NETWORKS TEST 3

Number of Questions: 25

Directions for questions 1 to 25: Select the correct alternative from the given choices.

1. The response of a network is $i(t) = 2t e^{-5t} A$ for $t \ge 0$, the value of 't' at which the i(t) will become maximum, is

(A)	0.2 sec		(B)	0.4 sec
-----	---------	--	-----	---------

- (C) 0.25 sec (D) 0.8 sec
- 2. In the network shown below, it is given that $V_c = 2.5$ V
 - and $\frac{dV_c}{dt} = -8$ V/s at a time 't', where t is the time constant after the switch 'S' is closed. What is the value

of '*C*'?

3.

If the time constant of circuit is 1.5 msec. Then the value of L is _____

(A)	18 mH	(B)	25.5 mH
(C)	5.3 mH	(D)	30 mH

4. In an A.C series RLC circuit, the voltage across R and L is 20V, voltage across L and C is 9V and voltage

across RLC is 15V. Then the ratio of $\frac{V_L}{V_2}$ is _____ [Assume $V_L > V_C$]. (A) 0.64 (B) 2.52 (C) 3.43 (D) 2.28

5. A network has a transfer function

$$Z(S) = \frac{3s+2}{0.5s+3}$$

If the current i(t) is a unity step function, the steady – state value of V(t) is given by

(A)	0	-	(B)	1.5
(C)	2/3		(D)	00

6. Consider the circuit shown in figure If A_1 , A_2 and A_3 are ideal ammeters. It A_1 and A_3 reads 8A and 3A respectively, then A_2 should read _____

7. Consider the circuit shown in below If the roots of the response is complex conjugate then the value of C is

- (C) 30 mF (D) 32 mF
- 8. The coil of a certain relay is operated by 15V battery. If the coil has a resistance of 200 Ω and an inductance of 25 mH and the current needed to pull in is 40 mA, calculate the relay delay time.
 - (A) 0.11 ms (B) 0.15 ms
 - (C) 1.25 ms (D) 0.5 ms
- 9. Consider the circuit shown in below.

It is a

(A)	BSF	(B)	APF
(C)	BPF	(D)	HPF

10. In the circuit shown in the figure given below, the switch is opened at t = 0, after having been closed for a long time. What is the current through 25Ω resistor?

11. The circuit given below is in steady state for a long time with switch S open, The switch is closed at t = 0. The current through switch will be ____

Time: 60 min.

12. Consider the circuit shown in figure

- (A) -10 A/sec and 0
- (B) 10 A/sec and -60 V/sec
- (C) 12.5 A/sec and 45 V/sec
- (D) 0 and –60 V/sec
- **13.** Consider the circuit shown in below.

- (A) 0 and -10/3 V/sec
- (B) 3.2 A/sec and 4 V/sec
- (C) -2.5 A/sec and -5/3 V/sec
- (D) 0 and 2.5 V/sec
- **14.** Consider the circuit shown below

Find the energy stored in the inductor at $t = O^+$. (A) 1.25 mJ (B) 4.5 mJ

- (A) 1.25 mJ(B) 4.5 mJ(C) 3.12 J(D) 1.56 J
- **15.** Consider the circuit shown in below

If $V(t) = 4 \sin 2t$ volts, the circuit is in transient free condition, then the value of t_a is _____

16.

Find the value of V_c at t = 2ms.

(A)	1.06 V	(B)	0.75 V
(C)	3.5 V	(D)	1.25 V

17. For the circuit shown in figure below, the switch has been in position 1 for a long time. At t = 0, the switch is moved to position 2. Then, the capacitor voltage $V_{x}(t)$ for t > 0 is _____

- (A) $(9+11.e^{-4t/5})$ volts (B) $(20-11.e^{-4t/5})$ volts (C) $(20+9.e^{-1.25t})$ volts (D) $(9+11 e^{-1.25t})$ volts
- 18. Consider the circuit shown in below figure

- Find the steady state values of voltage and current.(A) 10V, 8.1A(B) 18V, -8.1A(C) 8V, 4.5A(D) 6V, 9A
- **19.** If $i_c(t) = -5.e^{-2.5t}$ A, the voltage of the source of the given circuit, $V_{in}(t)$ is given by

20.

