
4.1 IntroductIon

We have learned how to organise and analyse
data and perform various statistical operations
on Pandas DataFrames. Likewise, in Class XI, we
have learned how to analyse numerical data using
NumPy. The results obtained after analysis is used
to make inferences or draw conclusions about data
as well as to make important business decisions.
Sometimes, it is not easy to infer by merely looking
at the results. In such cases, visualisation helps
in better understanding of results of the analysis.

Data visualisation means graphical or pictorial
representation of the data using graph, chart,
etc. The purpose of plotting data is to visualise
variation or show relationships between variables.

“Human visual perception is the
“most powerful of data interfaces
between computers and Humans”

— M. McIntyre

C h a p t e r

 4
Plotting Data using
Matplotlib

In this chapter
 » Introduction
 » Plotting using

Matplotlib
 » Customisation of

Plots
 » The Pandas Plot

Function (Pandas
Visualisation)

Chapter 4.indd 105 10/9/2020 12:35:31 PM

2021–22

InformatIcs PractIces106

Visualisation also helps to effectively communicate
information to intended users. Traffic symbols,
ultrasound reports, Atlas book of maps, speedometer
of a vehicle, tuners of instruments are few examples
of visualisation that we come across in our daily lives.
Visualisation of data is effectively used in fields like
health, finance, science, mathematics, engineering, etc.
In this chapter, we will learn how to visualise data using
Matplotlib library of Python by plotting charts such
as line, bar, scatter with respect to the various types
of data.

4.2 PlottIng usIng MatPlotlIb

Matplotlib library is used for creating static, animated,
and interactive 2D- plots or figures in Python. It can
be installed using the following pip command from the
command prompt:

pip install matplotlib
For plotting using Matplotlib, we need to import its

Pyplot module using the following command:
import matplotlib.pyplot as plt

Here, plt is an alias or an alternative name for
matplotlib.pyplot. We can use any other alias also.

Figure 4.1: Components of a plot

The pyplot module of matplotlib contains a collection
of functions that can be used to work on a plot. The
plot() function of the pyplot module is used to create a
figure. A figure is the overall window where the outputs
of pyplot functions are plotted. A figure contains a

notes

Chapter 4.indd 106 10/9/2020 12:35:31 PM

2021–22

Plotting Data using MatPlotlib 107

plotting area, legend, axis labels, ticks, title, etc. (Figure
4.1). Each function makes some change to a figure:
example, creates a figure, creates a plotting area in a
figure, plots some lines in a plotting area, decorates the
plot with labels, etc.

It is always expected that the data presented through
charts easily understood. Hence, while presenting data
we should always give a chart title, label the axis of the
chart and provide legend in case we have more than one
plotted data.

To plot x versus y, we can write plt.plot(x,y). The
show() function is used to display the figure created
using the plot() function.

Let us consider that in a city, the maximum temperature
of a day is recorded for three consecutive days. Program
4-1 demonstrates how to plot temperature values for
the given dates. The output generated is a line chart.

Program 4-1 Plotting Temperature against Height

import matplotlib.pyplot as plt
#list storing date in string format
date=["25/12","26/12","27/12"]
#list storing temperature values
temp=[8.5,10.5,6.8]
#create a figure plotting temp versus date
plt.plot(date, temp)
#show the figure
plt.show()

Figure 4.2: Line chart as output of Program 4-1

notes

Chapter 4.indd 107 10/9/2020 12:35:32 PM

2021–22

InformatIcs PractIces108

In program 4-1, plot() is provided with two parameters,
which indicates values for x-axis and y-axis, respectively.
The x and y ticks are displayed accordingly. As shown
in Figure 4.2, the plot() function by default plots a line
chart. We can click on the save button on the output
window and save the plot as an image. A figure can also
be saved by using savefig() function. The name of the
figure is passed to the function as parameter.

For example: plt.savefig('x.png').
In the previous example, we used plot() function

to plot a line graph. There are different types of data
available for analysis. The plotting methods allow for a
handful of plot types other than the default line plot, as
listed in Table 4.1. Choice of plot is determined by the
type of data we have.

Table 4.1 List of Pyplot functions to plot different charts
plot(*args[, scalex, scaley, data]) Plot x versus y as lines and/or markers.

bar(x, height[, width, bottom, align, data]) Make a bar plot.

boxplot(x[, notch, sym, vert, whis, ...]) Make a box and whisker plot.

hist(x[, bins, range, density, weights, ...]) Plot a histogram.

pie(x[, explode, labels, colors, autopct, ...]) Plot a pie chart.

scatter(x, y[, s, c, marker, cmap, norm, ...]) A scatter plot of x versus y.

