_>0and D> at the critical point then the
function has local minimum at that point.

So the given function f(r,yj = (.r 2. J,)Eff‘:( has its local minimum at the critical

point (0,-2).

Substitute 0 for x and -2 for y in f(x.») ={IZ +J,)Ef/f to obtain its local minimum.
£(0.-2)=(07-2)e 2

-2
e

Hence the local minimum of the given function is |— = —0.74]

Moreover the function has no lecal maximum.

The following sketch supports the solution.




= Vo
¥ 4
-4 x
Answer 55E.
Consider the function:
f(xy)=40"-x"y" -0~

Since the function f is a polynomial function, so it is continuous on the closed bounded region
D, then there exist both an absolute maximum and an absolute minimum of the function on this

region.
Find the partial derivatives of the function:
fo=4y 297y
And
1, =8-25y 397
First of all. find critical points by of the function, for that set f, =0& _j'; =0, then:
¥y (4-2x-y)=0
Also,
xy(8-2x-3y)=0
Solve the above equations simultaneously, and then the critical points are:
(0.0). (0.4). (1.2)
The value of the given function on its critical points is:
f(0.0)=0
F(0.4)=0 (1)
f(1L2)=4



Now, look at the value of the function # on the boundary of D, which consists of the line
segments as L, L,,L, shown in the figure.

Onthe L, x=0and 0< y < 6then the function on this line is given by:
f(0,¥)=0,0=y<6
This is a constant function. Hence, on the line L, function f has zero value.
On L,, y=0and (< x < 6then function on this line is given by:
f{:r,ﬂ] =0,0<x<6

This Is a constant function. Hence, on the line f..ITIJHEﬂEIH fhas Zero value.

Now.on L;,. x=6-yand 0<y=<6:

f(x.3)=4(6-y)y"-(6-¥) ¥ —(6-»))'
=24y" -4y’ - y' +12y° -36y" -6y’ + '
=2y"-12y*,0<y <6

Draw the graph of this function:

10 1

flxp)




From the graph function is decreasing for 0 < y <4and increasing for 4 < y <6.
Then for 0 < y <4, the maximum value of function is f(ﬁ,{l) =) and minimum value is

f(2.4)=-64.

And for 4 < y <6, the minimum value of function is f {2,4) = —fd and maximum value is

£(0.6)=0.

MNow, compare these values of f and those values obtained on its critical points, then absolute

maximum of the function is | £(1,2) = 4|and the absolute minimum is | £ (2,4) =-64|.

Answer 56E.

Consider the following function:
f(xy)= e=r’ (I = +2y3}

To get the absolute maximum and absolute minimum of the above function, first determine the
partial derivatives:

f==2xe™ ™" (.t : +2y3)+2.te":":
=2xe* [:rz +2y? —1]
And
f,= Dy {.t : +2y’}+4ye":"':
=—2ye ™ *’ [.r 242y? —I]



Find the critical points:
s 1,=0
That is,
x[_:rz +2y? —l]=ﬂ
And
y[xz +2y? -2] =0
Solve the above equations simultaneously for x& y:
(0,0). (0.£1). (£1,0)
Which are in region D.
The constraint equation on the boundary of D is:

g(xy)=x*+y*
=4
Then by Lagrange’s method of multipliers find all x, y & A such that:
Vf(xy)=2Vg(xy)
Also. note that

g(xy)=4

Hence, by the above equation following set of equation is obtained:
—lt(.rz+2y= —I)e":"'z =24y ------ (1)
—2y{:r=+2y= —l}e'ﬁ"‘: =24y - (2)

= +y2 =4 ... (3)

If x, y # 0then from (1) and (2):
(.r’+2y2—l]e"=": ={.r2+2y"—2]e"="’=
Compare the coefficients:

x 42y -1=x?4+2y*-2

But the above condition is not possible.

So. either y=Qor y=0:

If x=0. A=0then y=%2,

Similarly, if y=0, i=0then x=+2_

Then the extreme points are:

(%2,0). (0, £2)



Hence, by the above equation following set of equation is obtained:
—2.1‘(.:‘2-1-2}': —I)e"'r": =24y - (1)
—2}’{:3+2y: —2)e"=""= =24y - (2)
xieyi=4 ... (3)

If x,y = Othen from (1) and (2):

(.r’ +2y° —l)e"=" ) ={.r 42yt —2)9"2":

Compare the coefficients:
xP+2yi-l=x+2y*-2

But the above condition is not possible.

So, either x=Qor y=0:

If x=0. A=0then y=4%2.

