On	e mark questions:	
1.	Differentiate between average and instantaneous rate of a reaction.	U
2.	Express the rate of the reaction in terms of different reactants and products for;	
	$2N_2O_{5(g)} \longrightarrow 4NO_{2(g)} + O_{2(g)}$	U
3.	Define order of a reaction.	к
4.	What is an elementary reaction?	К
5.	Define molecularity of reaction.	К
6.	What is the slowest step in a complex reaction also called?	К
7.	For what type of reactions is molecularity and order the same?	U
8.	What is the order of the reaction for which the rate law is; Rate $= k[A]^{1/2}[B]^{3/2}$	S
9.	Unit of rate constant of a reaction is same as the unit of rate of reaction. What is	
	the order of the reaction?	U
10.	Mention any one condition under which a second order reaction of rate law:	
	rate = $k[A]^{1}[B]^{1}$ can be made a pseudo first order reaction.	U
11.	For a reaction, the graph of rate of the reaction against molar	
	concentration of the reactant is as shown. What is the order of	
	the reaction? $[A] \rightarrow$	A
12.	Rate law of a reaction is : rate = $k [NO]^2 [O_2]$. By how many times does the rate of	
	the reaction increase if the volume of the reaction vessel is halved?	5
13.	By how many times does the t_{\varkappa} of zero order reaction increase if the initial	6
	concentration of the reactant is doubled.	5
14.	$t_{\scriptscriptstyle \!$	6
	reactant remains unreacted at the end of 50 minutes? [A:3.125%]	5
15.	If t_{\varkappa} for a first order reaction is 25 s, what is the time required for 10 g of a reactant	
	to get reduced to 1.25 g? [A: 75 s]	S
16.	Oxygen is available in air, yet fuels do not burn spontaneously at room	
	temperature. Why?	А
17.	In the Arrhenius equation $k = Ae^{-Ea/RT}$, What does $e^{-Ea/RT}$ represent?	К
18.	What is the relationship between the rate constant and activation energy of a	
	reaction?	К
19.	Differentiate between activation energy and threshold energy of a reaction.	U
		1

UNIT-4: CHEMICAL KINETICS

20.	For many reactions, it is found that a large number of colliding molecules have	
	energy more than threshold value, yet the rate of the reaction is slow. What might	
	be the reason?	U
21.	What is collision frequency?	К
Tw	o mark questions	
1.	Mention the factors which affect the rate of a reaction.	U
2.	In a reaction 2A \longrightarrow products, the concentration of A decreases from 0.5 to 0.4	
	mol L^{-1} in 10 minutes. Calculate the rate of reaction during this interval.	
	$[A: 5 \times 10^{-3} \text{ Mmin}^{-1}]$	S
3.	Identify the order of the reaction from the unit of rate constants.	
	i) $L mol^{-1} s^{-1}$ ii) $M^{-2} min^{-1}$	U
4.	Write the order of the reaction and unit of the rate constant for the reaction:	
	$CH_{3}CHO_{(g)} \longrightarrow CH_{4(g)} + CO_{(g)}$. Rate = k $[CH_{3}CHO]^{3/2}$	U
5.	$2A \longrightarrow P$; is second order reaction. How is the rate of the reaction affected if the	
	concentration of A is (a) doubled (b) reduced to half?	S
6.	Define half-life period of a reaction. Give an expression for $t_{\!\scriptscriptstyle ½}$ for a zero order	
	reaction.	K
7.	Show that half-life period for a zero order reaction $R \longrightarrow P$, is directly	.,
	proportional to initial concentration of the reactant.	К
8.	Show that the half-life period of a first order reaction $R {\longrightarrow} P$ is independent of	V
	initial concentration of the reactant.	ĸ
9.	For a zero order reaction: $2NH_3_{(g)} \xrightarrow{Pt} N_2_{(g)} + 3H_2_{(g)}$, the rate constant	ç
	k = 2 \times 10 ⁻⁴ mol L ⁻¹ s ⁻¹ . What are the rates of production of N ₂ and H ₂ ?	5
10.	Time required to decompose SO_2Cl_2 to half of its initial amount in 55 minutes. If	
	the decomposition is a first order reaction, calculate the rate constant of the	_
	reaction.	S
11.	What happens to half life time of a first order reaction when temperature is	
	increased? Give reason.	A
12.	Draw a graph of concentration of R versus time for a zero order reaction $R \longrightarrow P$.	c
	What is the intercept of the line equal to?	З
13.	The decomposition of a hydrocarbon follows the equation: $k = 4.5 \times 10^{11} e^{-28000/T}$.	
	Calculate E_a . Given R = 8.314 J K ⁻¹ mol ⁻¹ . [A: 232.79 kJ]	S