3.26 | Networks Test 3

Find
$$V_x(t)$$
 for all t ?
(A) $1.6[1 - e^{-150t}]u(t)$ mV (B) $80[1 - e^{-150t}].u(t)$ mV
(C) $2.5[1 - e^{-75t}]u(t)$ V (D) $1.6[1 - e^{-75t}]u(t)$ mV

21. Consider the circuit shown in figure

If $i(t) = I_m \cos(2t + \phi)$ Amp and time constant of the circuit is $\frac{1}{2}$ sec.

At what value of ϕ , the circuit gives transient free response?

(A)	135°	(B)	1.356 rad
(C)	77.70°	(D)	B and C

Common Data for 22 and 23:

Consider the circuit shown in figure

22. Find the V(t).

(A) $5.e^{-1000t/1.36}$ V	(B) $0.9.e^{-1000t/1.36}$ Volts
(C) $3.2.e^{-1000t/6}$ V	(D) $0.9.e^{-500t/3}$ Volts

- **23.** At t = 1 ms the power dissipated by the 2.5 $k\Omega$ is _____.
 - (A) 1.52 mW (B) 1.78 mW
 - (C) 2.3 mW (D) 4.4 mW

Common Data for 24 and 25:

(C)
$$2e^{-\frac{15}{4}t}$$
 A (D) $e^{-\frac{15}{4}t}$ A

25. Calculate i(t) for t > 3(A) $1.11 - 0.88 \cdot e^{-4/9(t-3)} A$ (B) $2 - 0.88 \cdot e^{-2.25t} A$ (C) $1.11 + 0.88 \cdot e^{-2.25(t-3)} A$

(D) $1.11 - 0.88.e^{-4/9t}$ A

Answer Keys									
1. A	2. D	3. B	4. D	5. C	6. B	7. D	8. A	9. C	10. C
11. A	12. D	13. A	14. D	15. C	16. A	17. B	18. B	19. B	20. A
21. D	22. B	23. C	24. A	25. C					

HINTS AND EXPLANATIONS

- 1. For i(t) to be maximum only when $\frac{di(t)}{dt} = 0 \text{ and } \frac{d^2 i(t)}{dt^2} < 0$ Given $i(t) = 2t.e^{-5t} A$ $\frac{di}{dt} = 2\{e^{-5t} + t.(-5).e^{-5t}\} = 0$ 1 - 5t = 0 t = 1/5 secChoice (A)
- 2. After closing the switch the given circuit becomes

Given $V_c = 2.5$ volts $\frac{dV_c}{dt} = -8 \text{ V/sec}$ $5V_c - 10 = 6 \times 8 \text{V}$ $C = \frac{2.5}{48} \text{ F}$ = 0.052 FaradsChoice (D) 3. $R_{eq} = 5 + 20 || 30 = 17 \Omega$ $\tau = \frac{L}{R} \Rightarrow L = 1.5 \times 17 \text{ mH}$ L = 25.5 mHChoice (B)

4. From the given data

$$V_{L} - V_{C} = 9V$$

$$V_{S} = 15 V$$

$$(15)^{2} = V_{R}^{2} + (9)^{2}$$

$$V_{R} = 12V \text{ and } V_{x} = \sqrt{V_{R}^{2} + V_{L}^{2}}$$

$$(20)^{2} = (12)^{2} + V_{L}^{2}$$

$$V_{L} = 16V$$

$$V_{L} - V_{C} = 9V$$

$$V_{C} = 16 - 9 = 7 \text{ volts}$$

$$\therefore \frac{V_{L}}{V_{C}} = 2.28$$
Choice (D)

5.
$$Z(S) = \frac{V(S)}{I(S)} = \frac{3S+2}{0.5S+3}$$

 $I(S) = \frac{1}{S}$
 $V(S) = Z(S).I(S)$
 $V(S) = \frac{(3S+2)}{S(0.5S+3)}$

 \therefore steady state value nothing but final value

$$\therefore \quad V = \lim_{S \to 0} S.V(S) = \frac{2}{3}V \qquad \text{Choice (C)}$$

6. From the given circuit

$$I_1 = I_s = 8A$$

$$I_3 = I_L = 3A$$

$$\therefore \text{ we know } I_S = \sqrt{I_R^2 + (I_L - I_C)^2}$$
But $I_R = 0$

$$I_S = (I_L - I_C) \text{ or } I_C - I_L$$

$$\therefore I_C = I_L + I_S = 11 \text{ Amp}$$
Choice (B)