Similarly, if y=0, i=0then x=%+2.

Then the extreme points are:

(%2,0). (0, £2)



Answer 57E.
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Find the contour plot so that it can found the points at which the function has maximum or
minimum.

For contour pilot, enter the following maple command.
plots|contourplot](f{x.y).x=-2..2 y=-2_.2 contours=20);

> plots| comtourplot)( f(x, ¥). x=-2_.2, y==-2 .2, contours =20);

e e ——

\

il
|
f
)

I—|—-.—.——--

From the graph, it seems that the function has a local maximum at about { -I,II]I} , local

minimum at about (1,+1). saddle point at about (-1,+1) and saddle point at (1,0) -



The partial derivative of f(x, y)with respect to xis

f(xy)= g(f (x.5))
=£[x3 -3x+)y* —Zyz)

=3x*-3 - (1)

The partial derivative of f(x, y)with respecito y,
d
—(f(x,
a},( (x.))

=%(1’—3x+f—2y3)

fi(xy)=

=4y’ -4y . (2)
Equate equation (1) to zero.
3x*-3=0
3(x¥*-1)=0
¥-1=0
x =1
x=1]

Equate equation (2) to zero.

4y’ -4y =0
4y(»* -1)=0
y=0or y=%I

Thus, the critical points of the function are (1,0). (1,1). (-1,0)and (-1,%1).



The second partial derivative of f (x, y) with respectto xis

c
fulxy)=2(£(xy)
- i(sf -3)
ox
=6x
The second partial derivative of f (x, y) with respect to yis

IAIJF%(L(IJ])

=§(4J-’*-4r)
=12y" -4

The partial derivative of f (x,y) with respectto xis

£ (52) = (£, (59)

-5 ()
=0

Recall that the theorem,

Suppose the second partial derivatives of f are continuous on a disk with center {a,_b)and
suppose that f, (a,b)=0and j;_{a,b) =0 [ (a,b)is a critical point of f].

Let D(a,b)= £.,(a.b) £, (a6)~(, (b)) -

(@)If D>0and f_ {a,b} >0then f {a,b)is a local minimum.

(b)If D>0and f_ {a,b} <(Qthen f {a,b)is a local maximum.

() If D<Othen f {r.-,b)is not a local maximum or local minimum.



Use this theorem to find behavior of f at the critical points.

At the critical point (1,0).

D(a.b)= f..(a.b) 7, (a.b)~(1, (a.5))
= (6x)(12y* ~4)~[o]
D(1.0)=(6)(-4)
=-24
Since D <(. the point (1,0)is a saddle point.

At the critical point (1,1).

D(a.b)=1..(a.b) 1, (a.b)~(7, (a.6))
=(6x)(12y" —4)-[o]
D(1,£1)=(6)(8)
=24
>0
And
o (x.y)=6x
[ (L£1)=6
Since D> 0and f_, > 0. the function has local minimum at (1,41).

f(xy)=x=3x+)" -2y
FLE)=(1) =3(1)+(21)' —2(21)°
=1-3+1-2
=-3



At the critical point (—1,+1).

D(a.b)= f.(a.b) S, (a.b)-(f, (a.b))
=(6x)(12y* -4)-[0]’
D(-1.£1)=(-6)(8)
=-24
<0

Since D <. the point (-1,%1)is a saddie point.

At the critical point (1,0).

D(a.b)=f.(a.b) , (a.b)~(, (a.b))
= (6x)(125% —4)-[0]
D(1.0)=(6)(0)
=6
And
S (x.y)=6x
£.(1.0)=6

since D> 0and £, <0. the function has local maximum at (1,0).

I(I!J’} =x =3x+y'-2y
7(1,0)= (|)3 _3(]}*‘{0)4 ‘2(0)1
=1-3+0-0
=-2

Thus, conclude that function f(x,y)=x"-3x+y* -2y’ has a local maximum at about

(1.0)| -

{—|,0)| . local minimum at about |(1,£1)|. saddle point at about

(-1.11)

and saddle point at



Answer 58E.

Consider the function

f(xy)=12+10y-2x" -8xp - y*

Use maple to find the critical points of the above function.

Enter the function as follows.
f=(x. y) and then click right arrow (12+10%y-2"x"2-8"X"y-y*4):

The maple output as follows.

> f=EA—12 + 10%y — 2*%x"2 — 8*x*y — y"4),

f=(xy)=12+10y —2¢ — 8xy — )

To find the partial derivative of the function with respect to x, use the following maple command
De=diff (f(x, y).x):

The maple output as follows.

