23. Scalar, or Dot, Product of Vectors

Exercise 23

1. Question

Find $\vec{a} \cdot \vec{b}$ when

i. $\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$ and $\vec{b} = 3\hat{i} - 4\hat{j} - 2\hat{k}$ ii. $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = -2\hat{j} + 4\hat{k}$ iii. $\vec{a} = \hat{i} - \hat{j} + 5\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{k}$

Answer

i) $\vec{a} = \hat{1} - 2\hat{1} + \hat{k}$ $\vec{b} = 3\hat{i} - 4\hat{j} - 2\hat{k}$ $\vec{a} \cdot \vec{b} = (\hat{i} - 2\hat{j} + \hat{k}) \cdot (3\hat{i} - 4\hat{j} - 2\hat{k})$ $\Rightarrow \vec{a}.\vec{b} = (1 \times 3) + (-2 \times -4) + (1 \times -2)$ $\Rightarrow \vec{a} \cdot \vec{b} = 3 + 8 - 2 = 9$ Ans: \vec{a} , $\vec{b} = 9$ ii) $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ $\vec{b} = 0\hat{i} - 2\hat{i} + 4\hat{k}$ $\vec{a}.\vec{b} = (\hat{i} + 2\hat{j} + 3\hat{k}).(0\hat{i} - 2\hat{j} + 4\hat{k})$ $\vec{a}.\vec{b} = (1 \times 0) + (2 \times -2) + (3 \times 4)$ $\Rightarrow \vec{a} \cdot \vec{b} = 0 - 4 + 12 = 8$ Ans: $\Rightarrow \vec{a} \cdot \vec{b} = 8$ iii) $\vec{a} = \hat{1} - \hat{1} + 5\hat{k}$ $\vec{b} = 3\hat{i} + 0\hat{j} - 2\hat{k}$ $\vec{a} \cdot \vec{b} = (\hat{i} - \hat{j} + 5\hat{k}) \cdot (3\hat{i} + 0\hat{j} - 2\hat{k})$ $\vec{a}.\vec{b} = (1 \times 3) + (-1 \times 0) + (5 \times -2)$ $\Rightarrow \vec{a}.\vec{b} = 3 - 0 - 10 = -7$ Ans: $\Rightarrow \vec{a} \cdot \vec{b} = -7$

2. Question

Find the value of λ for which \vec{a} and \vec{b} are perpendicular, where

i.
$$\vec{a}=2\hat{i}+\lambda\hat{j}+\hat{k}$$
 and $\vec{b}=\left(\hat{i}-2\hat{j}+3\hat{k}\right)$

$$\begin{split} &\text{ii.} \quad \vec{a} = 3\hat{i} - \hat{j} + 4\hat{k} \text{ and } \vec{b} = -\lambda\hat{i} + 3\hat{j} + 3\hat{k} \\ &\text{iii.} \quad \vec{a} = 2\hat{i} + 4\hat{j} - \hat{k} \text{ and } \vec{b} = 3\hat{i} - 2\hat{j} + \lambda\hat{k} \\ &\text{iv.} \quad \vec{a} = 3\hat{i} + 2\hat{j} - 5\hat{k} \text{ and } \vec{b} = -5\hat{j} + \lambda\hat{k} \end{split}$$

Answer

i)

 $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$

$$\vec{b} = \hat{1} - 2\hat{j} + 3\hat{k}$$

Since these two vectors are perpendicular, their dot product is zero.

$$\Rightarrow \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta = |\vec{a}| |\vec{b}| \cos\frac{\pi}{2} = 0$$

$$\Rightarrow \vec{a} \cdot \vec{b} = (2\hat{i} + \lambda\hat{j} + \hat{k}) \cdot (\hat{i} - 2\hat{j} + 3\hat{k}) = 0$$

$$\Rightarrow \vec{a} \cdot \vec{b} = (2 \times 1) + (\lambda \times -2) + (1 \times 3) = 0$$

$$\Rightarrow \vec{a} \cdot \vec{b} = 2 - 2\lambda + 3 = 0$$

$$\Rightarrow 5 = 2\lambda$$

$$\Rightarrow \lambda = \frac{5}{2}$$
Ans: $\lambda = \frac{5}{2}$
ii)
$$\vec{a} = 3\hat{i} - \hat{j} + 4\hat{k}$$

$$\vec{b} = -\lambda + 3\hat{i} + 3\hat{k}$$

Since these two vectors are perpendicular, their dot product is zero.

$$\Rightarrow \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta = |\vec{a}| |\vec{b}| \cos\frac{\pi}{2} = 0$$

$$\Rightarrow \vec{a} \cdot \vec{b} = (3\hat{i} - \hat{j} + 4\hat{k}) \cdot (-\lambda + 3\hat{j} + 3\hat{k}) = 0$$

$$\Rightarrow \vec{a} \cdot \vec{b} = (3 \times -\lambda) + (-1 \times 3) + (4 \times 3) = 0$$

$$\Rightarrow \vec{a} \cdot \vec{b} = -3\lambda - 3 + 12 = 0$$

$$\Rightarrow 9 = 3\lambda$$

$$\Rightarrow \lambda = \frac{9}{3} = 3$$
Ans: $\lambda = 3$
iii)
$$\vec{a} = 2\hat{i} + 4\hat{j} - \hat{k}$$

$$\vec{b} = 3\hat{i} - 2\hat{j} + \lambda\hat{k}$$

Since these two vectors are perpendicular, their dot product is zero.

 $\Rightarrow \vec{a}.\vec{b} = |\vec{a}||\vec{b}|\cos\theta = |\vec{a}||\vec{b}|\cos\frac{\pi}{2} = 0$

 $\Rightarrow \vec{a}.\vec{b} = (2\hat{i} + 4\hat{j} - \hat{k}).(3\hat{i} - 2\hat{j} + \lambda\hat{k}) = 0$ $\Rightarrow \vec{a}.\vec{b} = (2 \times 3) + (4 \times -2) + (-1 \times \lambda) = 0$ $\Rightarrow \vec{a}.\vec{b} = -\lambda + 6 - 8 = 0$ $\Rightarrow -2 = \lambda$ $\Rightarrow \lambda = -2$ Ans: $\lambda = -2$ iv) $\vec{a} = 3\hat{i} + 2\hat{j} - 5\hat{k}$ $\vec{b} = -5\hat{j} + \lambda\hat{k}$

Since these two vectors are perpendicular, their dot product is zero.

 $\Rightarrow \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta = |\vec{a}| |\vec{b}| \cos\frac{\pi}{2} = 0$ $\Rightarrow \vec{a} \cdot \vec{b} = (3\hat{i} + 2\hat{j} - 5\hat{k}) \cdot (-5\hat{j} + \lambda\hat{k}) = 0$ $\Rightarrow \vec{a} \cdot \vec{b} = (3 \times 0) + (2 \times -5) + (-5 \times \lambda) = 0$ $\Rightarrow \vec{a} \cdot \vec{b} = -5\lambda + 0 - 10 = 0$ $\Rightarrow -10 = 5\lambda$ $\Rightarrow \lambda = \frac{-10}{5} = -2$ Ans: $\lambda = -2$

3. Question

i. If $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{b} = 3\hat{i} - \hat{j} + 2\hat{k}$, show that $(\vec{a} + \vec{b})$ is perpendicular to $(\vec{a} - \vec{b})$. ii. If $\vec{a} = (5\hat{i} - \hat{j} - 3\hat{k})$ and $\vec{b} = (\hat{i} + 3\hat{j} - 5\hat{k})$ then show that $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$ are orthogonal.

