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1.8 RELATIVISTIC MECHANICS

1.340 From the formula for length contraction

(Io‘lo V 1"55 )" Nk

2

, 1-5= =n)® or v VAT

So

1.341 (a) In the frame in which the triangle is at rest the space coordinates of the vertices are

Vi . Vi 4
{000), (CIT,+E,U](£I—2—,—E

frame the corresponding coordinates at time { are

Ar(vt',O,O),B:(%\f:%‘\h—Bz +v:’,%,0) and c:(%«s—x/ﬂh w’,—%,o)

,0), all measured at the same time 7. In the moving

The perimeter P is then
12

P= a+2a(%(1—ﬂz)+%] = a(l+V4—3ﬁz)

(b) The coordinates in the first frame are shown at time 7. The coordinates in the moving
frame are,

8
(5% 0)

A >
(0,0,0) C (a,00)

A:(vt’,O,O),B:(EVI—BZ+vt’, a-@- 0), C’:(a\/l—ﬁ2 +vt’,0,0)

2 2
The perimeter P is then

P= aVl-ﬁz+%[1—ﬁz+3]V2x 2= a(Vl-lS2+V4—|32) here B = i—/

1.342 In the rest frame, the coordinates of the ends of the rod in terms of proper length i
A:(0,0,0) B : (§; c0s8,, I, sindy , 0)

at time . In the laboratory frame the coordinates at time ¢’ are

A:(v',0,0),B: (lo cos@, V1 - ﬂz +vit', b, sinBo,O]
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Therefore we can write,

Icos @y = lycosB, V1 - B2 and /sin @ = I;sin6,

Hence 102 - (12 ) (0032 0+ ?_‘ﬂﬂ: ) sin® 9) ] B
1- in“ 0
or, - 1 -SBI;I A 0

In the frame K in which the cone is at rest the coordinates of A are (0,0,0) and of B are
(#, htan 6, 0). In the frame K, which is moving with velocity v along the axis of the cone,
the coordinates of A and B at time 1’ are

A:(-v,00),B: (h V1-87 - v’ htan 6, 0)
Thus the taper angle in the frame K’ is
tan 6 - Ya=Ya
Vl _ ﬁz ( x",-—x'A)
and the lateral surface area is,
§ = xh? sech’ tand'

-2 -p) 22 V128 VI Fesle
'\/1_32 1-§

Here Sy= =n * secB tand is the lateral surface area in the rest frame and
K=08V1-§, p= v

Because of time dilation, a moving clock reads less time. We write,

t-Ar= tVi-p%, B--Zv

2
Thus, 1—-2—?-‘-4-(%) -1—]32

or, v-cv-ét-(2—é‘-)
t t

In the frame K the length ! of the rod is related to the time of flight Ar by
I= vAL

and =

In the reference frame fixed to the rod (frame K')the proper length /; of the rod is
given by
ly=vAr
i v At v

- 0" \/1_,32-\/1_3:’3'?
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1.346

1.347

1.348

1.349

Thus, VAF = VAL
Vi-p?
A12
So 1—[552- (-E;) of vw ¢ 1—(%]2

and Ios C‘V(At')z—(l_\t)z- CAt,-‘/l"(?f:_,)z

The distance travelled in the laboratory frame of reference is vA f where v is the velocity
of the particle. But by time dilation

Am 5o va c V1 - (Ary/Ary?
V1 - v¥/e?

Thus the distance traversed is

cArV1 - (Ary/ A

{a) If 7, is the proper life time of the muon the life time in the moving frame is

Ty VI,

~——"—— and hence /= —————
V1-v/¢2 V1 -2/
Thus T- %Vl—vz/'c?’