7. From the given data Roots are complex conjugate, so it is a under damped system

$$\therefore \quad \xi < 1$$

$$\xi = \frac{1}{2Q}$$

$$Q = R \sqrt{\frac{C}{L}} \text{ for parallel RLC circuits}$$

$$\therefore \quad \frac{1}{2R} \sqrt{\frac{L}{C}} < 1$$

$$\frac{1}{4} \sqrt{\frac{1}{2C}} < 1$$

$$\frac{1}{2C} < 16$$

$$C > \frac{1}{32}$$

$$C > 31.25 \text{ mF}$$

$$\therefore \quad \text{Let } C = 32 \text{ mF}$$

8. The current through the coil is given by

$$i(t) = i(\infty) + \{i(0) - i(\infty)\} \cdot e^{-t/\tau}$$

$$i(0) = 0, i(\infty) = \frac{15}{200} = 75 \text{ mA}$$

$$\tau = \frac{L}{R} = \frac{30 \times 10^{-3}}{200} = 0.15 \text{ ms}$$

$$i(t) = 75[1 - e^{-t/\tau}] \text{ mA}$$
If $i(td) = 40 \text{ mA}$, then $t_d = ?$
 $40 = 75[1 - e^{-t/\tau}]$
 $e^{-t/\tau} = 0.466$
 $-\frac{t_d}{\tau} = \ln(0.466)$
 $t_d = 0.7621\tau = 0.11 \text{ msec}$ Choice (A)
9. At low frequencies $f \to 0$ Hz
 $L \to \text{ short circuit}$
 $C \to \text{ open circuit}$
 $I_R = 0 \text{ Amp}$
 $\therefore V_o = 0 \text{ volts at high frequencies}$
 $f \to \infty$
 $L \to \text{ open circuit}$
 $I_R = 0$
 $\therefore V_o = 0$
Volume 100 M = 0 Volume 100 M = 0 Volume 100 M = 0 M =

10. Initially at $t = 0^-$ switch was closed In steady state the inductor behaves like short circuit

$$10\Omega \underbrace{\left\{\begin{array}{c} t\\ t\\ \end{array}\right\}}^{i_{L}(0^{-})} 80 \underbrace{\left\{\begin{array}{c} t\\ t\\ \end{array}\right\}}^{30\Omega}$$

$$i_L(0^-) = \frac{80}{10} = 8$$
 Amp

For $t \ge 0$:-Switch is opened at t > 0

:. for t > 0 it becomes source free circuit $i(t) = I e^{-t/\tau} A$

$$\tau_{L}(t) = I_{o} \cdot t - I_{A}$$

$$\tau = \frac{L_{eq}}{R_{eq}}$$

$$L = 1 H$$

$$R_{eq} = (10 + 30) \Omega = 40 \Omega$$

$$\tau = 1/40$$

$$i_{L}(t) = 8.e^{-40}t \text{ Amp}$$
Choice (C)

11. For t < 0:-

At $t = 0^{-}$; switch opened, the circuit is in steady state

Choice (D)

3.28 | Networks Test 3

$$\therefore \quad L \to \text{short circuit} \\ C \to \text{open circuit} \\ 14V \xrightarrow{\qquad + \qquad } 3\Omega \quad \bigvee_{0} \\ i_{L}(0^{-}) = \frac{14}{7} = 2A \\ V_{C}(0^{-}) = 6V \\ \therefore \quad V_{1F}(0^{-}) = \frac{6 \times 2}{3} = 4V \\ V_{2F}(0^{-}) = \frac{6 \times 1}{3} = 2V \end{cases}$$

 \therefore for t > 0, the circuit becomes shown below

12. For t < 0:-

In steady state the equivalent circuit becomes

But
$$V_x = V_c$$

 $-10 + \frac{V_c}{4} + C \cdot \frac{dV_c}{dt} + i_L = 0$
at $t = 0^+$
 $C \frac{dV_c(0^+)}{dt} = 10 - \frac{V_c(0^+)}{4} - i_L(0^+)$
 $= 10 - 15 - 10$
 $\frac{dV_c(0^+)}{dt} = \frac{-15}{\frac{1}{4}}$
 $\frac{dV_c(0^+)}{dt} = -60 \text{ V/sec}$
 $V_x = V_L + 6i_L$
 $V_x = V_C$
 $V_c(0^+) = L \frac{di_L(0^+)}{dt} + 6i_L(0^+)$
 $60 - 6 \times 10 = \frac{L di_L}{dt}$
 $\frac{di_L}{dt} = 0 \text{ A/sec}$ Choice (D)