Answer

i) $\vec{a} = \hat{1} + 2\hat{j} - 3\hat{k}$ $\vec{b} = 3\hat{1} - \hat{j} + 2\hat{k}$ $\vec{a} + \vec{b} = \hat{1} + 2\hat{j} - 3\hat{k} + 3\hat{1} - \hat{j} + 2\hat{k}$ $\Rightarrow \vec{a} + \vec{b} = 4\hat{1} + \hat{j} - \hat{k}$ $\vec{a} - \vec{b} = \hat{1} + 2\hat{j} - 3\hat{k} - (3\hat{1} - \hat{j} + 2\hat{k})$ $\Rightarrow \vec{a} - \vec{b} = -2\hat{1} + 3\hat{j} - 5\hat{k}$ Now $(\vec{a} + \vec{b}).(\vec{a} - \vec{b}) = (4\hat{1} + \hat{j} - \hat{k}).(-2\hat{1} + 3\hat{j} - 5\hat{k})$ $= (4 \times - 2) + (1 \times 3) + (-1 \times - 5) = -8 + 3 + 5 = 0$

Since the dot product of these two vectors is 0,the vector $(\vec{a} + \vec{b})$ is perpendicular to $(\vec{a} - \vec{b})$.

Hence, proved.

 $\vec{a} = 5\hat{i} - \hat{j} - 3\hat{k}$ $\vec{b} = \hat{i} + 3\hat{j} - 5\hat{k}$ $\vec{a} + \vec{b} = 5\hat{i} - \hat{j} - 3\hat{k} + \hat{i} + 3\hat{j} - 5\hat{k}$ $\Rightarrow \vec{a} + \vec{b} = 6\hat{i} + 2\hat{j} - 8\hat{k}$ $\vec{a} - \vec{b} = 5\hat{i} - \hat{j} - 3\hat{k} - (\hat{i} + 3\hat{j} - 5\hat{k})$ $\Rightarrow \vec{a} - \vec{b} = 4\hat{i} - 4\hat{j} + 2\hat{k}$ Now $(\vec{a} + \vec{b}).(\vec{a} - \vec{b}) = (6\hat{i} + 2\hat{j} - 8\hat{k}).(4\hat{i} - 4\hat{j} + 2\hat{k})$ $= (6 \times 4) + (2 \times - 4) + (-8 \times 2) = 24 - 8 - 16 = 0$

Since the dot product of these two vectors is 0,the vector $(\vec{a} + \vec{b})$ is perpendicular to $(\vec{a} - \vec{b})$.

Hence,proved that $\left(\vec{a} + \vec{b} \right)$ and $\left(\vec{a} - \vec{b} \right)$ are orthogonal.

4. Question

If $\vec{a} = (\hat{i} - \hat{j} + 7\hat{k})$ and $\vec{b} = (5\hat{i} - \hat{j} + \lambda\hat{k})$ then find the value of λ so that $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$ are orthogonal vectors.

Answer

 $\vec{a} = \hat{1} - \hat{1} + 7\hat{k}$ $\vec{b} = 5\hat{1} - \hat{1} + \lambda\hat{k}$ $(\vec{a} + \vec{b}) = \hat{1} - \hat{1} + 7\hat{k} + 5\hat{1} - \hat{1} + \lambda\hat{k}$ $\Rightarrow \vec{a} + \vec{b} = 6\hat{1} - 2\hat{1} + (7 + \lambda)\hat{k}$ $\vec{a} - \vec{b} = \hat{1} - \hat{1} + 7\hat{k} - (5\hat{1} - \hat{1} + \lambda\hat{k})$ $\Rightarrow \vec{a} - \vec{b} = -4\hat{1} + 0\hat{1} + (7 - \lambda)\hat{k}$ Now $(\vec{a} + \vec{b}).(\vec{a} - \vec{b}) = (6\hat{1} - 2\hat{1} + (7 + \lambda)\hat{k}).(-4\hat{1} + 0\hat{1} + (7 - \lambda)\hat{k})$ Since these two vectors are orthogonal, their dot product is zero. $\Rightarrow (6 \times - 4) + (-2 \times 0) + ((7 + \lambda) \times (7 - \lambda)) = \oplus -24 + 0 + (49 - \lambda^{2}) = 0$ $\Rightarrow \lambda^{2} = 25$

 $\Rightarrow \lambda = \pm 5$

Ans: $\lambda = \pm 5$

5. Question

Show that the vectors

$$\frac{1}{7} \Big(2\hat{i} + 3\hat{j} + 6\hat{k} \Big), \frac{1}{7} \Big(3\hat{i} - 6\hat{j} + 2\hat{k} \Big) \text{and} \frac{1}{7} \Big(6\hat{i} + 2\hat{j} - 3\hat{k} \Big)$$

are mutually perpendicular unit vectors.

Answer

Let,

$$\vec{a} = \frac{1}{7}(2\hat{i} + 3\hat{j} + 6\hat{k})$$

$$\vec{b} = \frac{1}{7}(3\hat{i} - 6\hat{j} + 2\hat{k})$$

$$\vec{c} = \frac{1}{7}(6\hat{i} + 2\hat{j} - 3\hat{k})$$

$$|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$$

We have to show that $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{a} \cdot \vec{c} = 0$
L.H.S.

$$\vec{a}.\vec{b} = \frac{1}{7}(2\hat{i} + 3\hat{j} + 6\hat{k}).\frac{1}{7}(3\hat{i} - 6\hat{j} + 2\hat{k}) = \frac{1}{49}(6 - 18 + 12) = 0$$

$$\vec{b}.\vec{c} = \frac{1}{7}(3\hat{i} - 6\hat{j} + 2\hat{k}).\frac{1}{7}(6\hat{i} + 2\hat{j} - 3\hat{k}) = \frac{1}{49}(18 - 12 - 6) = 0$$

$$\vec{a}.\vec{c} = \frac{1}{7}(2\hat{i} + 3\hat{j} + 6\hat{k}).\frac{1}{7}(6\hat{i} + 2\hat{j} - 3\hat{k}) = \frac{1}{49}(12 + 6 - 18) = 0$$

$$= \text{R.H.S.}$$

Hence, showed that vectors are mutually perpendicular unit vectors.

6. Question

Let $\vec{a}=4\,\hat{i}+5\,\hat{j}-\hat{k},\vec{b}=\hat{i}-4\,\hat{j}+5\,\hat{k}$ and $\vec{c}=3\,\hat{i}+\hat{j}-\hat{k}.$

Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} , and is such that $\vec{d} \cdot \vec{c} = 21$.