(The words "from the muon’s stand point” are not part of any standard terminology)

In the frame K in which the particles are at rest, their positions are A and B whose
coordinates may be taken as,

A:(0,0,0),B8= (};,0,0)

In the frame K' with respect to which K is moving with a velocity v the coordinates of
A and B at time ¢’ in the moving frame are

A = (Vt’, 0,0)B - (10 Y 1 - Bz + v", 0,0), B - %

®

Suppose B hits a stationary target in K after
time #'p, while A hits it after time 5 + As. Then,

10\!1—52+vt’3- vi(t's+ AL) /A ¢

v At

l—_—
V13

In the reference frame fixed to the ruler the rod is moving with a velocity v and suffers
Lorentz contraction. If I, is the proper length of the rod, its measured length will be

Ax - [, V1-§°, p= 7

So,
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In the reference frame fixed to the rod the ruler suffers Lorentz contraction and we must
have

Ax, V1-p? = I, thus I, = VAx, Ax,
2

and l-ﬁz-ﬁor v--t:Vl--ﬁl—I—1
Ax, Ax

The coordinates of the ends of the rods in the frame fixed to the left rod are shown.
The points B and D coincides when

¢ -k

lom c;=vt, or ty=

The points A and E coincide when

lf__ c,+1,V1-p2
O=c,+i l—ﬂz—vtl,rla—l——u—-——-—-p——

v
1

Thus m-zl-ro-;"(u\h—ﬁz) A 8 D £

N 2 (0,00) (b 100) (C1-V£,09)
ot {KI—- 1] =1-p=1-5 (€1 +lo ViA-VL,00)

0 C

22 M/l 2/ At

From this c 0 .l

- 1+c7At2/l§- 11-(!0/.':11\1‘52

In K, the rest frame of the particles, the events corresponding to the decay of the particles
are '

b

A:(0,0,0,0) and (0,{;,0,0)= B

In the reference frame KX, the cormresponding coordintes are by Lorentz trangformation

l
2,00
_52

A:(0,0,0,0), B:

vl
2V1- g2 ’ Vi
Now LVi1-p* =1

by Lorentz Fitzgerald contraction formula. Thus the time lag of the decay time of B is
vl vi vi

c2 "l_ﬁz - 62(1_52)' Cz_vz

B decays later (B is the forward particle in the direction of motion)

A,t-

{a) In the reference frame K with respect to which the rod is moving with velocity v, the
coordinates of A and B are

Attx,+v(t-1,),0,0

Bt xg+v(t—-15),0,0
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1.353

1.354 By Lorentz transformation ¢ = —-—-1—-[ - %}
Z
v

Thus I=x, -x5-v(t, -t)= [, V1-§*
Xy =xg=v(l, =15

1-v2/c?
) = l-vit,—tg)= I =1, V1 -2/

(since x, — x5 can be either + [, or -1,)

Thus v (1, —tg) = (: 1—V1-v2/c2)lo

I 4 +
ie. rA-z,,=;°[1-\/1-"—2] /

So

ly=

[

!
or Ig-i,= ;0,(1+V1—v2/c2)

At the instant the picture is taken the coordintes of A, B,A’, B’ in the rest frame of A B
are

A:(0,0,0,0) Al g’
B: (0,1, 0,0) 00—
B:(0,0,0,0) U0
A B
A0, - 1, V1 =V 0,0

In this frame the coordinates of B’ at other times are B': (t, vt, 0, 0). So B' is opposite to

]
B at time ¢ (B) = ;" In the frame in which B', A’ is at rest the time corresponding this

is by Lorentz tranformation.

R AN |
P @y —— (—-‘1—~—v°]-—° 1 - v2/c2
V2 v cz v

-5

Similarly in the rest frame of A, B, te coordinates of A at other times are
t, -1, V l—ﬁ2 +vt,0,0)
c

I
A’ is opposite tu A at time £ (A) = ;0 1- %
c

Al

The corresponding time in the frame in which A", B’ are at rest is
’ by
HA) = YeA)=

[

1-—
C2
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. VX
So at time t= 0, t'--;———l—*-—--
V1 -v¥/¢?

Ifx>0r <0, if x <0, >0 and we get the diagram given below "in terms of the K—clock™.

SCCOI0NSS
- OOOOOOD®

The situation in terms of the K’ clock is reversed.