13. For t < 0:-

At $t = 0^{-}$; the circuit is in steady state

$$V_{C}(0^{-}) = -10V = V_{C}(0^{+})$$
$$i_{L}(0^{-}) = \frac{2}{6} \times 5 = \frac{5}{3}A = i_{L}(0^{+})$$

for t > 0:- $5u(-t) = 0 \Rightarrow$ open circuit The equivalent circuit becomes

$$\begin{array}{c} 4\Omega & V_{x} & i_{L} \\ & & & \\ 2\Omega & V_{c} & - & V_{L} \\ & & & \\ & & & \\ \end{array} \\ \begin{array}{c} + & 10 \\ 0^{+} \\ \end{array} \\ \end{array} \\ \begin{array}{c} + & 10 \\ 0^{+} \\ \end{array} \\ \end{array} \\ = V_{C}(0^{+}) + & 10 \end{array}$$

$$\frac{di_{L}(0^{+})}{dt} = 0$$

at $t = 0^{+}$
 $V_{x}(0^{+}) = V_{C}(0^{+}) + 10V$

 $V_{L} = V_{C}$ $L.di_{L} \left(\frac{1}{2} \right)$

dt

$$V_{x}(0^{+}) = 0V$$

$$\therefore \quad i_{c} = -i_{L}$$

$$i_{c} = \frac{C.dV_{c}}{dt} = -i_{L}$$

$$\frac{dV_{c}(0^{+})}{dt} = \frac{-i_{L}(0^{+})}{C} = \frac{-5}{3} \times 2$$

$$= \frac{-10}{3} \text{ V/sec}$$
 Choice (A)

14. For T < 0:- Switch was closed,

... The circuit becomes shown in below

$$i_{L}(0^{-}) = \frac{15}{6} = 2.5 \text{ Amp}$$

$$W = \frac{1}{2}L I_{o}^{2} = \frac{1}{2} \times 0.5 \times (2.5)^{2}$$

$$i_{L}(0^{-}) = 100 \text{ Choice (D)}$$

15. for $t < t_0$:-

Switch opened For $t > t_0$:-For RL series circuits, transient free condition is $\omega t_{o} + \phi = \operatorname{Tan}^{-1} \omega \tau$ where $\phi = 0$ $\omega = 2 \text{ rad/sec}$ $\tau = \frac{L}{R} = \frac{1}{4}$ $2t_{o} = \operatorname{Tan}^{-1}\left[\frac{1}{2}\right] = 0.4636$ Choice (C)

$$t_0 = 0.2318 \text{ sec}$$

16. For *t* < 0:–

- Switch opened; $\therefore V_{c}(0^{-}) = 0 = V_{c}(0^{+})$
 - For t > 0:-At $t = 0^+$ switch closed $V_{C}(0^{+}) = OV$
- \therefore As $t \to \infty$; circuit is in steady state In S.S capacitor behaves like a open circuit.

$$\frac{V_x}{500} \rightarrow 0.1V_x \ge 2500 \text{ VC}(\infty)$$

$$\frac{V_c(\infty) - 5}{50} + \frac{V_c(\infty)}{250} = 0.1V_x$$
but $5 - V_x - V_x(\infty) = 0$

$$V_x = 5 - V_c(\infty)$$

$$6V_{c}(\infty) - 25 = 25[5 - V_{c}(\infty)]$$

$$31V_{c}(\infty) = 150$$

$$V_{c}(\infty) = 4.83 \text{ volts}$$

$$V_{c}(t) = V_{c}(\infty) + \{V_{c}(0^{+}) - V_{c}(\infty)\}.e^{-t/\tau}$$

$$V_{c}(t) = 4.83[1 - e^{-t/\tau}\}.u(t)$$

$$T:-$$

$$\tau = RC$$

$$R = \text{Rth:-}$$

$$-I_{t} + \frac{V_{t}}{250} + \frac{V_{t}}{50} - 0.1V_{x} = 0$$

$$V_{t} + V_{x} = 0$$

$$V_{t} + V_{x} = 0$$

$$V_{t} = -V_{t}$$

$$\frac{6V_{t}}{250} = I_{t} - 0.1V_{t}$$

$$6V_{t} = 250 I_{t} - 25 V_{t}$$

$$31V_{t} = 250 I_{t}$$

$$R_{\text{th}} = \frac{V_{t}}{I_{t}} = \frac{250}{31} = 8.064 \Omega$$

$$\tau = 8.064 \times 1 \text{ m sec}$$

$$\tau = 8.064 \text{ m sec}$$

$$V_{c}(2m) = 1.06 \text{ volts}$$
Choice (A)