Answer

 $\vec{a} = (4\hat{i} + 5\hat{j} - \hat{k})$ $\vec{b} = (\hat{i} - 4\hat{j} + 5\hat{k})$ $\vec{c} = (3\hat{i} + \hat{j} - \hat{k})$ Let $\vec{d} = p\hat{i} + q\hat{j} + r\hat{k}$ the vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} , $\Rightarrow \vec{d} \cdot \vec{a} = \vec{d} \cdot \vec{b} = 0$ $(p\hat{i} + q\hat{j} + r\hat{k}) \cdot (4\hat{i} + 5\hat{j} - \hat{k}) = 0$ $\Rightarrow 4p + 5q - r = 0 ... (1)$ $(p\hat{i} + q\hat{j} + r\hat{k}) \cdot (\hat{i} - 4\hat{j} + 5\hat{k}) = 0$ p - 4q + 5r = 0 ... (2) $\vec{d} \cdot \vec{c} = 21.$ $(p\hat{i} + q\hat{j} + r\hat{k}) \cdot (3\hat{i} + \hat{j} - \hat{k}) = 21$ $\Rightarrow 3p + q - r = 21 ... (3)$

Solving equations 1,2,3 simultaneously we get

p = 7,q = -7,r = -7 $\therefore \vec{d} = p\hat{i} + q\hat{j} + r\hat{k} = 7\hat{i} - 7\hat{j} - 7\hat{k} = 7(\hat{i} - \hat{j} - \hat{k})$ Ans: $\vec{d} = 7(\hat{i} - \hat{j} - \hat{k})$

7. Question

Let $\vec{a}=\Bigl(2\,\hat{i}+3\,\hat{j}+2\hat{k}\Bigr)$ and $\vec{b}=\Bigl(\hat{i}+2\,\hat{j}+\hat{k}\Bigr).$

Find the projection of (i) \vec{a} on \vec{b} and (ii) \vec{b} on $\vec{a}.$

Answer

$$\vec{a} = (2\hat{i} + 3\hat{j} + 2\hat{k})$$

$$\vec{b} = (\hat{i} + 2\hat{j} + \hat{k})$$

$$|\vec{a}| = \sqrt{2^2 + 3^2 + 2^2} = \sqrt{4 + 9} + 4 = \sqrt{17}$$

$$|\vec{b}| = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{1 + 4} + 1 = \sqrt{6}$$

$$\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{2\hat{i} + 3\hat{j} + 2\hat{k}}{\sqrt{17}}$$

$$\hat{b} = \frac{\vec{b}}{|\vec{b}|} = \frac{\hat{i} + 2\hat{j} + \hat{k}}{\sqrt{6}}$$

Projection of \vec{a} on \vec{b} is $\vec{a}\hat{b} = (2\hat{i} + 3\hat{j} + 2\hat{k}) \cdot \frac{\hat{i} + 2\hat{j} + \hat{k}}{\sqrt{6}} = \frac{2 + 6 + 2}{\sqrt{6}} = \frac{10}{\sqrt{6}} = \frac{5\sqrt{6}}{3}$ Projection of \vec{b} on \vec{a} is $\vec{b}\hat{a} = (\hat{i} + 2\hat{j} + \hat{k}) \cdot \frac{2\hat{i} + 3\hat{j} + 2\hat{k}}{\sqrt{17}} = \frac{2 + 6 + 2}{\sqrt{17}} = \frac{10}{\sqrt{17}} = \frac{10\sqrt{17}}{17}$ Ans: i) $\frac{5\sqrt{6}}{3}$ ii) $\frac{10\sqrt{17}}{17}$

8. Question

Find the projection of $\left(8 \hat{i} + \hat{j} \right)$ in the direction of $\left(\hat{i} + 2 \hat{j} - 2 \hat{k} \right)$

Answer

Let,

 $\vec{a} = (8\hat{i} + \hat{j})$ $\vec{b} = (\hat{i} + 2\hat{j} - 2\hat{k})$ $|\vec{b}| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3$ $\hat{b} = \frac{\vec{b}}{|\vec{b}|} = \frac{\hat{i} + 2\hat{j} - 2\hat{k}}{3}$

: The projection of (8î + ĵ)on (1 + 2ĵ - 2k̂)

is:
$$(8\hat{i} + \hat{j}) \cdot \frac{\hat{i} + 2\hat{j} - 2\hat{k}}{3} = \frac{8 + 2 + 0}{3} = \frac{10}{3}$$

Ans: 10/3

9. Question

Write the projection of vector $\left(\hat{i}+\hat{j}+\hat{k}\right)$ along the vector $\hat{j}_{.}$

Answer

Let, $\vec{a} = (\hat{i} + \hat{j} + \hat{k})$ $\vec{b} = (\hat{j})$ $|\vec{b}| = \sqrt{0^2 + 1^2 + 0^2} = \sqrt{1} = 1$ $\hat{b} = \frac{\vec{b}}{|\vec{b}|} = \frac{(\hat{j})}{1}$

 \therefore The projection of $(\hat{1} + \hat{j} + \hat{k})$ on (\hat{j})

is: $(\hat{1} + \hat{j} + \hat{k})$. $(\hat{j}) = 1$

Ans:1

10. Question

i. Find the projection of \vec{a} on \vec{b} if $\vec{a} \cdot \vec{b} = 8$ and $\vec{b} = (2\hat{i} + 6\hat{j} + 3\hat{k})$.

ii. Write the projection of the vector $\left(\hat{i}+\hat{j}\right)$ on the vector $\left(\hat{i}-\hat{j}\right)$.

Answer

 $i)\vec{b} = (2\hat{i} + 6\hat{j} + 3\hat{k})$ $|\vec{b}| = \sqrt{2^2 + 6^2 + 3^2} = \sqrt{4 + 36 + 9} = \sqrt{49} = 7$ Projection of \vec{a} on \vec{b} $= \vec{a} \cdot \frac{\vec{b}}{|\vec{b}|}$ $= \frac{8}{7}$ ANS:8/7
ii) Sol: Let, $\vec{a} = (\hat{i} + \hat{j})$ $\vec{b} = (\hat{i} - \hat{j})$ $|\vec{b}| = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2}$ $\hat{b} = \frac{\vec{b}}{|\vec{b}|} = \frac{\hat{i} - \hat{j}}{\sqrt{2}}$ \therefore The projection of $\hat{i} + \hat{j}$ on $(\hat{i} - \hat{j})$ is: $(\hat{i} + \hat{j}) \cdot \frac{\hat{i} - \hat{j}}{\sqrt{2}} = \frac{1 - 1}{\sqrt{2}} = 0$ Ans: 0

11. Question

Find the angle between the vectors \vec{a} and \vec{b} , when

i.
$$\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$$
 and $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$
ii. $\vec{a} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} - 2\hat{j} + 4\hat{k}$
iii. $\vec{a} = \hat{i} - \hat{j}$ and $\vec{b} = \hat{j} + \hat{k}$.

Answer

i) $\vec{a}=\hat{i}-2\hat{j}+3\hat{k}$ and $\vec{b}=3\hat{i}-2\hat{j}+\hat{k}$ $\vec{a} = (\hat{1} - 2\hat{1} + 3\hat{k})$ $\vec{b} = (3\hat{i} - 2\hat{j} + \hat{k})$ $|\vec{a}| = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}$ $|\vec{b}| = \sqrt{3^2 + (-2)^2 + 1^2} = \sqrt{9 + 4 + 1} = \sqrt{14}$ We know that , $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta$ $\Rightarrow (\hat{1} - 2\hat{j} + 3\hat{k})(3\hat{1} - 2\hat{j} + \hat{k}) = \sqrt{14}\sqrt{14}\cos\theta$ \Rightarrow (3 + 4 + 3) = 14cos θ $\Rightarrow \cos\theta = 10/14$ $\Rightarrow \cos\theta = 5/7$ $\Rightarrow \theta = \cos^{-1}(5/7)$ Ans: $\theta = \cos^{-1}(5/7)$ ii) $\vec{a} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} - 2\hat{j} + 4\hat{k}$ $\vec{a} = (3\hat{i} + \hat{j} + 2\hat{k})$ $\vec{b} = (2\hat{i} - 2\hat{j} + 4\hat{k})$ $|\vec{a}| = \sqrt{3^2 + (1)^2 + 2^2} = \sqrt{9 + 1 + 4} = \sqrt{14}$ $|\vec{b}| = \sqrt{2^2 + (-2)^2 + 4^2} = \sqrt{4 + 4 + 16} = \sqrt{24}$ We know that , $\vec{a}.\vec{b} = |\vec{a}||\vec{b}|\cos\theta$ $\Rightarrow (3\hat{i} + \hat{j} + 2\hat{k})(2\hat{i} - 2\hat{j} + 4\hat{k}) = \sqrt{14}\sqrt{24}\cos\theta$ $\Rightarrow (6 - 2 + 8) = \sqrt{336} \cos\theta$ $\Rightarrow \cos\theta = \frac{12}{\sqrt{336}}$ $\Rightarrow \cos\theta = \sqrt{(144/336)}$ $\Rightarrow \theta = \cos^{-1}\sqrt{3/7}$ Ans: $\theta = \cos^{-1}\sqrt{3/7}$ iii. $\vec{a} = \hat{i} - \hat{j}$ and $\vec{b} = \hat{j} + \hat{k}$.