Suppose x (t) is the locus of points in the frame K at which the readings of the clocks of
both reference system are permanently identical, then by Lorentz transformation

y - 1 I_Vx(t) -
Yi-vi :

[

2 ] 2
So differentiating x (f) = -‘;—,[1— 1—% )- %(1-\*1"52 )- g= L4
c c

Let f=tanh0, 0< 6 <o, Then
< Vi iZa cos ho 1
M= o (1-Vi-unie) "smhe(l“coshe)

coshB-—lnc coshB-l_cmnhgsv
€ sinh@ Veoshoe 1 2

-(tan k& 0 is a monotonically increasing function of @)

We can take the coordinates of the two events to be
A:(0,0,0,0) B:(At,a,0,0)

For B to be the effect and A to be cause we must have At > lg[.

In the moving frame the coordinates of A and B become

A:(o,o,o,[)),ﬂ:[y(m-%], y(a-VAt),0,0] where y=
C

Since

2
2

, 1 2
(Ar )2_";2-. yzl(At—%g‘) —?(a—VAI)Z]= (At)z--35>0

[
we must have At > la?[
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1.357 (a) The four-dimensional interval between A and B (assuming Ay = Az= 0) is :

52 - 3% = 16 units

Therefore the time interval between these two events in the reference frame in which the

events occurred at the same place is

c(t'B—t'A)-\/i_-4m C.t?
or ty-f,= %; %xlﬂ_ss ;
(b) The four dimensional interval between 4
A and C is (assuming Ay = Az = 0) 3
¥-52=-16 2

So the distance between the tw;J cvents in the frame T} [A
in which they are simultaneous is 4 units = 4m. 0

1358 By the velocity addition formula

.-V v V1-VE
e 1 Vv, T 1 vV
[+ - (‘:2

7. 2 7,2
- 1-
and V= v’i+v’§- (= V) % ( V/e)
. v,V
2

1.359 (a) By definition the velocity of apporach is
dy, dx,

vappmach’ -aT__d_t- Vl—(—V»- VitV

in the reference frame K .
(b) The relative velocity is obtained by the transformation law
vi-(=v) VitV
. Vr = =
v, (-v,) V. v
1- 1( 2 1 172

— +
[ C2

1366 The velocity of one of the rods in the reference frame fixed to the other rod is

v+y 2v

V'_'f'__“i
v 1+p
1+-—i
[4

The length of the moving rod in this frame is

42/ 1-g2
=V 1- 2 L e
(1+p°) 1+§
1.361 The approach velocity is defined by
— dry dry
Vapptoad\= -Z-—dt_- Vl_ V-;

.‘/ 2 2
roach © Vity;

in the laboratory frame. So V.

1723 4 567

&‘u'
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On the other hand, the relative velocity can be obtained by using the velocity addition
formula and has the components

‘/ v v

1 1Y2

-V, v, 1—(2 so V.= Vi2eiie 3
c c

The components of the velocity of the unstable particle in the frame K are

"/ Ve
v, v 1——,0)
( c2

I
so the velocity relative to K is y

r2y72
v' °V
VV2+V’2— .

¢
The life time in this frame dilates to

2 (2] 12 2 I
sof V1-L L Y w
[ C

c

and the distance traversed is
A Vit (2 V2) /&2
"Viov e Vi-vi/3

In the frame K' the components of the velocity of the particle are
o _vcos o-Vv

¥ 1_vacose ® @

, vsin 8 V1 - V2/¢?
v,= —_—
y vV

1-—cos®

¢ v
v i
Hence, tan®' = —£= —E&V(l -Viy/é? /(&{

vV, vcosB-V

In K’ the coordinates of A and B are
A: (0,0, -vF 0B (M, 1-v'1,0)
After performing Lorentz transformation to the frame K we get

Att= yr B:t-y(t’-i-y-})
C

x=yVe x=y(I+V?)
\
y‘ Vftf yt_vl".l

z= 0 z=20

s Vi .
By translating ¢ — ¢ — —-, we can write
c

the coordinates of B as B:¢= y/
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1.365