> fo=diff{flx . .xk

fi=-4x—8y

To find the partial derivative of the function with respect to y, use the following maple command
Ty==dif (f(x, y).y).

> fy = diff(flx . )%

fi=-4¥ —8x+ 10



To find the critical points, solve the equations f, =0and f, =0.
For this apply the below commands.

>solve({ix=0.fy=0}.{x.y})

>map(allvalues,{%}):

>evalf(%);

The maple input followed by output as shown below:

> solve({fx=0,fy=0}, {x.y}):

> map(alivalues, {*3}) :

> evalf(%s).

{{{x=-4519438914 + 2. 10" y= 2259719457 — 1. 1071}, {x
= 1.434489835 — 1.832050808 10”71, y = -0.7172449172
+ 8.660254040 1071}, {x = 3.084949079 + 1.632050808 10°L
= -1.542474539 — 8.660254040107'°1}} }

Round the answer to three decimal places
Thus, the critical points of the function f(x,y)=12+10y-2x" -8xy— y'are
(—4.519.2.260).(1.434,—0.717)|and |(3.085-1.542)|-




To find the critical points, solve the equations f, =0and f, =0.
For this apply the below commands.

>solve({ix=0.fy=0}.{x.y})

>map(allvalues,{%}):

>evalf(%);

The maple input followed by output as shown below:

> solve({fx=0,fy=0}, {x.y}):

> map(alivalues, {*3}) :

> evalf(%s).

{{{x=-4519438914 + 2. 10" y= 2259719457 — 1. 1071}, {x
= 1.434489835 — 1.832050808 10”71, y = -0.7172449172
+ 8.660254040 1071}, {x = 3.084949079 + 1.632050808 10°L
= -1.542474539 — 8.660254040107'°1}} }

Round the answer to three decimal places
Thus, the critical points of the function f(x,y)=12+10y-2x" -8xy— y'are
(—4.519.2.260).(1.434,—0.717)|and |(3.085-1.542)|-




The partial derivative of f} {1,, _}r} with respect to xis

£ (50) =2 (£, (x9)

¢
=E{ll}—8.t—4y])
=—8
Recall the theorem,

Suppose the second pariial derivatives of f are continuous on a disk with center (a,b)and
suppose that f, (a,b)=0and f, (a,b)=0 [ (a,b)is a critical point of f]

Let D(ab)= £..(a:b) £, (a:5) (1, (a:b))"

(a)If D>0and f_(a,b)>0then f(a,b)is a local minimum.

(b) If D>0and f,_(a,b)<0then f(a,b)is alocal maximum.

(c)If D<othen f {a,_b)is not a local maximum or local minimum.

Now, use this theorem, to find the local maximum or minimum or saddle point at the critical
points.

At the critical point {—4‘5I9,_2.26|]) .
D(a.b)= f.(a.b)f, (a.b)~(f, (a.b))
=(—4)(-12*)-[-8]

D(—4.519,2.260) = 48(2.260) — 64

=181
=0
And
Ju(x,y)=—4
[ (-4.519.2.260) = -4
<0

Since D >0and f, <0. the function has local maximum at [—4.5I9,2.215{I}.
The corresponding value of fis
f(xy)=12410y-2x" —8xy— »*

£(~4.519,2.260) =12+10(2.260) - 2(—4.519)° —8(~4.519)(2.260) - (2.260)'
=4937



At the critical point (3.085,-1.542).
D(a.b)= . (a.b) £, (a.b)~(, (a.b))

=(-4)(-12y*)-[-8]
D(3.085,~-1.542) = 48(~1.542)" - 64

=50.13
>0
And
fo(x.y)=—4
£..(3.085,-1.542) =4
<0

Since D> 0and f, <0. the function has local maximum at (3.085,-1.542).

The corresponding value of fis

f(.l',_}’}: 12410y -2x* —8xy—»*
£(3.08,-1.54) =12 +10(~1.542) -2(3.085)° -8(3.085)(~1.542) -(~1.542)'
=995

At the critical point (1.43,-0.72).

D(a.b)=1.. (@), (.6)~(£, (b))
=(-4)(-12»")-[-8]
D(1.43,-0.72) = 48(-0.72)" — 64
=-39.1168
<0

Since D < (. the point (1.43,-0.72)is a saddie point.

Therefore, conclude that the local maxima exist at the critical points (—4.52,2.26).
(3.08,—1.54) and corresponding values of f are

(—4.52.2.26)=49.37, f(3.08,—1.54) =9.95|.