4.3 custoMIsatIon of Plots

Pyplot library gives us numerous functions, which can
be used to customise charts such as adding titles or
legends. Some of the customisation options are listed in
Table 4.2:

Table 4.2 List of Pyplot functions to customise plots
grid([b, which, axis]) Configure the grid lines.

legend(*args, **kwargs) Place a legend on the axes.

savefig(*args, **kwargs) Save the current figure.

show(*args, **kw) Display all figures.

title(label[, fontdict, loc, pad]) Set a title for the axes.

xlabel(xlabel[, fontdict, labelpad]) Set the label for the x-axis.

xticks([ticks, labels]) Get or set the current tick locations and labels of the x-axis.

ylabel(ylabel[, fontdict, labelpad]) Set the label for the y-axis.

yticks([ticks, labels]) Get or set the current tick locations and labels of the y-axis.

Chapter 4.indd 108 10/9/2020 12:35:32 PM

2021–22

Plotting Data using MatPlotlib 109

Program 4-2 Plotting a line chart of date versus temperature
by adding Label on X and Y axis, and adding a
Title and Grids to the chart.

import matplotlib.pyplot as plt

date=["25/12","26/12","27/12"]

temp=[8.5,10.5,6.8]

plt.plot(date, temp)

plt.xlabel("Date") #add the Label on x-axis

plt.ylabel("Temperature") #add the Label on y-axis

plt.title("Date wise Temperature") #add the title to the chart

plt.grid(True) #add gridlines to the background

plt.yticks(temp)

plt.show()

Figure 4.3: Line chart as output of Program 4-2

In the above example, we have used the xlabel, ylabel,
title and yticks functions. We can see that compared
to Figure 4.2, the Figure 4.3 conveys more meaning,
easily. We will learn about customisation of other plots
in later sections.

4.3.1 Marker
We can make certain other changes to plots by passing
various parameters to the plot() function. In Figure
4.3, we plot temperatures day-wise. It is also possible
to specify each point in the line through a marker.

On providing a single
list or array to the
plot() function, can
matplotlib generate
values for both the x
and y axis?

Think and Reflect

Chapter 4.indd 109 10/9/2020 12:35:34 PM

2021–22

InformatIcs PractIces110

A marker is any symbol that represents a data value
in a line chart or a scatter plot. Table 4.3 shows a list
of markers along with their corresponding symbol and
description. These markers can be used in program codes:

Table 4.3 Some of the Matplotlib Markers
Marker Symbol Description Marker Symbol Description
“.” Point “8” octagon

“,” Pixel “s” square

“o” Circle “p” pentagon

“v” triangle_down “P” plus (filled)

“^” triangle_up “*” star

“<” triangle_left “h” hexagon1

“>” triangle_right “H” hexagon2

“1” tri_down “+” plus

“2” tri_up “x” x

“3” tri_left “X” x (filled)

“4” tri_right “D” diamond

4.3.2 Colour
It is also possible to format the plot further by changing
the colour of the plotted data. Table 4.4 shows the list of
colours that are supported. We can either use character
codes or the color names as values to the parameter
color in the plot().

Table 4.4 Colour abbreviations for plotting
Character Colour

‘b’ blue

‘g’ green

‘r’ red

‘c’ cyan

‘m’ magenta

‘y’ yellow

‘k’ black

‘w’ white

Chapter 4.indd 110 10/9/2020 12:35:34 PM

2021–22

Plotting Data using MatPlotlib 111

4.3.3 Linewidth and Line Style
The linewidth and linestyle property can be used
to change the width and the style of the line chart.
Linewidth is specified in pixels. The default line width
is 1 pixel showing a thin line. Thus, a number greater
than 1 will output a thicker line depending on the
value provided.

We can also set the line style of a line chart using
the linestyle parameter. It can take a string such as
"solid", "dotted", "dashed" or "dashdot". Let us write the
Program 4-3 applying some of the customisations.

Program 4-3 Consider the average heights and weights of
persons aged 8 to 16 stored in the following
two lists:

height = [121.9,124.5,129.5,134.6,139.7,147.3,
152.4, 157.5,162.6]
weight= [19.7,21.3,23.5,25.9,28.5,32.1,35.7,39.6,
43.2]
Let us plot a line chart where:
i. x axis will represent weight
ii. y axis will represent height
iii. x axis label should be “Weight in kg”
iv. y axis label should be “Height in cm”
v. colour of the line should be green
vi. use * as marker
vii. Marker size as10
viii. The title of the chart should be “Average

weight with respect to average height”.
ix. Line style should be dashed
x. Linewidth should be 2.

import matplotlib.pyplot as plt

import pandas as pd

height=[121.9,124.5,129.5,134.6,139.7,147.3,152.4,157.5,162.6]

weight=[19.7,21.3,23.5,25.9,28.5,32.1,35.7,39.6,43.2]

df=pd.DataFrame({"height":height,"weight":weight})

#Set xlabel for the plot

plt.xlabel('Weight in kg')

#Set ylabel for the plot

Chapter 4.indd 111 10/9/2020 12:35:34 PM

2021–22

InformatIcs PractIces112

In the above we created the DataFrame using 2 lists,
and in the plot function we have passed the height and
weight columns of the DataFrame. The output is shown
in Figure 4.4.