8.	A first order reaction takes 69.3 minutes for 50% completion. How much time will	
	be needed for 80% completion? [A:160.9 min]	S
9.	The rate constant of a first order reactions 3×10^{-4} s ⁻¹ . What percentage of the	
	reactant will decompose in one hour? [A:66%]	S
10). Show that the time required for 99% completion of a first order reaction is twice	
	the time required for completion of 90% of the reaction.	S
11	1. The rate constant of a first order reaction is 60 s ^{-1} . How much time will it take for	
	the reaction to reduce the initial concentration of the reactant to $1/16^{th}$ of its initial	
	value? [A: 4.62×10^{-2} s]	S
12	2. The first order rate constant for the decomposition of ethyl iodide at 600K is	
	$1.6 imes 10^{-5}$ s ⁻¹ . Its activation energy is 209 kJ/mol. Calculate the rate constant of the	
	reaction at 700K. [A: $6.353 \times 10^{-3} \text{ s}^{-1}$]	S
13	3. What is the effect of catalyst on a reaction with respect to its	
	i) energy of activation ii) ΔG of the reaction	
	iii) time required for 50% of the reaction to be completed?	А
Fiv	ve mark questions:	
1.	a) The rate constants of a reaction at 500K and 700K are 0.02 $\rm s^{-1}~$ and 0.07 $\rm s^{-1}$	
	respectively. Calculate the energy of activation of the reaction.	
	[A:18.23 kJ mol ⁻¹]	S
	b) What is pseudo first order reaction? Give an example.	
2.	a) The graph of log k vs. $1/T$ for a reaction is linear with intercept of 10 and	
	slope of –5.1 $\times10^3$. Calculate the frequency factor and E_a of the reaction. R =	
	8.314 $JK^{-1}mol^{-1}$ [A: Frequency factor : 10 ¹⁰ , E _a = 97.65 kJ]	
	b) A reaction is 50% complete in 2 hours and 75% complete in 4 hours. What is	
	the order of the reaction? Explain.	S
3.	For a certain chemical reaction, variation in the concentration <i>I</i>n[R] vs time plot is	
	given: For this reaction write/draw	
	i) order of the reaction? $\begin{array}{c} \uparrow\\ \ln[R] \end{array}$	
	ii) the units of rate constant k?	
	iii) Give the relationship between k and $t_{1/2}$ (half-life period)	
	iv) What does the slope of the line indicate?	
	v) Draw the plot of $\left\{ \log \frac{[R_0]}{R} \right\}$ vs. time	S

- 4. a) Explain collision theory of reaction rate.
 - b) Draw a graph of potential energy vs. reaction co-ordinate to show the effect of catalyst on the activation energy.
- 5. a) Hydrogen peroxide $(H_2O_{2 (aq)})$ decomposes to $H_2O_{(I)}$ and $O_{2 (g)}$ in a reaction that is of first order in H_2O_2 and has a rate constant $k = 1.06 \times 10^{-3}$ min. How long will it take for 15% of a sample of H_2O_2 to decompose? [A: $t_{15\%} = 153.4$ min]
 - b) Mention two criteria for effective collision.
- 6. a) Distinguish between molecularity and order of a reaction.
 - b) The activation energy for the reaction $2HI_{(g)} \longrightarrow H_{2(g)}+I_{2(g)}$ is 209.5 kJ/mol at 581 K. Calculate the fraction of molecules having energy equal to or greater than activation energy (R = 8.314 Jk⁻¹ mol⁻¹) [A: 1.471×10^{-19}]
- 7. In a pseudo first order hydrolysis of ester in water the following results are obtained.

t in seconds	0	30	60	90
Ester (M)	0.55	0.31	0.17	0.085

- Calculate the average rate of reaction between the time interval 30 to 60 seconds.
- ii) Calculate the pseudo first order rate constant for the hydrolysis of ester.

[A: (i) 4.67
$$\times$$
 10⁻³ mol L⁻¹ s⁻¹ (ii) 1.91 \times 10⁻² s⁻¹]

8. a) Rate constant k of a reaction varies with temperature T according to the equation $\log k = \log A - \frac{E_a}{2.303R} \left[\frac{1}{T}\right]$

When a graph is plotted for log k vs. $\frac{1}{T}$ a straight line with slope -4250 is

obtained. Calculate E_a for the reaction (R =8.314 Jk⁻¹ mol⁻¹) [A: 813.75 kJmol⁻¹]

- b) For the reaction $2A + B \longrightarrow$ Products, rate = k[A]²[B], the rate constant is 4x10⁻⁵ mol⁻² L²s⁻¹. Calculate the initial rate of the reaction when [A] = 0.5 M and [B]=0.3 M. [A: 3×10^{-6} M sec⁻¹]
- 9. a) Sucrose decomposes in an acid solution, following first order kinetics. Half life for the reaction is 3 hrs. Calculate the fraction of sucrose that remains after 8 hrs.
 [A: 0.1576]
 - b) What is the effect of temperature on the (i) rate constant and (ii) $t_{1/2}$ of a reaction.

S

S

S

S

S

S

xperiment	[A]M	[B]M	Initial rate $[R_o]$ for appearance of product P
1	0.2	0.3	2 x 10 ⁻³ mol L ⁻¹ s ⁻¹
2	0.2	0.1	2 x 10 ⁻³ mol L ⁻¹ s ⁻¹
3	0.4	0.3	$4x \ 10^{-3} \ \text{mol L}^{-1} \text{s}^{-1}$
What is the	order o	f the re	action with respect to A and B?
Vrite the ra	ate law.	iii)	What is the rate constant.