Ans:

 $\vec{a} = (\hat{i} - \hat{j})$ $\vec{b} = (\hat{j} + \hat{k})$ $|\vec{a}| = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2}$ $|\vec{b}| = \sqrt{(1)^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2}$ We know that , $\vec{a}.\vec{b} = |\vec{a}| |\vec{b}| \cos\theta$ $\Rightarrow (\hat{i} - \hat{j})(\hat{j} + \hat{k}) = \sqrt{2}\sqrt{2}\cos\theta$ $\Rightarrow (-1) = 2\cos\theta$ $\Rightarrow \cos\theta = -1/2$ $\Rightarrow \theta = \cos^{-1} - 1/2$ $\Rightarrow \theta = 120^{\circ}$ Ans: $\theta = 120^{\circ}$

12. Question

If
$$\vec{a} = (\hat{i} + 2\hat{j} - 3\hat{k})$$
 and $\vec{b} = (3\hat{i} - \hat{j} + 2\hat{k})$ then calculate the angle between $(2\vec{a} + \vec{b})$ and $(\vec{a} + 2\vec{b})$

Answer

 $\vec{a} = (\hat{i} + 2\hat{j} - 3\hat{k})$ $\vec{b} = (3\hat{i} - \hat{j} + 2\hat{k})$ $\vec{a} + 2\vec{b} = (\hat{i} + 2\hat{j} - 3\hat{k}) + 2(3\hat{i} - \hat{j} + 2\hat{k}) = 7\hat{i} + \hat{k}$ $2\vec{a} + \vec{b} = 2(\hat{i} + 2\hat{j} - 3\hat{k}) + (3\hat{i} - \hat{j} + 2\hat{k}) = 5\hat{i} + 3\hat{j} - 4\hat{k}$ $|\vec{a} + 2\vec{b}| = \sqrt{7^2 + (1)^2} = \sqrt{49 + 1} = \sqrt{50}$ $|2\vec{a} + \vec{b}| = \sqrt{5^2 + (3)^2 + (-4)^2} = \sqrt{25 + 9} + 16 = \sqrt{50}$ We know that , $\vec{a}.\vec{b} = |\vec{a}| |\vec{b}| \cos\theta$ $\Rightarrow (7\hat{i} + \hat{k}) (5\hat{i} + 3\hat{j} - 4\hat{k}) = \sqrt{50}\sqrt{50}\cos\theta$ $\Rightarrow (35 - 4) = 50 \cos\theta$ $\Rightarrow \cos\theta = 31/50$ $\Rightarrow \theta = \cos^{-1}(31/50)$ Ans: $\theta = \cos^{-1}(31/50)$ **13. Question**

If \vec{a} is a unit vector such that $(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 8$, find $|\vec{x}|$.

Answer

If \vec{a} is a unit vector

 $\Rightarrow |\vec{a}| = 1$ $\Rightarrow (\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 8$ $\Rightarrow |\vec{x}|^2 - |\vec{a}|^2 = 8$ $\Rightarrow |\vec{x}|^2 = 8 + 1 = 9$ $\Rightarrow |\vec{x}| = 3$ Ans: $|\vec{x}| = 3$

14. Question

Find the angles which the vector $\vec{a} = 3\hat{i} - 6\hat{j} + 2\hat{k}$ makes with the coordinate axes.

Answer

If we have a vector $\vec{a} = a\hat{l} + b\hat{j} + c\hat{k}$ then the angle with the x - axis = $\alpha = \cos^{-1}\frac{a}{\sqrt{a^2 + b^2 + c^2}}$ the angle with the y - axis = $\beta = \cos^{-1}\frac{b}{\sqrt{a^2 + b^2 + c^2}}$ the angle with the z - axis = $\gamma = \cos^{-1}\frac{c}{\sqrt{a^2 + b^2 + c^2}}$ Here, $\vec{a} = 3\hat{l} - 6\hat{j} + 2\hat{k}$ $\sqrt{a^2 + b^2 + c^2} = \sqrt{3^2 + (-6)^2 + 2^2} = \sqrt{9 + 36 + 4} = \sqrt{49} = 7$ then the angle with the x - axis = $\alpha = \cos^{-1}\frac{a}{\sqrt{a^2 + b^2 + c^2}} = \cos^{-1}\frac{3}{7}$ the angle with the y - axis = $\beta = \cos^{-1}\frac{b}{\sqrt{a^2 + b^2 + c^2}} = \cos^{-1}\frac{-6}{7}$ the angle with the z - axis = $\gamma = \cos^{-1}\frac{c}{\sqrt{a^2 + b^2 + c^2}} = \cos^{-1}\frac{2}{7}$ Ans:

$$\cos^{-1}\frac{3}{7}, \cos^{-1}\frac{-6}{7}, \cos^{-1}\frac{2}{7}$$

15. Question

Show that the vector $\vec{a}=\left(\hat{i}+\hat{j}+\hat{k}\right)$ is equally inclined to the coordinate axes.

Answer

If we have a vector $\vec{a} = a_1^a + b_j^a + c_k^c$ then the angle with the x - axis = $\alpha = \cos^{-1} \frac{a}{\sqrt{a^2 + b^2 + c^2}}$ the angle with the y - axis = $\beta = \cos^{-1} \frac{b}{\sqrt{a^2 + b^2 + c^2}}$ the angle with the z - axis = $\gamma = \cos^{-1} \frac{c}{\sqrt{a^2 + b^2 + c^2}}$ Here, $\vec{a} = 1 + j + k$ $\sqrt{a^2 + b^2 + c^2} = \sqrt{1^2 + (1)^2 + 1^2} = \sqrt{1 + 1 + 1} = \sqrt{3}$

then the angle with the x - axis = $\alpha = \cos^{-1} \frac{a}{\sqrt{a^2 + b^2 + c^2}} = \cos^{-1} \frac{1}{\sqrt{3}}$

the angle with the y - axis = $\beta = \cos^{-1} \frac{b}{\sqrt{a^2 + b^2 + c^2}} = \cos^{-1} \frac{1}{\sqrt{3}}$ the angle with the z - axis = $\gamma = \cos^{-1} \frac{c}{\sqrt{a^2 + b^2 + c^2}} = \cos^{-1} \frac{1}{\sqrt{3}}$

Now since, $\alpha = \beta = \gamma$

: the vector $\vec{a} = (\hat{i} + \hat{j} + \hat{k})$ is equally inclined to the coordinate axes.