Figure 4.4: Line chart showing average weight against average
height

4.4 the Pandas Plot functIon (Pandas
VIsualIsatIon)

In Programs 4-1 and 4-2, we learnt that the plot()
function of the pyplot module of matplotlib can be used
to plot a chart. However, starting from version 0.17.0,
Pandas objects Series and DataFrame come equipped
with their own .plot() methods. This plot() method is just
a simple wrapper around the plot() function of pyplot.
Thus, if we have a Series or DataFrame type object (let's
say 's' or 'df') we can call the plot method by writing:

s.plot() or df.plot()

plt.ylabel('Height in cm')

#Set chart title:

plt.title('Average weight with respect to average height')

#plot using marker'-*' and line colour as green

plt.plot(df.weight,df.height,marker='*',markersize=10,color='green
',linewidth=2, linestyle='dashdot')

plt.show()

Continuous data
are measured
while discrete
data are obtained
by counting.
Height, weight
are examples of
continuous data. It
can be in decimals.
Total number
of students in a
class is discrete.
It can never be in
decimals.

Chapter 4.indd 112 10/9/2020 12:35:35 PM

2021–22

Plotting Data using MatPlotlib 113

Activity 4.1

Create the MelaSale.
csv using Python
Pandas containing
data as shown in
Table 4.6.

The plot() method of Pandas accepts a considerable
number of arguments that can be used to plot a variety
of graphs. It allows customising different plot types by
supplying the kind keyword arguments. The general
syntax is: plt.plot(kind),where kind accepts a string
indicating the type of .plot, as listed in Table 4.5. In
addition, we can use the matplotlib.pyplot methods
and functions also along with the plt() method of
 Pandas objects.

Table 4.5 Arguments accepted by kind for different plots

kind = Plot type

line Line plot (default)

bar Vertical bar plot

barh Horizontal bar plot

hist Histogram

box Boxplot

area Area plot

pie Pie plot

scatter Scatter plot

In the previous chapters, we have learned to store
different types of data in a two dimensional format using
DataFrame. In the subsequent sections we will learn to
use plot() function to create various types of charts with
respect to the type of data stored in DataFrames.

4.4.1 Plotting a Line chart
A line plot is a graph that shows the frequency of data
along a number line. It is used to show continuous
dataset. A line plot is used to visualise growth or decline
in data over a time interval. We have already plotted line
charts through Programs 4-1 and 4-2. In this section,
we will learn to plot a line chart for data stored in a
DataFrame.

Program 4-4 Smile NGO has participated in a three week
cultural mela. Using Pandas, they have stored
the sales (in Rs) made day wise for every week
in a CSV file named “MelaSales.csv”, as shown
in Table 4.6.

Chapter 4.indd 113 10/9/2020 12:35:36 PM

2021–22

InformatIcs PractIces114

Table 4.6 Day-wise mela sales data

Week 1 Week 2 Week 3

5000 4000 4000

5900 3000 5800

6500 5000 3500

3500 5500 2500

4000 3000 3000

5300 4300 5300

7900 5900 6000

Depict the sales for the three weeks using a Line chart. It
should have the following:
i. Chart title as “Mela Sales Report”.
ii. axis label as Days.
iii. axis label as “Sales in Rs”.

Line colours are red for week 1, blue for week 2 and brown
for week 3.

import pandas as pd
import matplotlib.pyplot as plt

reads "MelaSales.csv" to df by giving path to the file

df=pd.read_csv("MelaSales.csv")

#create a line plot of different color for each week

df.plot(kind='line', color=['red','blue','brown'])

Set title to "Mela Sales Report"

plt.title('Mela Sales Report')

Label x axis as "Days"

plt.xlabel('Days')

Label y axis as "Sales in Rs"

plt.ylabel('Sales in Rs')

#Display the figure

plt.show()

The Figure 4.5 displays a line plot as output for
Program 4-4. Note that the legend is displayed by default
associating the colours with the plotted data.

Chapter 4.indd 114 10/9/2020 12:35:36 PM

2021–22

Plotting Data using MatPlotlib 115

Figure 4.5: Line plot showing mela sales figures

The line plot takes a numeric value to display on
the x axis and hence uses the index (row labels) of the
DataFrame in the above example. Thus, x tick values
are the index of the DataFramedf that contains data
stored in MelaSales.CSV.
Customising Line Plot
We can substitute the ticks at x axis with a list of values
of our choice by using plt.xticks(ticks,label) where
ticks is a list of locations(locs) on x axis at which ticks
should be placed, label is a list of items to place at the
given ticks.

Program 4-5 Assuming the same CSV file, i.e., MelaSales.
CSV, plot the line chart with following
customisations:

Maker ="*"
Marker size=10
linestyle="--"
Linewidth =3
import pandas as pd
import matplotlib.pyplot as plt
df=pd.read_csv("MelaSales.csv")
#creates plot of different color for each week
df.plot(kind='line', color=['red','blue','brown'],marker="*",marke
rsize=10,linewidth=3,linestyle="--")

Chapter 4.indd 115 10/9/2020 12:35:37 PM

2021–22

InformatIcs PractIces116

plt.title('Mela Sales Report')
plt.xlabel('Days')
plt.ylabel('Sales in Rs')
#store converted index of DataFrame to a list
ticks = df.index.tolist()
#displays corresponding day on x axis
plt.xticks(ticks,df.Day)
plt.show()

Figure 4.6 is generated as output of Program 4-5
with xticks as Day names.