Thus, the highest point on the graph of f{xh]}') =12+10y- 2’ -8xy—y'is
{—4.52, 2.26,49.3?) y




The graph of f(x,y)=12+10y—-2x" —8xy—y'is as shown below

First load the package with(plots);

Then enter the following maple command.
plot3d(f(x.y).x=10_10,y=-10_10,style=patchcontour,color=purple axes=boxed);
The maple input followed by output as shown below:

> plot3d( f(x, ¥), x=-10_10, y =-10 ..10, style = patchcontour, color = purple, axes = boxed);

Answer 59E.

Fzy)=xy
Then f,=2xy, f,=x"
The given constraintisg(x,y)z z +_jy,if2 =1

By Lagrange’s method of multipliers we find all x, ¥ and A such that
Vf(xy)=aVg(xy)
And g (x, y) =

LE. Jfe=4g,. f,=1g,. g(x,y)zl
LE 2xy=A4A2x  ——— (1)



IfA=0andx=0
Using this in equation (3), y= 11

IfA+0, x,y#0

From equahion(l); y=4
Fromequation(2); x2=A2y=2A1°2
Using this in equation (3); 32%=1

. 1
LE. A=x_—
3
1 2
Then y=*+—,x=%_|-
W3 3

Then the exireme points of °f are;
(0, £1), [J_rE %] . [i E %}

Now evaluating °f" at these extreme points
I (EI, iE) =

2 1Y 2 1 2
d f@ﬁ}?‘? 33
'

2 -1 -2
de b T]E

Hence the mazimum walue of “7 15
s

2 1 2
HE —,—]=—
Y3 3) 3B

And the minimum value of °f 15

f[( ?] el

Answer 60E.
1 1
Ey|l=—+—
Fzr)=247
-1 -1
e S hTiE

The given constraint 1s g (x,))= i:+i2=1
x



By Lagrange’s method of multipliers we find all =, ¥ and A such that
Vi(xy)=AVg(x.y)

g(xy)=1
. 1 A2
TR DO M
X X
1 A2
ST T @
y: 5t
1 1
. IFE. W (I 3)

Using these values 1n equation (3)
1 1

s A
Le. A= +%
Then =x= JE_ iﬁ
Then the extreme points of “f are;
(v2.2). (2. -2)
Evaluating “f" at these t:xlremf:points
BAP)= et
1285 5
B
J2
B
F(2 )=
2 2
-
2
=—af2
Hence the mazimum value of “f" 1s
72, \2)=|\2

And the minimum value of “F 15

(2. -2)=|-+2




Answer 61E.

Given that f (I,_}r,z) =z

Then

b

F
X

b

S
o
3

The given constraint 1s g'(ir,_jy,if,;a')=Jr2+_:r,if1+;?;2 =3

By Lagrange’ s method of multipliers we find all x, ¥, z and A such that
Ef(x,y,z)z lﬁg (x,_}r,z)

And g(x,_}r,z) =3

Le S=4g,. f,=1g,. =48
And g(x,_}r,z)=3

Le. yz=24x (1)
xz=2Ay - (2)
xy=24z e (3)
*+y*+z*=3 4)

IfAd=0, y,z=0from equation (4) xzi\."?:
Similarly if =0, x,z=0, y=1./3
IFA=0,x,y=0,z=%-3

If1#0, from equations (1), (2) and (3)
oz=2Az2=22y*=21z?

1e. xi=yi=z?
Using this 1n equation (4)
Izzyzzzlzl

Then the possible extreme points of “f are

(+45.0,0), (0, £4/3, 0), (0. 0, +43)

@11, (L-1-1), (.11, (-L-11)
Evaluating “f" at these extreme points

£(+4B.0.0)=7(0.+43,0)=7(0,0,£43)=0

_f(l, 1, 1)=1

FL-L -D=F(-L1,-)=F(-L -1 )=-1

Hence the maximum value of °f 1s |1| and the minimum value 1s



Answer 62E.
Consider the function
f{x._]r,z}z.rz +2y"+32° (1)
Subject to the constraints
gleyz)=x+y+z=1
h(x,y.z)=x-y+2z=2

Now, use the Lagrange multipliers to find the maximum and minimum values of f subject the
consiraints g and h.

Recall that, the method of Lagrange multipliers,
To find the maximum or minimum of a function subject to the constraints g(x, y,z)=k.
Veg=0. ﬁ{x,y,z] =c,Vhz0
(a) find all the values of x, y zand 4 such that
Vf(x.y.z)=AVg(x.y.z)+ uVh(x.y.2)
and g(x,y.z)=k.h(x.y.z)=c

(b) Evaluate the value of 7 at these points. The largest of these values is the maximum value of
fand the smallest values is the minimum value of ©.