Hence, proved.

16. Question

Find a vector \vec{a} of magnitude $5\sqrt{2}$, making an angle $\pi/4$ with x - axis, $\pi/2$ with y - axis and an acute angle θ with z - axis.

Answer

 $|\vec{a}| = 5\sqrt{2}$ $| = \cos \alpha = \cos \pi/4 = 1/\sqrt{2}$ $m = \cos \beta = \cos \pi/2 = 0$ $n = \cos \theta$ we know that $|^{2} + m^{2} + n^{2} = 1$ $\Rightarrow \frac{1}{\sqrt{2}}^{2} + 0^{2} + n^{2} = 1$ $\Rightarrow n^{2} = 1 - \frac{1}{2}$ $\Rightarrow n^{2} = \frac{1}{2}$ $\Rightarrow n = \pm \frac{1}{\sqrt{2}}$

since the vector makes an acute angle with the z axis

 $\therefore \mathbf{n} = + \frac{1}{\sqrt{2}}$ $\therefore \vec{a} = |\vec{a}|(|\hat{i} + m\hat{j} + n\hat{k}))$ $\therefore \vec{a} = 5\sqrt{2}(1/\sqrt{2}\hat{i} + 1/\sqrt{2}\hat{k})$ $\therefore \vec{a} = 5(\hat{i} + \hat{k})$ $Ans: \vec{a} = 5(\hat{i} + \hat{k})$

17. Question

Find the angle between $\left(\vec{a}+\vec{b}\right)$ and $\left(\vec{a}-\vec{b}\right)$, if $\vec{a} = \left(2\hat{i}-\hat{j}+3\hat{k}\right)$ and $\vec{b} = \left(3\hat{i}+\hat{j}+2\hat{k}\right)$.

Answer

 $\vec{a} = (2\hat{i} - \hat{j} + 3\hat{k})$ $\vec{b} = (3\hat{i} + \hat{j} + 2\hat{k})$ $\vec{a} + \vec{b} = (2\hat{i} - \hat{j} + 3\hat{k}) + (3\hat{i} + \hat{j} + 2\hat{k}) = 5\hat{i} + 5\hat{k}$ $\vec{a} - \vec{b} = (2\hat{i} - \hat{j} + 3\hat{k}) - (3\hat{i} + \hat{j} + 2\hat{k}) = -\hat{i} - 2\hat{j} + \hat{k}$ $|\vec{a} + \vec{b}| = \sqrt{5^2 + (5)^2} = \sqrt{25 + 25} = \sqrt{50}$ $|\vec{a} - \vec{b}| = \sqrt{(-1)^2 + (-2)^2 + (1)^2} = \sqrt{1 + 4 + 1} = \sqrt{6}$ We know that , $\vec{a}.\vec{b} = |\vec{a}| |\vec{b}| \cos\theta$ $\Rightarrow (5\hat{i} + 5\hat{k}) (-\hat{i} - 2\hat{j} + \hat{k}) = \sqrt{50}\sqrt{6}\cos\theta$ $\Rightarrow (-5 + 5) = \sqrt{300}\cos\theta$ $\Rightarrow \cos\theta = 0$ $\Rightarrow \theta = \cos^{-1}(0) = \pi/2$ Ans: $\theta = \pi/2$

18. Question

Express the vector $\vec{a} = (\hat{a}\hat{i} - \hat{3}\hat{j} - \hat{b}\hat{k})$ as sum of two vectors such that one is parallel to the vector $\vec{b} = (\hat{i} + \hat{j} + \hat{k})$ and the other is perpendicular to \vec{b} .

Answer

 $\vec{a} = (6\hat{i} - 3\hat{j} - 6\hat{k})$ $\vec{b} = (\hat{i} + \hat{i} + \hat{k})$ $\Rightarrow \vec{c} \parallel \vec{b} \otimes \vec{d} \parallel \vec{b}$ $\vec{a} = \vec{c} + \vec{d}$ $\vec{c} = \lambda \vec{b} \cdot \vec{b} \cdot \vec{d} = 0$ $\Rightarrow \vec{b} \cdot \vec{a} = \vec{b} \cdot (\vec{c} + \vec{d})$ ⇒ $(\hat{1} + \hat{1} + \hat{k})$. $(6\hat{1} - 3\hat{1} - 6\hat{k}) = \vec{b} \cdot \lambda \vec{b} + 0$ $\Rightarrow 6 - 3 - 6 = \lambda (|\vec{b}|^2) = 3\lambda$ $\Rightarrow \lambda = -1$ $\vec{c} = \lambda \vec{b} = -1(\hat{i} + \hat{j} + \hat{k}) = -(\hat{i} + \hat{j} + \hat{k})$ $\vec{a} = \vec{c} + \vec{d}$ $\Rightarrow (6\hat{i} - 3\hat{j} - 6\hat{k}) = -(\hat{i} + \hat{j} + \hat{k}) + \vec{d}$ $\Rightarrow \vec{d} = 7\hat{i} - 2\hat{i} - 5\hat{k}$ $\Rightarrow \vec{a} = \vec{c} + \vec{d}$ $\Rightarrow \vec{a} = -(\hat{i} + \hat{j} + \hat{k}) + (7\hat{i} - 2\hat{j} - 5\hat{k})$ Ans: $\vec{a} = -(\hat{i} + \hat{j} + \hat{k}) + (7\hat{i} - 2\hat{j} - 5\hat{k})$ 19. Question

Prove that $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2 \Leftrightarrow \vec{a} \perp \vec{b}$, where $\vec{a} \neq \vec{0}$ and $\vec{b} \neq \vec{0}$.

Answer

$$(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$$
$$\Rightarrow |\vec{a}|^2 - |\vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2$$
$$\Rightarrow |\vec{b}| = 0$$

Which is not possible hence

 $(\vec{a}) \perp (\vec{b})$

20. Question

If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $|\vec{a}| = 3$, $|\vec{b}| = 5$ and $|\vec{c}| = 7$, find the angle between \vec{a} and \vec{b} .

Answer

 $\vec{a} + \vec{b} + \vec{c} = 0$ $\Rightarrow \vec{a} + \vec{b} = -\vec{c}$ $\Rightarrow (\vec{a} + \vec{b}).(\vec{a} + \vec{b}) = -\vec{c}.-\vec{c}$ $\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|\cos\theta = |\vec{c}|^2$ $\Rightarrow 3^2 + 5^2 + 2 \times 3 \times 5\cos\theta = 7^2$ $\Rightarrow 2 \times 3 \times 5\cos\theta = 49 - 9 - 25$ $\Rightarrow 30\cos\theta = 15$ $\Rightarrow \cos\theta = \frac{15}{30} = \frac{1}{2}$ $\Rightarrow \theta = \cos^{-1}\frac{1}{2} = 60^0$ Ans: $\theta = 60^0 = \frac{\pi}{3}$

21. Question

Find the angle between \vec{a} and $\vec{b},$ when

i.
$$\left| \vec{a} \right| = 2$$
, $\left| \vec{b} \right| = 1$ and $\vec{a} \cdot \vec{b} = \sqrt{3}$
ii. $\left| \vec{a} \right| = \left| \vec{b} \right| = \sqrt{2}$ and $\vec{a} \cdot \vec{b} = -1$