Figure 4.6: Mela sales figures with day names

4.4.2 Plotting Bar Chart
The line plot in Figure 4.6 shows that the sales for all
the weeks increased during the weekend. Other than
weekends, it also shows that the sales increased on
Wednesday for Week 1, on Thursday for Week 2 and on
Tuesday for Week 3.

But, the lines are unable to efficiently depict
comparison between the weeks for which the sales data
is plotted. In order to show comparisons, we prefer Bar
charts. Unlike line plots, bar charts can plot strings on
the x axis. To plot a bar chart, we will specify kind=’bar’.
We can also specify the DataFrame columns to be used
as x and y axes.

Chapter 4.indd 116 10/9/2020 12:35:39 PM

2021–22

Plotting Data using MatPlotlib 117

Let us now add a column “Days” consisting of day
names to “MelaSales.csv” as shown in Table 4.7.

Table 4.7 Day-wise sales data along with Day’s names
Week 1 Week 2 Week 3 Day

5000 4000 4000 Monday

5900 3000 5800 Tuesday

6500 5000 3500 Wednesday

3500 5500 2500 Thursday

4000 3000 3000 Friday

5300 4300 5300 Saturday

7900 5900 6000 Sunday

Program 4-6 This program displays the Python script to
display Bar plot for the “MelaSales.csv” file
with column Day on x axis as shown below in
Figure 4.7

If we do not specify
the column name

for the x parameter
in the plot(), the

bar plot will plot all
the columns of the

DataFrame with the
index (row label) of

DataFrame at x axis
which is a numeric

starting from 0.

import pandas as pd

df= pd.read_csv('MelaSales.csv')

import matplotlib.pyplot as plt

plots a bar chart with the column "Days" as x axis

df.plot(kind='bar',x='Day',title='Mela Sales Report')

#set title and set ylabel

plt.ylabel('Sales in Rs')

plt.show()

Figure 4.7: A bar chart as output of Program 4-6

Chapter 4.indd 117 10/9/2020 12:35:41 PM

2021–22

InformatIcs PractIces118

Customising Bar Chart
We can also customise the bar chart by adding certain
parameters to the plot function. We can control the
edgecolor of the bar, linestyle and linewidth. We can
also control the color of the lines. The following example
shows various customisations on the bar chart of
Figure 4.8

Program 4-7 Let us write a Python script to display Bar plot
for the “MelaSales.csv” file with column Day on
x axis, and having the following customisation:
● Changing the color of each bar to red,

yellow and purple.
● Edgecolor to green
● Linewidth as 2
● Line style as "--"

import pandas as pd
import matplotlib.pyplot as plt
df= pd.read_csv('MelaSales.csv')
plots a bar chart with the column "Days" as x axis

df.plot(kind='bar',x='Day',title='Mela Sales Report',color=['red',
'yellow','purple'],edgecolor='Green',linewidth=2,linestyle='--')
#set title and set ylabel
plt.ylabel('Sales in Rs')

plt.show()

Figure 4.8: A bar chart as output of Program 4-7

Chapter 4.indd 118 10/9/2020 12:35:42 PM

2021–22

Plotting Data using MatPlotlib 119

4.4.3 Plotting Histogram
Histograms are column-charts, where each column
represents a range of values, and the height of a column
corresponds to how many values are in that range.

To make a histogram, the data is sorted into
"bins" and the number of data points in each bin is
counted. The height of each column in the histogram
is then proportional to the number of data points its
bin contains.

The df.plot(kind=’hist’) function automatically selects
the size of the bins based on the spread of values in
the data.

If we do not specify
Bins are the

number of intervals
you want to divide

all of your data into,
such that it can be
displayed as bars
on a histogram.

How can we make the
bar chart of Figure 4.8
horizontal?

Think and Reflect

Program 4-8

import pandas as pd
import matplotlib.pyplot as plt
data = {'Name':['Arnav', 'Sheela', 'Azhar', 'Bincy', 'Yash',
'Nazar'],
'Height' : [60,61,63,65,61,60],
'Weight' : [47,89,52,58,50,47]}
 }
df=pd.DataFrame(data)
df.plot(kind='hist')

plt.show()

The Program 4-9 displays the histogram corresponding
to all attributes having numeric values, i.e., ‘Height’
and ‘Weight’ attributes as shown in Figure 4.9. On the
basis of the height and weight values provided in the
DataFrame, the plot() calculated the bin values.