Differentiate f partially on both sides with respectio x,y, and z-

a ¥ ) . ¥ 4
r :g(f+2y1+3zl) fr_-.g(r +2y'+32') L:%[f+2y*+3z*)
=2x =4_].J' =6z

Differentiate g partially on both sides with respectto x, y, and =



¢
g, =§(x+y+z—~l] g, =E{I+J’+f—l} g. =§[x+y+z—-l}

Differentiate j partially on both sides with respectto x,y, and z .

c
h =%{x—y+2:—-2] h, =E(I—}'+25_2} h, =£(I“J"+23“2]



The vector equation Vf(x,y,z)=AVg(x,y,z) in terms of its components and using the

constraint equations are
f.=4g +ph,

f,=4g, +ph,

f.=Ag.+ph.

gl(xy.z)=k

h(x.y.z)=c

Substitute the values of f, f.. f..g..&,.&..&. and hinto the Lagrange system of equations.
Substitution yields the equations,
2x=A+pu ...... (2)

4y=A-p - (3)
6z=A+2u ... (4)
x+y+z=1 _.....(3)
x—-y+2z=2 ____ (6)

Solve the equation (2), (3), and (4) for x, y and z
I=i+p

b

A+2
zZ= =
6
Substitute these values of x, y and z into equation (3)

A+p+i—p+i+2p=
2 4 6
64 +6u+34-3u+2A+4u
12

MA+Tu=12 . (7)




Similarly, substitute these values of x, y and z into equation (6)

l+p_l-p+2{i+2p}_2

2 e 6
6A+6u—3A+3u+44i+8u _5
12
TA+1Tu _5
12

TA+17u=24 ... (8)

Multiply equation (8) by 11 and equation (7) by 7 and subtract them.
TIA+18Tu-TT1A-49u =180
1384 =180
_3

#=%3

Substitute g = ;_ﬂ into equation (8).

Ti+l?[£)= 24
23
510

Ti=24-2—
23

o

23

A=—
23

Ti=

A+ pu
5

Substitute the values of and  in the equation x =

2




Substitute the values of and 4 in the equation y= A-u .

4
)]
~\23 23
J“—-———E—'—‘
_ =24 }’=1;‘u and z=i+%
23-4
-
23
A+2u

Substitute the values of and g in the equation =z =

(5)3)

_u
23
Thus,

(x.3.2) =[%‘_%1%J

The value of f at [E—iﬂ] is:
23" 23°23
/(8558 2] (8]
237 23°23 23 23 23
324 72 363
= + +
529 529 529
_759
529
_33
23

Therefore, the maximum value of the function f(x,y,z)=x+2y" +32" is

=1
237 23723)|

33
23

at the point



Answer 63E.

Let the point(x,_}r,z)is closest to the origin and which lies on surface xy%z3=2
Then ar=[(x—t:u)‘+(y—n::|)‘+(z—t:u)‘]H
=(xz+y1+zi) %

Then d%=x%4y2+22

Take f(I,_]F,Z)=II+_]F]+ZJ

And the constraint g(x,_}r,z)zxy 1z7=2

By Lagrange’s method of multipliers we find all =, y, z and A such that
Ef(x,y,z) = lﬁg (x,_}r,z)

And g(x,y,z)z?

Take f(x,_}',z)=12+_}?2+22

And the constraint g(x,y,z) =Xy z3=2

By Lagrange’ s method of multipliers we find all =, y, z and 4 such that
Vi (x.r.2)= Vg (x.y.2)

And g(x,y,z) =2

ie. 2x=Ay*z® -———— {1
2y=2Azxyz> = ———— (2)
2z=3Azy%*z?*  ———— (3
i I S 4

Using these in equation {4)
(2) A2a(30) 4 =2
Le. A= L

(3%
Then x=+(3) #, y=y2(3)#, z=13%

Then the possible extreme points of “f” are
(ﬂ"}‘f, B3 H 13 3‘)

And (13"5‘,—&(3)_3“, ﬂ}{)



Now the physical nature of the problem says that there must be an absolute
minimum of “f” which has to occur at the extreme point

Now f(iB_'l'{, 2(3) 4. £(3)4)
=f(J_r3"H, -374.2.£34)

Then the minimum walue of “f exists at both these extreme points. Now when “f
1s minimum, d 1s also minimum. Hence the required points are

‘(ﬂ"}‘, 342 43 3") and (iB_K, 3742 3 H)

Answer 64E.