Answer

i)

We know that ,

 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta$ $\Rightarrow \sqrt{3} = 2 \times 1\cos\theta$ $\Rightarrow \sqrt{3} = 2\cos\theta$ $\Rightarrow \cos\theta = \sqrt{3/2}$ $\Rightarrow \theta = \cos^{-1}(\sqrt{3/2}) = 30^{\circ} = \frac{\pi}{6}$

Ans: $\theta = \cos^{-1}(\sqrt{3}/2) = 30^{\circ} = \frac{\pi}{6}$

ii)

We know that ,

 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta$ $\Rightarrow -1 = \sqrt{2} \times \sqrt{2} \cos\theta$ $\Rightarrow -1 = 2\cos\theta$ $\Rightarrow \cos\theta = -1/2$ $\Rightarrow \theta = \cos^{-1}(-1/2) = 120^{\circ} = \frac{2\pi}{3}$ Ans: $\theta = \cos^{-1}(-1/2) = 120^{\circ} = \frac{2\pi}{3}$ **22. Question**

If $\left|\vec{a}\right| = 2$, $\left|\vec{b}\right| = 3$ and $\vec{a} \cdot \vec{b} = 4$, find $\left|\vec{a} - \vec{b}\right|$.

Answer

We know that , $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta$ $\Rightarrow 4 = 2 \times 3\cos\theta$ $\Rightarrow 4 = 6\cos\theta$ $\Rightarrow \cos\theta = 4/6$ $\Rightarrow \cos\theta = 2/3$ $\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}| |\vec{b}| \cos\theta$ $\Rightarrow |\vec{a} - \vec{b}|^2 = 2^2 + 3^2 - (2 \times 2 \times 3) \times \frac{2}{3}$ $\Rightarrow |\vec{a} - \vec{b}|^2 = 4 + 9 - 8 = 5$ $\Rightarrow |\vec{a} - \vec{b}| = \sqrt{5}$ Ans: $\sqrt{5}$

23. Question

 $\text{If } \left(\vec{a} + \vec{b}\right) \cdot \left(\vec{a} - \vec{b}\right) = 8 \text{ and } \left|\vec{a}\right| = 8 \left|\vec{b}\right|, \text{ find } \left|\vec{a}\right| \text{ and } \left|\vec{b}\right|.$

Answer

 $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 8$ $\Rightarrow |\vec{a}|^2 - |\vec{b}|^2 = 8$ $\Rightarrow (8|\vec{b}|)^2 - |\vec{b}|^2 = 8$ $\Rightarrow 64|\vec{b}|^2 - |\vec{b}|^2 = 8$ $\Rightarrow 63|\vec{b}|^2 = 8$

$$\Rightarrow \left|\vec{\mathbf{b}}\right| = \sqrt{\frac{8}{63}}$$
$$\Rightarrow \left|\vec{\mathbf{a}}\right| = 8\left|\vec{\mathbf{b}}\right| = 8\sqrt{\frac{8}{63}}$$
$$\text{Ans:} \left|\vec{\mathbf{a}}\right| = 8\sqrt{\frac{8}{63}}, \left|\vec{\mathbf{b}}\right| = \sqrt{\frac{8}{63}}$$

24. Question

If \hat{a} and \hat{b} are unit vectors inclined at an angle θ then prove that:

i.
$$\cos\frac{\theta}{2} = \frac{1}{2}\left|\hat{a} + \hat{b}\right|$$

ii. $\tan\frac{\theta}{2} = \frac{\left|\hat{a} - \hat{b}\right|}{\left|\hat{a} + \hat{b}\right|}$

Answer

R.H.S:

$$\begin{aligned} \left(\frac{1}{2}\right) \left(\left|\left|\hat{a} + \hat{b}\right|\right)\right| &= \frac{1}{2} \left(\sqrt{\left|\hat{a}\right|^2 + \left|\hat{b}\right|^2 + 2\left|\hat{a}\right|}\right| \hat{b} \left|\cos\theta\right) \\ \Rightarrow \frac{1}{2} \left(\sqrt{1^2 + 1^2 + 2 \times 1 \times 1\cos\theta} \\ \Rightarrow \frac{1}{2} \left(\sqrt{1 + 1 + 2\cos\theta} \\ \Rightarrow \sqrt{\frac{2 + 2\cos\theta}{4}} \\ \Rightarrow \sqrt{\frac{2(1 + \cos\theta)}{4}} \\ \Rightarrow \sqrt{\frac{2(1 + \cos\theta)}{4}} \\ \Rightarrow \sqrt{\frac{(1 + \cos\theta)}{2}} \\ \Rightarrow \sqrt{\cos^2\frac{\theta}{2}} \\ \Rightarrow \cos^2\frac{\theta}{2} = L.H.S \\ \text{Hence, proved} \\ \text{ii}) \\ \text{R.H.S.} &= \frac{\left(\left|\hat{a} - \hat{b}\right|\right)}{\left(\left|\hat{a} + \hat{b}\right|\right)} \\ \Rightarrow \frac{\sqrt{\left|\hat{a}\right|^2 + \left|\hat{b}\right|^2 - 2\left|\hat{a}\right|\left|\hat{b}\right|\cos\theta}}{\sqrt{\left|\hat{a}\right|^2 + \left|\hat{b}\right|^2 + 2\left|\hat{a}\right|\left|\hat{b}\right|\cos\theta}} \\ \Rightarrow \frac{\sqrt{1^2 + 1^2 - 2 \times 1 \times 1\cos\theta}}{\sqrt{1^2 + 1^2 + 2 \times 1 \times 1\cos\theta}} \\ \Rightarrow \frac{\sqrt{1 + 1 - 2\cos\theta}}{\sqrt{1 + 1 + 2\cos\theta}} \end{aligned}$$

$$\Rightarrow \sqrt{\frac{1 - COS\theta}{1 + COS\theta}}$$

$$\Rightarrow \sqrt{\frac{\sin^2 \frac{\theta}{2}}{\cos^2 \frac{\theta}{2}}}$$
$$\Rightarrow \sqrt{\tan^2 \frac{\theta}{2}}$$

 \Rightarrow tan $\theta/2 = L.H.S$

Hence, proved.

25. Question

The dot products of a vector with the vector $(\hat{i} + \hat{j} - 3\hat{k})$, $(\hat{i} + 3\hat{j} - 2\hat{k})$ and $(2\hat{i} + \hat{j} + 4\hat{k})$ are 0, 5 and 8 respectively. Find the vector.

Answer

Let the unknown vector be: $\vec{a} = a\hat{i} + b\hat{j} + c\hat{k}$

 $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$

Ans: $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$

26. Question

If $\overrightarrow{AB} = (3\hat{i} - \hat{j} + 2\hat{k})$ and the coordinates of A are (0, - 2, - 1), find the coordinates of B.

Answer

 $\overline{AB} = \overline{B} - \overline{A} = 3\hat{i} - \hat{j} + 2\hat{k}$ $\Rightarrow \overline{B} - (0\hat{i} - 2\hat{j} - \hat{k}) = 3\hat{i} - \hat{j} + 2\hat{k}$ $\Rightarrow \overline{B} = (0\hat{i} - 2\hat{j} - \hat{k}) + 3\hat{i} - \hat{j} + 2\hat{k}$ $\Rightarrow \overline{B} = 3\hat{i} - 3\hat{j} + \hat{k}$ $\therefore B(3, - 3, 1)$ Ans: B(3, - 3, 1)

27. Question

If A(2, 3, 4), B(5, 4, -1), C(3, 6, 2) and D(1, 2, 0) be four points, show that \overline{AB} is perpendicular to \overline{CD} .