Figure 4.9: A histogram as output of Program 4-8

Chapter 4.indd 119 10/9/2020 12:35:44 PM

2021–22

InformatIcs PractIces120

It is also possible to set value for the bins parameter,
for example,

df.plot(kind=’hist’,bins=20)
df.plot(kind='hist',bins=[18,19,20,21,22])
df.plot(kind='hist',bins=range(18,25))

Customising Histogram
Taking the same data as above, now let see how the
histogram can be customised. Let us change the
edgecolor, which is the border of each hist, to green.
Also, let us change the line style to ":" and line width
to 2. Let us try another property called fill, which takes
boolean values. The default True means each hist will
be filled with color and False means each hist will be
empty. Another property called hatch can be used to fill
to each hist with pattern ('-', '+', 'x', '\\', '*', 'o', 'O', '.'). In
the Program 4-10, we have used the hatch value as "o".

Program 4-9
import pandas as pd
import matplotlib.pyplot as plt
data = {'Name':['Arnav', 'Sheela', 'Azhar','Bincy','Yash',
'Nazar'],
'Height' : [60,61,63,65,61,60],
'Weight' : [47,89,52,58,50,47]}
df=pd.DataFrame(data)
df.plot(kind='hist',edgecolor='Green',linewidth=2,linestyle=':',fil
l=False,hatch='o')
plt.show()

Figure 4.10: Customised histogram as output of Program 4-9

Chapter 4.indd 120 10/9/2020 12:35:45 PM

2021–22

Plotting Data using MatPlotlib 121

Using Open Data
There are many websites that provide data freely for
anyone to download and do analysis, primarily for
educational purposes. These are called Open Data as
the data source is open to the public. Availability of
data for access and use promotes further analysis and
innovation. A lot of emphasis is being given to open data
to ensure transparency, accessibility and innovation.
“Open Government Data (OGD) Platform India” (data.
gov.in) is a platform for supporting the Open Data
initiative of the Government of India. Large datasets
on different projects and parameters are available on
the platform.

Let us consider a dataset called “Seasonal and Annual
Min/Max Temp Series - India from 1901 to 2017” from
the URL https://data.gov.in/resources/seasonal-and-
annual-minmax-temp-series-india-1901-2017.

Our aim is to plot the minimum and maximum
temperature and observe the number of times (frequency)
a particular temperature has occurred. We only need to
extract the 'ANNUAL - MIN' and 'ANNUAL - MAX' columns
from the file. Also, let us aim to display two Histogram plots:

i) Only for 'ANNUAL - MIN'
ii) For both 'ANNUAL - MIN' and 'ANNUAL - MAX'

Program 4-10

import pandas as pd

import matplotlib.pyplot as plt

#read the CSV file with specified columns

#usecols parameter to extract only two required columns

data=pd.read_csv("Min_Max_Seasonal_IMD_2017.csv",

 usecols=['ANNUAL - MIN','ANNUAL - MAX'])

df=pd.DataFrame(data)

#plot histogram for 'ANNUAL - MIN'

df.plot(kind='hist',y='ANNUAL - MIN',title='Annual Minimum
Temperature (1901-2017)')

plt.xlabel('Temperature')

plt.ylabel('Number of times')

#plot histogram for both 'ANNUAL - MIN' and 'ANNUAL - MAX'

df.plot(kind='hist',

Chapter 4.indd 121 10/9/2020 12:35:45 PM

2021–22

InformatIcs PractIces122

 title='Annual Min and Max Temperature (1901-2017)',color=['b
lue','red'])

plt.xlabel('Temperature')

plt.ylabel('Number of times')

plt.show()

The Figures 4.11 and 4.12 are produced as output
of Program 4-10.

Figure 4.11: Histogram for 'ANNUAL – MIN' and 'ANNUAL – MAX'

Figure 4.12: Histogram for 'ANNUAL – MIN'

Chapter 4.indd 122 10/9/2020 12:35:48 PM

2021–22

Plotting Data using MatPlotlib 123

Program 4-11 Plot a frequency polygon for the ‘ANNUAL –
MIN’ column of the “Min/Max Temp” data
over the histogram depicting it.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

data=pd.read_csv("Min_Max_Seasonal_IMD_2017.csv",

 usecols=['ANNUAL - MIN'])

df=pd.DataFrame(data)

#convert the 'ANNUAL - MIN' column into a numpy 1D array

minarray=np.array([df['ANNUAL - MIN']])

Extract y (frequency) and edges (bins)

y,edges = np.histogram(minarray)

#calculate the midpoint for each bar on the histogram

mid = 0.5*(edges[1:]+ edges[:-1])

df.plot(kind='hist',y='ANNUAL - MIN'

plt.plot(mid,y,'-^')

plt.title('Annual Min Temperature plot(1901 - 2017)')

plt.xlabel('Temperature')

plt.show()

Annual Min Temperature plot (1901 – 2017)

Figure 4.13: Output of Program 4-11

Chapter 4.indd 123 10/9/2020 12:35:49 PM

2021–22

InformatIcs PractIces124

Activity 4.2

What value does each
bubble on the plot at
Figure 4.14 represent?