X

Let the length of the box 1s  1n and the dimensions of the cross — section are y 1n

and z in
Then x+2(y+z)=1l]3in
The volume of the box 1s v=x=

Take f(x.y.2)=nz

And the constraint g(x,y,z) =x+2y+22z=108

By Lagrange’s method of multipliers we find all z, y, z and 4 such that
Vi (xy.z)=AVg(x.y.2)

And g (x,_}r,z) =108

LeE. yvz=4 (1)
xz=24 = —— (2)
Xxy=24 e (3)



From equation (1), {2) and (3)
oz=Ax=24y=24z
LE x=2y=2z
{Because A #0as 1f 4 =0, x, y,z= 0Owhich 1s not possible because of (4)}
Using these values 1in equation (4) we find
x=36, y=18, z=18
Then the only extreme point of f 15 (36, 18, 18)

MNow the physical nature of the problem says that there must be an absolute
maximum of f which has to occur at the extreme point. Then at the extreme point
(36, 18, 18) *I" 1s mazimum.

Hence the wolume of the box 1s mazimum when its length 1s 361n and the

dimensions of the cross — section perpendicular to length are 18 in and 18 1
The mazimum volume will be:

v=(36)(18)(18)

= 11664 in®

Answer 65E.

Consider the pentagon with a constant perimeter P.

Draw an altitude to the base of the triangle. And note the pentagon is a combination of
isosceles triangle and rectangle. Assign variables to the sides and draw the figure as follows.

w



To find the formula for the area of this pentagon, find the area of the rectangle and area of the
isosceles triangle. To find the area of triangle, use trigonometric identities.

Since the triangle is isosceles, it bisects the base.

lﬂl‘l&=i
w
5
hzwl‘anﬁ'
¥

The area of the triangle is given by:

A =%>=Basexheight

A:%x(w)x[wTB)

|
=—w'tané
4
The area of the rectangle is 4=Jw

Thus, the area of the pentagon is given by the sum of the area of the triangle and the area of
the rectangle

A=!u-+%w=tanﬂ (1)



To find the formula for the area of this pentagon, find the area of the rectangle and area of the
isosceles triangle. To find the area of triangle, use trigonometric identities.

Since the triangle is isosceles, it bisects the base.

mﬁ:i
w
5
hzwl‘anﬂ
¥

The area of the triangle is given by:

A =%>=Basexheight

wlanfr')

A =lx(w)x[ 5

2

L
=—w tan@

4

The area of the rectangle is 4=Jw

Thus, the area of the pentagon is given by the sum of the area of the triangle and the area of
the rectangle

A=!w+&w=tanﬂ (1)

To find the critical points, equate equation (3) to zero:

—u’lsncﬂmn&*_n;seczt?:
2 4
w'sec’f _ w secftand
4 2
sect!

tanf
cosec(f) =2

0

This gives g =13("-



To find the critical points, equate equation (3) to zero:

—u’zsecﬂl:anﬁ+ w' sec’ @ _
2 4
wsec’# wsecftand
4 2
sec

0

tan @
cosec(f) =2

This gives g =13("-
Substitute the value of wand g in /= l[P—w—wsecﬂ] )
2

I :P—P{I—\E)—P(Z—\E]%]

_I

2
1[ 4p

=—|P-2P+PJ3——+2P
2 NE ]

P(V3-1)

2\3
P(V3-1) 5

=L

23
i P(3-3)

6

&

Rationalize the denominator

Finally, the side of the triangle is given by:
_ wsecl
2
P(2-3)
= Tsec 30

_P(Z—-J‘i) 2
= — g
_P(2-B)
-——
P(2v3-3)

3




Classify the behavior of the critical points of f
Recall the second derivative test,

“A function f has continuous partial derivatives on disk {a,b)and

f.(a.b)=0,f (a,b)=0.

Let

D=D(ab)= f.(a:b)f, (a.b)-[ £, (ab)]

alf p>oand f_(a,b)>0then f(a,b)isa local minimum
b.If p>0and f_(a,b)<0 then f(a,b)Iisa local maximum
cIf D<(then f {a,b) is not a local minimum or local maximum.”

Tofind D(x,y).find A_. A, and A, .