Answer

 $\vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k}$

 $\vec{B} = 5\hat{i} + 4\hat{j} - \hat{k}$ $\vec{C} = 3\hat{i} + 6\hat{j} + 2\hat{k}$ $\vec{D} = \hat{i} + 2\hat{j} + 0\hat{k}$ $\vec{AB} = \vec{B} - \vec{A} = 5\hat{i} + 4\hat{j} - \hat{k} - (2\hat{i} + 3\hat{j} + 4\hat{k}) = 3\hat{i} + \hat{j} - 5\hat{k}$ $\vec{CD} = \vec{D} - \vec{C} = \hat{i} + 2\hat{j} + 0\hat{k} - (3\hat{i} + 6\hat{j} + 2\hat{k}) = -2\hat{i} - 4\hat{j} - 2\hat{k}$ $\vec{AB}. \vec{CD} = (3\hat{i} + \hat{j} - 5\hat{k}).(-2\hat{i} - 4\hat{j} - 2\hat{k}) = -6 - 4 + 10 = 0$ Hence, $\vec{AB} \perp \vec{CD}$

28. Question

Find the value of λ for which the vectors $(2\hat{i} + \lambda\hat{j} + 3\hat{k})$ and $(3\hat{i} + 2\hat{j} - 4\hat{k})$ are perpendicular to each other.

Answer

 $\vec{a} = 2\hat{i} + \lambda\hat{j} + 3\hat{k}$

$$\mathbf{b} = 3\mathbf{\hat{1}} + 2\mathbf{\hat{j}} - 4\mathbf{\hat{k}}$$

Since these two vectors are perpendicular, their dot product is zero.

 $\Rightarrow \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta = |\vec{a}| |\vec{b}| \cos\frac{\pi}{2} = 0$ $\Rightarrow \vec{a} \cdot \vec{b} = (2\hat{i} + \lambda\hat{j} + 3\hat{k}) \cdot (3\hat{i} + 2\hat{j} - 4\hat{k}) = 0$ $\Rightarrow \vec{a} \cdot \vec{b} = (2 \times 3) + (\lambda \times 2) + (3 \times -4) = 0$ $\Rightarrow \vec{a} \cdot \vec{b} = 6 + 2\lambda - 12 = 0$ $\Rightarrow 6 = 2\lambda$ $\Rightarrow \lambda = \frac{6}{2} = 3$ Ans: $\lambda = 3$

29. Question

Show that the vectors $\vec{a} = (3\hat{i} - 2\hat{j} + \hat{k})$, $\vec{b} = (\hat{i} - 3\hat{j} + 5\hat{k})$ and $\vec{c} = (2\hat{i} + \hat{j} - 4\hat{k})$ form a right - angled triangle.

Answer

 $\vec{a} = 3\hat{i} - 2\hat{j} + \hat{k}$ $\vec{b} = \hat{i} - 3\hat{j} + 5\hat{k}$ $\vec{c} = 2\hat{i} + \hat{j} - 4\hat{k}$ $|\vec{a}| = \sqrt{9 + 4 + 1} = \sqrt{14}$ $|\vec{c}| = \sqrt{4 + 1 + 16} = \sqrt{21}$ $\cos\theta = \frac{\vec{a}.\vec{c}}{|\vec{a}||\vec{c}|} = \frac{(3\hat{i} - 2\hat{j} + \hat{k}).(2\hat{i} + \hat{j} - 4\hat{k})}{\sqrt{14}\sqrt{21}} = \frac{6 - 2 - 4}{\sqrt{14}\sqrt{21}} = 0$ $\Rightarrow \theta = \cos^{-1}\theta = \frac{\pi}{2}$ Hence, the triangle is a right angled triangle at c

30. Question

Three vertices of a triangle are A(0, -1, -2), B(3, 1, 4) and C(5, 7, 1). Show that it is a right - angled triangle. Also, find its other two angles.

Answer

 $\vec{a} = 0\hat{i} - \hat{i} - 2\hat{k}$ $\vec{b} = 3\hat{i} + \hat{i} + 4\hat{k}$ $\vec{c} = 5\hat{i} + 7\hat{i} + \hat{k}$ $|\vec{AB}| = \sqrt{9 + 4 + 36} = \sqrt{49} = 7$ $|\vec{BC}| = \sqrt{4 + 36 + 9} = \sqrt{49} = 7$ $|\vec{CA}| = \sqrt{25 + 64 + 9} = \sqrt{98} = 7\sqrt{2}$ $\vec{AB} = \vec{B} - \vec{A} = 3\hat{i} + \hat{j} + 4\hat{k} - (0\hat{i} - \hat{j} - 2\hat{k}) = 3\hat{i} + 2\hat{j} + 6\hat{k}$ $\vec{BC} = \vec{C} - \vec{B} = 5\hat{i} + 7\hat{i} + \hat{k} - (3\hat{i} + \hat{i} + 4\hat{k}) = 2\hat{i} + 6\hat{i} - 3\hat{k}$ $\overrightarrow{CA} \ = \ \overrightarrow{A} - \overrightarrow{C} \ = \ 0 \hat{\imath} - \hat{\jmath} - 2 \hat{k} - \left(5 \hat{\imath} \ + \ 7 \hat{\jmath} \ + \ \hat{k}\right) \ = \ -5 \hat{\imath} - 8 \hat{\jmath} - 3 \hat{k}$ $\cos \theta = \frac{\overrightarrow{AB}.\overrightarrow{BC}}{|\overrightarrow{AB}||\overrightarrow{BC}|} = \frac{(3\hat{i} + 2\hat{j} + 6\hat{k}).(2\hat{i} + 6\hat{j} - 3\hat{k})}{7 \times 7} = \frac{6 + 12 - 18}{49} = 0$ $\therefore \theta = \frac{\pi}{2}$ $\cos \alpha = \frac{\overrightarrow{CA}.\overrightarrow{BC}}{\left|\overrightarrow{CA}\right|\left|\overrightarrow{BC}\right|} = \frac{\left(-5\widehat{\imath}-8\widehat{\jmath}-3\widehat{k}\right).\left(2\widehat{\imath}+6\widehat{\jmath}-3\widehat{k}\right)}{7\sqrt{2}\times7} = \frac{-10-48+9}{49\sqrt{2}}$ $= \left| \frac{-1}{\sqrt{2}} \right|$ $\therefore \theta = \frac{\pi}{4} = 45^{\circ}$ $\cos\alpha \ = \frac{\overrightarrow{\text{CA}}.\overrightarrow{\text{AB}}}{|\overrightarrow{\text{CA}}||\overrightarrow{\text{AB}}|} \ = \ \frac{\left(-5\widehat{\imath}-8\widehat{\jmath}-3\widehat{k}\right).\left(3\widehat{\imath}\ +\ 2\widehat{\jmath}\ +\ 6\widehat{k}\right)}{7\sqrt{2}\ \times\ 7} \ = \ \frac{-15-16\ +\ 18}{49\sqrt{2}}$ $= \left| \frac{-1}{\sqrt{2}} \right|$ $\therefore \theta = \frac{\pi}{4} = 45^{\circ}$ Ans:45°,90°,45°

31. Question

If the position vectors of the vertices A, B and C of a \triangle ABC be (1, 2, 3), (- 1, 0, 0) and (0, 1, 2) respectively then find \angle ABC.