4.4.4 Plotting Scatter Chart
A scatter chart is a two-dimensional data visualisation
method that uses dots to represent the values obtained
for two different variables —one plotted along the x-axis
and the other plotted along the y-axis.
Scatter plots are used when you want to show the
relationship between two variables. Scatter plots are
sometimes called correlation plots because they show
how two variables are correlated. Additionally, the size,
shape or color of the dot could represent a third (or even
fourth variable).

Program 4-12 Prayatna sells designer bags and wallets.
During the sales season, he gave discounts
ranging from 10% to 50% over a period of 5
weeks. He recorded his sales for each type
of discount in an array. Draw a scatter plot
to show a relationship between the discount
offered and sales made.

import numpy as np
import matplotlib.pyplot as plt
discount= np.array([10,20,30,40,50])
saleInRs=np.array([40000,45000,48000,50000,100000])
plt.scatter(x=discount,y=saleInRs)
plt.title('Sales Vs Discount')
plt.xlabel('Discount offered')
plt.ylabel('Sales in Rs')
plt.show()

Figure 4.14: Output of Program 4-12

Chapter 4.indd 124 10/9/2020 12:35:51 PM

2021–22

Plotting Data using MatPlotlib 125

What would
happen if we use
df.plot(kind=’scatter’)
instead of plt.scatter()
in Program 4-13?

Think and Reflect

Customising Scatter chart
The size of the bubble can also be used to reflect a
value. For example, in program 4-14, we have opted
for displaying the size of the bubble as 10 times the
discount, as shown in Figure 4.15. The colour and
markers can also be changed in the above plot by adding
the following statements:

Program 4-13

import numpy as np

import matplotlib.pyplot as plt

discount= np.array([10,20,30,40,50])

saleInRs=np.array([40000,45000,48000,50000,100000])

size=discount*10

plt.scatter(x=discount,y=saleInRs,s=size,color='red',linewidth=3,m
arker='*',edgecolor='blue')

plt.title('Sales Vs Discount')

plt.xlabel('Discount offered')

plt.ylabel('Sales in Rs')

plt.show()

Figure 4.15: Scatter plot based on modified Program 4-13

Chapter 4.indd 125 10/9/2020 12:35:53 PM

2021–22

InformatIcs PractIces126

4.4.5 Plotting Quartiles and Box plot
Suppose an entrance examination of 200 marks is
conducted at the national level, and Mahi has topped
the exam by scoring 120 marks. The result shows 100
percentile against Mahi’s name, which means all the
candidates excluding Mahi have scored less than Mahi.
To visualise this kind of data, we use quartiles.

Quartiles are the measures which divide the data
into four equal parts, and each part contains an equal
number of observations. Calculating quartiles requires
calculation of median. Quartiles are often used in
educational achievement data, sales and survey data
to divide populations into groups. For example, you can
use Quartile to find the top 25 percent of students in
that examination.

A Box Plot is the visual representation of the
statistical summary of a given data set. The summary
includes Minimum value, Quartile 1, Quartile 2, Median,
Quartile 4 and Maximum value. The whiskers are the
two lines outside the box that extend to the highest and
lowest values. It also helps in identifying the outliers.
An outlier is an observation that is numerically distant
from the rest of the data, as shown in Figure 4.16:

Figure 4.16: A Box Plot

notes

Chapter 4.indd 126 10/9/2020 12:35:53 PM

2021–22

Plotting Data using MatPlotlib 127

Program 4-14 In order to assess the performance of students
of a class in the annual examination, the
class teacher stored marks of the students in
all the 5 subjects in a CSV “Marks.csv” file
as shown in Table 4.8. Plot the data using
boxplot and perform a comparative analysis
of performance in each subject.

What would happen if
the label or row index
passed is not present
in the DataFrame?

Think and Reflect

Table 4.8 Marks obtained by students in five subjects

Name English Maths Hindi Science Social_Studies

Rishika Batra 95 95 90 94 95

Waseem Ali 95 76 79 77 89

Kulpreet Singh 78 81 75 76 88

Annie Mathews 88 63 67 77 80

Shiksha 95 55 51 59 80

Naveen Gupta 82 55 63 56 74

Taleem Ahmed 73 49 54 60 77

Pragati Nigam 80 50 51 54 76

Usman Abbas 92 43 51 48 69

Gurpreet Kaur 60 43 55 52 71

Sameer Murthy 60 43 55 52 71

Angelina 78 33 39 48 68

Angad Bedi 62 43 51 48 54

 Program 4-14
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

data= pd.read_csv('Marks.csv')

df= pd.DataFrame(data)

df.plot(kind='box')

#set title,xlabel,ylabel

plt.title('Performance Analysis')

plt.xlabel('Subjects')

plt.ylabel('Marks')
plt.show()

Chapter 4.indd 127 10/9/2020 12:35:53 PM

2021–22

InformatIcs PractIces128

Figure 4.17: A boxplot of “Marks.csv”

The distance between the box and lower or upper
whiskers in some boxplots are more, and in some less.
Shorter distance indicates small variation in data,
and longer distance indicates spread in data to mean
larger variation.