A= g I:l[P—Ew—ste(‘:ﬂ]+%wlanﬂ]

dwl 2

:l{—z-lmﬂ]+lmnﬂ

—u’zsecﬂtanﬂ w sec’ @
o = dﬂ[ 2 2 }

_‘: :E[Sﬁcﬂtanﬂ] ——[SE::: o]

=%[s&c{&)t&n(l‘?f +sec(0)(1+ m(ﬂf]]+ “: [zm(af tan(l?}]

d

A"’d&

[P- 2w-2nsecﬂ]+ —wtan @
E ]

= 2wsecHtanf+ lw(mn: H}
2



Substitute A__, A, and 4, in D.
D=A, Ay —[A.]
=|:%[~2—15ecﬂ]+%lan9:|
= sec(6)1an(6)" +sec(0) 1+ tan(6)')
+“T"[zsec(e}* an(6)]

Find D and A__ at the critical point (P(z - Ji),?.n“)_

—[Zwsec Etanﬂ+%w(tanl B}]

A__{w,a)=%[-2-2seca]+%ma
A(P(Z—Ji).m"):%[_l—hecﬂh%tanﬂ

=l[-z-zsec3n° +%lan3ﬂ“

o249




The value of D at the critical point (P(z— Ji),?.n“) is,
D(P(z —Ji],am)
- B—[—z ~2sec30°]+ %m {34})]

~(rla-5))

[ sec(30°)tan(30°)’ +sec(30°)(1+tan (30°) )

+(P(2—~.E)}:

| 25ec(30°) tan(30°) |

- -ZP{Z—ﬁ}m{3uu}mﬂ+%(P(2 - ﬁ})(mnl 3{]“}]:

kel G I
A o )26, (4]

2 3 |3) 3| (3

(P53 }{zﬁ)’ (5 ]]

4 3 )03

_ izP{z- Ji]{%][%: +%(F(2— ﬁ))[?]z

-—-ﬁ-4f+\ﬁ][(F(EEﬁ))1[2f+gf]+(F{24ﬁ))1 [3;5]]



[EP{Z J"( ) (P[z J')( )]
{ (J'+2)][ (P(2-3)) [m’] ((2-5)) [N"”
_%P(z‘ﬁr‘a”(z—ﬁ]z—;Ep(z—ﬁ}l

(o) B (a5 -3l -EE(rle-)]
——P[z J'} ——P(z J_] ——P(z J_}

~(P(2-3)) _E L33 1 23 16 4 1 ]

(- 22

=0

By the second derivative test, the area of the pentagon maximum at (P(E— \,E)Jﬂ“)

Thus, the dimensions of the pentagon that maximize the area of the pentagon are
w=P(2-3)
P(3-+3)

I =

6
P(2V3-3)
i




Answer 66E.

Consider the function for the particle
z=f(xy)
And x and y coordinates of the function at a time f are
x=x(1)
y=x(1)
(@)
Find the velocity vector v and the kinetic energy K of the particle.
The velocity of the particle is the rate of change of position vector.
v(r)=r(1)
The position vector of the object moving on a surface is
r(r)=x(r)i+y(r)j+z(r)k
=x(0)i+p(r)j+ £ (x(1). »(r))k

Differentiate r(r) with respect to ¢

v'(0)=x(r)i+y (1) j+ £ (x(1), »(r))k



For the given function, the rate of change is —‘#{I’y ]
dt

o (x.y) _df dv _df dy
dt de dr  dv dr

=fx(t)+ £y (1)
Then,
v(r)=r'(r)
=x'(2)i+y (0)j+[ £X(1)+ £, (1) &

Therefore, the velocity vector of the particie with x and y components are given by-
v(0)=(x(0).y' (). £x (1) + £, (1)])
The velocity of the particle is
v= |1' (:}]

= J[.wr'(.r)]:f +[y'(f}]: +[L.r’(:}+f_,_y'(f}]:
=IO+ O] + £2 [ O] +£2 [ ()] +2££2 ()5 (1)

= J{l+}‘f}[x'(!}]z +2,l':_;:_.r'{f}y'{f}+(l +__."_:,=)[_1.:'[.!‘}]1
Now, the kinetic energy is given by:

|
K==mv
2

=32 OF 225 )y )+ (14 72) [ ()] )
(0 20 OT #2270 (1 £ T |




(b)
The acceleration of the particle is defined as the derivative of the velocity.
That is,

a(r)=v(1)

-5
= G @iy i [£x @) £y (O]
OO OO

=1'(f)i+}"('}i+[%{f,}-I'(f}--f'[f)+fJ'(f)+%{f,-}-f’{f}-y'[f}+£-y'(f]]k
=+ Wi L) O] + L0+ L) 0T + 1570 |