Answer

 $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ $\vec{b} = -\hat{i} + 0\hat{j} + 0\hat{k}$ $\vec{c} = 0\hat{i} + \hat{j} + 2\hat{k}$ $|\overrightarrow{AB}| = \sqrt{4 + 4 + 9} = \sqrt{17}$

$$\begin{aligned} |\vec{B}\vec{C}| &= \sqrt{1+1+4} = \sqrt{6} \\ |\vec{C}\vec{A}| &= \sqrt{1+1+1} = \sqrt{3} \\ \vec{A}\vec{B} &= \vec{B} - \vec{A} = -\hat{1} + 0\hat{j} + 0\hat{k} - (\hat{1} + 2\hat{j} + 3\hat{k}) = -2\hat{1} - 2\hat{j} - 3\hat{k} \\ \vec{B}\vec{C} &= \vec{C} - \vec{B} = 0\hat{i} + 1\hat{j} + 2\hat{k} - (-\hat{i} + 0\hat{j} + 0\hat{k}) = \hat{i} + \hat{j} + 2\hat{k} \\ \vec{C}\vec{A} &= \vec{A} - \vec{C} = \hat{i} + 2\hat{j} + 3\hat{k} - (0\hat{i} + 1\hat{j} + 2\hat{k}) = \hat{i} + \hat{j} + \hat{k} \\ \cos\theta &= \frac{\vec{A}\vec{B}.\vec{B}\vec{C}}{|\vec{A}\vec{B}||\vec{B}\vec{C}|} = \frac{(-2\hat{i} - 2\hat{j} - 3\hat{k}).(\hat{i} + \hat{j} + 2\hat{k})}{\sqrt{17} \times \sqrt{6}} = \frac{-2 - 2 - 6}{\sqrt{102}} = |\frac{-10}{\sqrt{102}}| \\ \therefore \theta &= \cos^{-1}\frac{10}{\sqrt{102}} \\ \text{Ans: } \theta &= \cos^{-1}\frac{10}{\sqrt{102}} = \angle \text{ABC} \end{aligned}$$

32. Question

If \vec{a} and \vec{b} are two unit vectors such that $|\vec{a} + \vec{b}| = \sqrt{3}$, find $(2\vec{a} - 5\vec{b}) \cdot (3\vec{a} + \vec{b})$.

Answer

 $\begin{aligned} |\vec{a}| &= |\vec{b}| = 1 \\ |\vec{a} + \vec{b}|^2 &= |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}| |\vec{b}| \cos\theta \\ \Rightarrow 3 &= 1 + 1 + 2\cos\theta \\ \Rightarrow \cos\theta &= 1/2 \\ \therefore (2\vec{a} - 5\vec{b}).(3\vec{a} + \vec{b}) &= 6|\vec{a}|^2 - 5|\vec{b}|^2 - 13\vec{a}.\vec{b} \\ \Rightarrow (2\vec{a} - 5\vec{b}).(3\vec{a} + \vec{b}) &= 6 - 5 - 13|\vec{a}| |\vec{b}| \cos\theta &= 1 - 13 \times 1 \times 1 \times (1/2)| \\ \Rightarrow (2\vec{a} - 5\vec{b}).(3\vec{a} + \vec{b}) &= 1 - \frac{13}{2} = \frac{-11}{2} \end{aligned}$ Ans: $(2\vec{a} - 5\vec{b}).(3\vec{a} + \vec{b}) &= \frac{-11}{2}$

33. Question

If \vec{a} and \vec{b} are two vectors such that $|\vec{a} + \vec{b}| = |\vec{a}|$ then prove that vector $(2\vec{a} + \vec{b})$ is perpendicular to the vector \vec{b} .

Answer

 $\begin{vmatrix} \vec{a} + \vec{b} \end{vmatrix} = |\vec{a}|$ $\Rightarrow |\vec{a} + \vec{b}|^{2} = |\vec{a}|^{2}$ $\Rightarrow |\vec{a}|^{2} + |\vec{b}|^{2} + 2|\vec{a}| |\vec{b}| \cos\theta = |\vec{a}|^{2}$ $\Rightarrow |\vec{b}| = -2|\vec{a}| \cos\theta$ NOW, $(2\vec{a} + \vec{b}). (\vec{b}) = 2\vec{a}. \vec{b} + |\vec{b}|^{2}$ $\Rightarrow (2\vec{a} + \vec{b}). (\vec{b}) = 2|\vec{a}| |\vec{b}| \cos\theta + ((2|\vec{a}| \cos\theta)^{2})$ $\Rightarrow (2\vec{a} + \vec{b}).(\vec{b}) = 2|\vec{a}|(-2|\vec{a}|\cos\theta)\cos\theta + ((2|\vec{a}|\cos\theta)^2) = 0$

Hence, $(2\vec{a} + \vec{b}) \perp (\vec{b})$

34. Question

If $\vec{a} = (3\hat{i} - \hat{j})$ and $\vec{b} = (2\hat{i} + \hat{j} - 3\hat{k})$ then express \vec{b} in the form $\vec{b} = (\vec{b}_1 + \vec{b}_2)$, where $\vec{b}_1 \parallel \vec{a}$ and $\vec{b}_2 \perp \vec{a}$.

Answer

```
Let b_1 = c and b_2 = d
\vec{a} = (3\hat{i} - \hat{j})
\vec{b} = (2\hat{i} + \hat{j} - 3\hat{k})
⇒ cื∥ a ึ& d ⊥ a
\vec{b} = \vec{c} + \vec{d}
\vec{c} = \lambda \vec{a} \cdot \vec{a} \cdot \vec{d} = 0
\rightarrow \vec{a} \cdot \vec{b} = \vec{a} \cdot (\vec{c} + \vec{d})
⇒ (3\hat{1} - \hat{1}) \cdot (2\hat{1} + \hat{1} - 3\hat{k}) = \vec{a} \cdot \lambda \vec{a} + 0
\Rightarrow \mathbf{6} - \mathbf{1} = \lambda(|\vec{a}|^2) = 10\lambda
\Rightarrow \lambda = 5/10 = 1/2
\vec{c} = \lambda \vec{a} = (1/2)(3\hat{i} - \hat{j}) = \left(\frac{3}{2}\hat{i} - \frac{1}{2}\hat{j}\right)
\vec{b} = \vec{c} + \vec{d}
\Rightarrow (2\hat{i} + \hat{j} - 3\hat{k}) = (\frac{3}{2}\hat{i} - \frac{1}{2}\hat{j}) + \vec{d}
\Rightarrow \vec{d} = \left(\frac{1}{2}\hat{1} + \frac{3}{2}\hat{j}\right) - 3\hat{k}
\Rightarrow \vec{\mathbf{b}} = \mathbf{b}_1 + \mathbf{b}_2
\Rightarrow \vec{\mathbf{b}} = \left(\frac{3}{2}\hat{\mathbf{i}} - \frac{1}{2}\hat{\mathbf{j}}\right) + \left(\left(\frac{1}{2}\hat{\mathbf{i}} + \frac{3}{2}\hat{\mathbf{j}}\right) - 3\hat{\mathbf{k}}\right)
Ans: \vec{b} = (\frac{3}{2}\hat{1} - \frac{1}{2}\hat{j}) + ((\frac{1}{2}\hat{1} + \frac{3}{2}\hat{j}) - 3\hat{k})
```