17. For t < 0:– The switch connected to position 1. at $t = 0^{-}$

$$30V(\pm)$$

ckt is in S.S

:.
$$V_C(0^-) = \frac{3}{10} \times 30 = 9V = V_C(0^+)$$

For t > 0:- Switch \rightarrow position 2. The circuit becomes of $t \rightarrow \infty$ (in steady state)

$$V_{c}(\infty) = 20V$$

$$V_{c}(t) = V_{c}(\infty) + \{V_{c}(0^{+}) - V_{c}(\infty)\} \cdot e^{-t/\tau}$$

$$\tau = RC = 5 \times \frac{1}{4} = 1.25 \text{ sec}$$

$$V_{c}(t) = 20 + \{9 - 20\} \cdot e^{-t/1.25} \text{ volts}$$

$$V_{c}(t) = 20 - 11 \cdot e^{-4t/5} \text{ volts}$$
Choice (B)

3.30 | Networks Test 3

18. In steady state

- $C \rightarrow$ open circuit
- $L \rightarrow$ short circuit
- The equivalent circuit is

S.C S.C

$$4\Omega \underbrace{\underbrace{}_{V_{c}(\infty)}^{\text{S.C}} \underbrace{}_{j(\infty)}^{\text{i}(\infty)}}_{V_{c}(\infty)} \underbrace{\underbrace{}_{j(\infty)}^{\text{I}(\infty)}}_{j(\infty)} \underbrace{}_{j(\infty)}^{\text{I}(\infty)} \underbrace{}_{j(\infty)}^{\text{I}(\infty)} = 0$$

$$18 \times 9 = -20 \ i(\infty)$$

$$i(\infty) = -8.1 \text{ Amp}$$
Choice (B)

19. We know

$$\begin{split} i_{c} &= C \cdot \frac{dv_{c}}{dt} \\ V_{c} &= \frac{1}{c} \int i_{c}(t) \cdot dt \\ &= \frac{1}{1} \int -5 \cdot e^{-2 \cdot 5} \cdot dt \\ V_{c} &= \frac{-5}{-2 \cdot 5} \cdot e^{-2 \cdot 5 t} = 2 \cdot e^{-2 \cdot 5 t} \text{ volts} \\ I_{R} &= \frac{V_{C}}{R} = 2 \cdot e^{-2 \cdot 5 t} \text{ Amp} \\ I_{in} &= I_{C} + I_{R} \\ &= -3 \cdot e^{-2 \cdot 5 t} \\ V_{in} - I_{in} \times 1 - L \cdot \frac{dI_{in}}{dt} - V_{C} = 0 \\ V_{in} &= I_{in} + V_{C} + VL \\ V_{L} &= 2 \cdot \frac{d}{dt} \{-3 \cdot e^{-2 \cdot 5 t} \} \\ V_{L} &= 6 \times 2 \cdot 5 \cdot e^{-2 \cdot 5 t} \text{ volts} \\ V_{in} &= -3 \cdot e^{-2 \cdot 5 t} + 2 \cdot e^{-2 \cdot 5 t} + 15 \cdot e^{-2 \cdot 5 t} \\ V_{in} &= 14 \cdot e^{-2 \cdot 5 t} \text{ volts} \end{split}$$
 Choice (B)

20. For t < 0:-

The independent current source deactivates (open circuit)

... $i_{I}(0^{-}) = 0 \text{ Amp} = i_{I}(0^{+})$ **For t > 0:**-If $t \to \infty$, the circuit is in steady state $L \rightarrow \text{short circuit}$

$$V_{x} = \frac{i_{L}(\infty)}{50}$$

$$80 \times 10^{-3} = \frac{i_{L}(\infty)}{50} \times \frac{1}{50} + i_{L}(\infty)$$

$$i_{L}(\infty) \left[1 + \frac{1}{25 \times 10^{2}} \right] = 80 \times 10^{-3}$$

$$i_{L}(\infty) = 79.96 \text{ mA}$$

$$\therefore \quad i_{L}(t) = i(\infty) + [i(0^{-}) - i(\infty)] \cdot e^{-t/\tau}$$

$$i^{L}(t) = i(\infty) [1 - e^{-t/\tau}] u(t)$$

$$\tau = \frac{L_{eq}}{R_{eq}}$$

Res:-

- (i) Deactivate all the independent sources.
- (ii) Connect one test source
- (iii) Find the equivalent resistance