47 [T 100 D

2 (L) OT +£27()

Therefore, the acceleration vector is <x'{:), y'(r],l

(©)

Consider z = f(x,y)=x"+y" . x(t)=tcost and y(r) =tsint

Find the velocity vector, kinetic energy and acceleration vector for the given function.
From part (a), the velocity vector is

v(1)=(x (). (1) £x' () + £, (1)])
Forthisfind x'(z),y'(¢). f, andf,.
.t'{rj=%[rmsf}

=Cos! —Isint
y'{rj=%(rsinr]

=sinf+1Ccost



The pariial derivatives of f with respecifo x and y is:

1= (w0 +(:(0)) 4= g () +(0))

=2x(1) =2y(1)
= 2rcost =2tsinf

Substitute all these values in v(r).
v(0)=(x().y (0).[£¥ () £, (1)])
:(ms:—tsint,sin.f+lmsr.[2mﬂsr{cosr—rsim)+1rsinr(sinr +rcos:]])

[2¢ cos® 1 —21* costsint ]>

= cosf—rsint.sinf +7cosl, . L
h+1r sin° 7+ 21" sind cos’t

= (cusr—rsin t.sinf+1cost,| 2¢cos® 1+ 21sin’ :])

= (Eﬂsf—fsinf,siﬂl’-l-ﬂ:ﬂsur, 2t (msz r+sin” :}])

=|(cost —tsint,sint+1cost,2t)| Since : sin®7+cos’r=1




From part (a), the kinetic energy is

K =Lm((1+ £2)[ (0] #2400y 0+ 1+ 1) OF

r'(I+{Iuwz-\txsqr}:)[t:u:rs..r—.rsin.!']:

=—m| +2(2rcost)(2rsinr)(cost —sint)(sins +1cosr)
+(I+(2r5inl}z)[sim+rmsr]z

.
r(l+Zrzcus’r][coszr—E-cosr-rsinr-:-rzsinzr]
m +Sf2m5f5in!(ms.rsinl—lsin:t+rms1r-rzmsrsinr]
k+[l+44:sin:r}[sin:r+2-sinr-tmsr+fzmszr]
[ cos? 1+ 2 cos* 1 — 2t costsing — 4 cos’ tsint | )
+1° sin” 1+ 21 sin’ rcos* 1

m| +

S

' 3 > . ¥ -
8t cos” rsin” 1 —8¢ costsin’ )

_+8¢° cos’ tsin7 8¢ cos fsin’ ¢

+

sin® 1+ 41 sin® r+ 2rsinrcoss + 8¢ sin’ rcost
+1* cos’ 1 +4r' cos’ tsin’ 1 )

L

1 (1+2F cos* t+1* +8¢ cos’ tsin’ 1 + 4F r:nsErsinr]
=—m

| —2* cos” tsin” 1+ 4¢" sin* 1

I > 3 » - - b - » - > » -
Em(l+2r cos'r+1° +8¢° cos® rsin’ 1 + 41 cos’ rsinr — 21 cos® 1sin’ 1 + 4¢° sin® r)

From part (b), the acceleration vector is
d 2
L) [x@O] +1x(0)

a()={ (). ,
My OF +£°0)



For this, find _t'{]}_’y'{f},%(_ﬁ} and %(f_r).

X(1)= 2 (x(0))
- %{msr—rsin 1)

=sinf—sin{ —I cos{
=—fCOS/

(f}‘—(!’{f})
= %[sinrﬂmﬂ]

= Ccosf+cosf—rsinf
=2cosf—rsinf

%{ f,)——-%{hmsr)

=2(cost—1sint)

%{ _{,_}=%[2;sim)
=2(sinr+rcosr)
Substitute all these values in a(r).
—fcost,2cost—1sinf,
a(r)= I{cusr-rsim)-[msr—:sim]z+(Zrms:)(-rmsf}
+2(sint +1cost)-[sint +rcost] +(2.rsinr)(2cusr—rsim)]
—fcosi,2cosf—fsinf,
- Z[cosr—rsin 1] —27 cos*t
+2[sin.'+!ms:]3+4:sinlmsr—2:: sin:r]
—1cosi,2cost—1sint,

Z[cosr s'sms']j 27 {t:us 21 +sin’ 2:)]

+2[sml +lcosrr +4¢sintcost

—rcnsr 2cost—rsint,
B [E[cosl lsmr] =27 +2[smr+rmsr]’+4rsmrmsf

Since: cos r+sin’1=1