Program 4-15 To keep improving their services, XYZ group
of hotels have asked all the three hotels to
get feedback form filled by their customers
at the time of checkout. After getting ratings
on a scale of (1–5) on factors such as Food,
Service, Ambience, Activities, Distance from
tourist spots they calculate the average rating
and store it in a CSV file. The data are given
in Table 4.9.

Table 4.9 Year-wise average ratings on five parameters

Year Sunny Bunny Resort Happy Lucky Resort Breezy WIndy Resort

2014 4.75 3 4.5

2015 2.5 4 2

2016 3.5 2.5 3

2017 4 2 3.5

2018 1.5 4.5 1

This year, to award the best hotel they have
decided to analyse the ratings of the past
5 years for each of the hotels. Plot the data
using Boxplot.

Chapter 4.indd 128 10/9/2020 12:35:55 PM

2021–22

Plotting Data using MatPlotlib 129

Which of the three
resorts should be
awarded? Give
reasons.

Think and Reflect

Activity 4.3

Plot a pie to display the
radius of the planets
and also give an
appropriate title to
the plot.

Program 4-15

import pandas as pd

import matplotlib.pyplot as plt

#read the CSV file in 'data'

data= pd.read_csv('compareresort.csv')

#convert 'data' into a DataFrame 'df'

df= pd.DataFrame(data)

#plot a box plot for the DataFrame 'df'
with a title

df.plot(kind='box',title='Compare Resorts')

#set xlabel,ylabel

plt.xlabel('Resorts')

plt.ylabel('Rating (5 years)')

#display the plot

plt.show()

Figure 4.18: A boxplot as output of Program 4.15.

Customising Box plot
We can display the whisker in horizontal direction by
adding a parameter vert=False in the Program 4-15, as
shown in the following line of code. We can change the
color of the whisker as well. The output of the modified
Program is shown in Figure 4.19.

df.plot(kind='box',title='Compare Resorts',
color='red', vert=False)

Chapter 4.indd 129 10/9/2020 12:35:56 PM

2021–22

InformatIcs PractIces130

Figure 4.19: The horizontal boxplot after modifying Program 4.15.

Program 4-16

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame({'mass': [0.330, 4.87 , 5.97],

 'radius': [2439.7, 6051.8, 6378.1]},

 index=['Mercury', 'Venus', 'Earth'])

df.plot(kind='pie',y='mass')

plt.show()

4.4.6 Plotting Pie Chart
Pie is a type of graph in which a circle is divided into
different sectors and each sector represents a part of
the whole. A pie plot is used to represent numerical
data proportionally. To plot a pie chart, either column
label y or 'subplots=True' should be set while using
df.plot(kind='pie') . If no column reference is passed and
subplots=True, a 'pie' plot is drawn for each numerical
column independently.

In the Program 4.16, we have a DataFrame with
information about the planet's mass and radius. The
‘mass’ column is passed to the plot() function to get a
pie plot as shown in Figure 4.20.

Chapter 4.indd 130 10/9/2020 12:35:58 PM

2021–22

Plotting Data using MatPlotlib 131

Figure 4.20: Pie chart as output of Program 4-16.

It is important to note that the default label names
are the index value of the DataFrame. The labels as
shown in Figure 4.20 are the names of the planet which
are the index values as shown in Program 4.16.

Program 4-17 Let us consider the dataset of Table 4.10
showing the forest cover of north eastern
states that contains geographical area and
corresponding forest cover in sq km along
with the names of the corresponding states.

Program 4-17
import pandas as pd
import matplotlib.pyplot as plt

df=pd.DataFrame({'GeoArea':[83743,78438,22327,22429,21081,16579,10
486],'ForestCover':[67353,27692,17280,17321,19240,13464,8073]},
 index=['Arunachal Pradesh','Assam','Manipur','Meghalaya',
 'Mizoram','Nagaland','Tripura'])

Table 4.10 Forest cover of north eastern states
State GeoArea ForestCover

Arunachal Pradesh 83743 67353

Assam 78438 27692

Manipur 22327 17280

Meghalaya 22429 17321

Mizoram 21081 19240

Nagaland 16579 13464

Tripura 10486 8073

Chapter 4.indd 131 10/9/2020 12:36:00 PM

2021–22

InformatIcs PractIces132

df.plot(kind='pie',y='ForestCover',
 title='Forest cover of North Eastern
states',legend=False)
plt.show()

Figure 4.21: Pie chart as output of Program 4.17

What effect did
‘legend= False’ in
Program 4.17 have on
the output?

Think and Reflect

Customisation of pie chart
To customise the pie plot of Figure 4.21, we have added
the following two properties of pie chart in program
4-18:
• Explode—it specifies the fraction of the radius with

which to explode or expand each slot.
• Autopct—to display the percentage of that part as a

label.