$$\therefore R_{th} = \frac{V_t}{I_t}$$

$$\therefore R_{th} = \frac{V_t}{I_t}$$

$$V_t + V_x - 25 I_t - 0.5V_x = 0$$

$$V_t = 25 I_t + 50 I_t$$

$$\frac{V_t}{I_t} = R_{th} = 75 \Omega$$

$$\tau = \frac{0.5}{75} = \frac{1}{150} \sec$$

$$\therefore i_L(t) = 79.96[1 - e^{-150t}].u(t) \text{ mA}$$

$$\therefore V_x = \frac{i_L(t)}{50}$$

$$V_y(t) \approx 1.6[1 - e^{-150t}].u(t) \text{ mV}$$
Choice (A)

21. We know, the transient free conditions $\omega t_{o} + \phi = \text{Tan}^{-1} (\omega \tau + \pi / 2)$ [for cosinusoidal input]

$$2 t_{o} + \phi = \left\{ \tan^{-1} \left[2 \times \frac{1}{2} \right] + \frac{\pi}{2} \right\}$$

$$t_{o} = 1 \sec \phi = \frac{\pi}{4} + \frac{\pi}{2} - \phi = \frac{3\pi}{4} - 2$$

$$= 1.356 \text{ rad or } 77.70^{\circ}.$$

22. For t < 0:- Switch closed at $t = 0^-$; circuit is in steady state

Choice (D)

$$C \rightarrow \text{open circuit}$$

$$V_{c}^{1} = \frac{2.5}{3.5} \times 7 = 5V$$

$$V_{c}^{1} = \frac{2.5}{3.5} \times 7 = 5V$$

$$V_{c}^{1} = \frac{2}{3.5} \times 7 = 5V$$

$$V_{c} = \frac{1}{3.5} \times 7 = 5V$$
For $t > 0$:-
$$S \rightarrow \text{opened};$$

$$\therefore \text{ Source free } RC \text{ circuit}$$

$$V_{c}(t) = V_{o} \cdot e^{-t/t}$$

$$\tau = R, C$$

$$C_{eq} = [1 \ \mu f] |2 \ \mu f] |3 \ \mu f]$$

$$= \left(\frac{2}{3} \ \mu f \ || \ 3\mu f\right) = \frac{6}{11} \ \mu F$$

$$R = 2.5 \ k\Omega$$

$$\tau = 1.36 \ \text{m sec}$$

$$\therefore V_{c}(t) = 0.9 \cdot e^{-t/1.36 \times 10^{-3}} \text{ volts} \quad \text{Choice (B)}$$

$$P = V.I = \frac{V_{c}^{2}}{2}$$

23.
$$P = VI = \frac{V_C}{R}$$

 $V_C^1(t) = 5.e^{-t/1.36 \times 10^{-3}}$ volts
 $V_C^1(1ms) = 5.e^{-1/1.36} = 2.4$ volts
 $P = \frac{5.767}{2.5}$ mW = 2.3 mW Choice (C)

24. Consider three time intervals $t \le 0$, $0 \le t < 3$ and $t \ge 3$ separately.

For t < 0, switches S_1 and S_2 are open so that i = 0

 $\therefore \quad i(0^{-}) = i(0^{+}) = 0$ For $0 \le t < 3: S_1 \rightarrow \text{closed}$ $S_2 \text{ is still open}$ The equivalent circuit becomes

25. For $t \ge 3$, S_1 and S_2 both are closed, thus the initial current in case 2 is $i(3) = i(3^-) = 2\{1 - e^{-45/4}\} A$

$$= 1.999 \approx 2A$$

The equivalent circuit for $t \ge 3$:-

$$\frac{V_{p}}{10V} = \frac{3\Omega}{5} + \frac{V_{p}}{5} + \frac{V_{p}}{2} = 0$$

$$\frac{V_{p}}{10V} = 1.11 \text{ Amp}$$

$$i(t) = 1.11 + \{2 - 1.11\}, e^{-9/4(t-3)}\text{ A}$$

$$i(t) = 1.11 + (2 - 1.11), e^{-9/4(t-3)}\text{ A for } t \ge 3$$

$$\frac{V_{p}}{10V} = \frac{1}{10V} = \frac{1}{10V} + \frac{1}{10V} = \frac{1}{10V} = \frac{1}{10V} + \frac{1}{10V} = \frac{1}{10V} = \frac{1}{10V} + \frac{1}{10V} = \frac{1}{10V}$$