Program 4-18
import pandas as pd
import matplotlib.pyplot as plt

df=pd.DataFrame({'GeoArea':[83743,78438,22327,22429,21081,16579,1
0486],'ForestCover':[67353,27692,17280,17321,19240,13464,8073]},
index=['Arunachal Pradesh','Assam','Manipur','Meghalaya', 'Mizoram
','Nagaland','Tripura'])
exp=[0.1,0,0,0,0.2,0,0]
#explode the first wedge to .1 level and fifth to level 2.
c=['r','g','m','c','brown','pink','purple']

Chapter 4.indd 132 10/9/2020 12:36:00 PM

2021–22

Plotting Data using MatPlotlib 133

#change the color of each wedge
df.plot(kind='pie',y='ForestCover',title='Forest cover of North
Eastern states', legend=False, explode=exp, autopct="%.2f",
colors=c)

plt.show()

Figure 4.22: Pie chart as output of Program 4.18

Summary

• A plot is a graphical representation of a data set
which is also interchangeably known as a graph or
chart. It is used to show the relationship between
two or more variables.

• In order to be able to use Python’s Data
Visualisation library, we need to import the
pyplot module from Matplotlib library using the
following statement: import matplotlib.pyplot as
plt, where plt is an alias or an alternative name
for matplotlib.pyplot. You can keep any alias of
your choice.

• The pyplot module houses functions to create a
figure(plot), create a plotting area in a figure, plot
lines, bars, hist. etc., in a plotting area, decorate
the plot with labels, etc.

Chapter 4.indd 133 10/9/2020 12:36:01 PM

2021–22

InformatIcs PractIces134

1. What is the purpose of the Matplotlib library?
2. What are some of the major components of any

graphs or plot?
3. Name the function which is used to save the plot.
4. Write short notes on different customisation options

available with any plot.
5. What is the purpose of a legend?
6. Define Pandas visualisation.
7. What is open data? Name any two websites from

which we can download open data.
8. Give an example of data comparison where we can

use the scatter plot.
9. Name the plot which displays the statistical summary.

Note: Give appropriate title, set xlabel and ylabel while
attempting the following questions.

Exercise

notes • The various components of a plot are: Title,
Legend, Ticks, x label, ylabel

• plt.plot() is used to build a plot, where plt is
an alias.

• plt.show() is used to display the figure, where
plt is an alias.

• plt.xlabel() and plt.ylabel() are used to set the x
and y label of the plot.

• plt.title() can be used to display the title of a plot.
• It is possible to plot data directly from the

DataFrame.
• Pandas has a built-in .plot() function as part of

the DataFrame class.
• The general format of plotting a DataFrame

is df.plot(kind = ' ') where df is the name of the
DataFrame and kind can be line, bar, hist,
scatter, box depending upon the type of plot to be
displayed.

Chapter 4.indd 134 10/9/2020 12:36:01 PM

2021–22

Plotting Data using MatPlotlib 135

• Before displaying the plot display “Monday,
Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday” in place of Day 1, 2, 3, 4,
5, 6, 7

• Change the color of the line to ‘Magenta’.

11. Collect data about colleges in Delhi University or any
other university of your choice and number of courses
they run for Science, Commerce and Humanities,
store it in a CSV file and present it using a bar plot.

12. Collect and store data related to the screen time of
students in your class separately for boys and girls
and present it using a boxplot.

13. Explain the findings of the boxplot of Figure 4.18 by
filling the following blanks:

a) The median for the five subjects is _____ , ______,
_______, ______, ______

b) The highest value for the five subjects is : _____ ,
______, _______, ______, ______

c) The lowest value for the five subjects is : _____ ,
______, _______, ______, ______

d) ______________ subject has two outliers with the
value ________ and ________

e) ______________ subject shows minimum variation

14. Collect the minimum and maximum temperature
of your city for a month and present it using a
histogram plot.

15. Conduct a class census by preparing a questionnaire.
The questionnaire should contain a minimum of
five questions. Questions should relate to students,
their family members, their class performance,
their health etc. Each student is required to fill
up the questionnaire. Compile the information in
numerical terms (in terms of percentage). Present the
information through a bar, scatter–diagram. (NCERT
Geography class IX, Page 60)

notes10. Plot the following data using a line plot:

Day 1 2 3 4 5 6 7

Tickets
sold

2000 2800 3000 2500 2300 2500 1000

Chapter 4.indd 135 10/9/2020 12:36:01 PM

2021–22

InformatIcs PractIces136

notes 16. Visit data.gov.in , search for the following in “catalogs”
option of the website:
• Final population Totals, India and states

• State Wise literacy rate

 Download them and create a CSV file containing
population data and literacy rate of the respective
state. Also add a column Region to the CSV file
that should contain the values East, West, North
and South. Plot a scatter plot for each region where
X axis should be population and Y axis should be
Literacy rate. Change the marker to a diamond and
size as the square root of the literacy rate.
 Group the data on the column region and display
a bar chart depicting average literacy rate for
each region.

Chapter 4.indd 136 10/9/2020 12:36:01 PM

2021–22