Thus Ax= [ 1_E,Ay=vyl
2
Hence tan §' - vy -V
2 vV
[ 1—-""—2"‘ A
c
{
t I+dt ® ¢1} B
v vewdr

In K the velocities at time ¢ and 1 + df are respectively v and v + wdt along x — axis which

— —
is parallel to the vector V. In the frame K' moving with velocity V with respect to X, the

velocities are respectively,

v=-V viwdt-V
Vand Vv

1-.?.5. 1-{v+wd)—
c c

The latter velocily is written as

2

wdt(l'_z—)

v-V wdt v-V wV v-V ¢
—dt= + 5

+
v 1’4 v cz \'4
lev—s 1-v 1-— 1=-v— vy
¢ & ( c‘:) e (1 B C‘Z,]
Also by Lorentz transformation
dt - Vdx/c? 4 L= v/
V1-V/eét V1-V/e

Thus the acceleration in the K’ frame is

dr

32
s _w (¥
dar : La &2
(-5

(b) In the X frame the velocities of the particle at the time ¢ and ¢+ di are repectively
0, v, 0) and (0, v + wdt, 0)

—
where V is along x-axis. In the X’ frame the velocities are

(-V,v\/l-—VQ/(:2 ,O)
and (— V,(v+wd) V1 - Vit 0) respectively
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Thus the acceleration
. watV(1 - /) (
W e 2 |1
dt
dt
vi-V¥/f

In the instantaneous rest frame v= V and
W o (from 1.3653)

-5

dv

- ﬁz) along the y-axis.
c

We bave used df' =

So, -————meWd
V2
1-=%
C 4
w' is constant by assumption. Thus integration gives
W't
Vo=

;;1+(uf't]
¢

¢ av2
Intcgrating once again x-é( 1+ %i] -1)

The boost time T, in the reference frame fixed to the rocket is related to the time t elapsed
on the earth by

2
L
f\/ Vzdr-f 1-—-1-—-— dt
N W t)e
| = ._c_f.@_.im ﬂn/“w_'zz
- g W ‘[“_EZ 4 c (c)
0 1+(.‘3’._£) 0
¢
Mg
m=
V1-§
For f=1 Do 1 -
"my " VI(A-P) VIn

We define the density p in the frame K in such a way that p de dy dz is the rest mass
dmy, of the element. That is p dx dy dz = p, dx, dy, dz, , where py is the proper density

dx,, dy,, dz, arc the dimensions of the element in the rest frame K, Now

dy= dy,, dz= dz,, dx= de\/I_ﬁz
[
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if the frame K is moving with velocity, v relative to the frame K. Thus

p= Pg
2
1-¥
2
Defining n by p= py(1L +n)
vl
We get 1+n-—-———-—1-~—-—— or, %-1- 1 2_‘1(2‘”]2)
2 @ TP aem
1-7
¢
or = c'\/TI(Z*'T]) = C\[T‘(Z-H‘)
(1 +m)? 1+n
1.370 We have
my v _ 2
LV S VP
Viz Vi
2 2
v m? ¢ P
or l-o= —g—=1-p"
& myc+p prmye
c
or Ve £ == £
\/p2+m(2,c muc]Z
1+fj—
-172
2 2
m,c
So =¥a 1-(1+(L] ) x100%-1( 0):(100%
1.371 By definition of n,
my v 1 T |
=nNmyv of 1-—=-5
1-% <
-2
or ve ¢ 1——1—2—-£ 1r|2—1
U] mn

1.372 The work done is equal 1o change in Kinetic energy which is different in the two cases
Classically i.e. in nonrelativistic mechanics, the change in kinetic energy is

3 mo < (08 - (067 ) = 5y 2028 = 0-14m,
Relativistically it is, -
mU C2 mO C2 mo C2 mO C2

~ myc? (1666 — 1:250)

Vi-©s? Vi-@ep 06 08

= 0416 myc? = 0-d2 m, c?
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mUC 2
= 2myc
v2 °
1__.
e
) 2
v 1 v o1
or lw— = — or l..,——-_
2 & 4
or v_oV3 oY
c 2 2
Relativistically
T 1 1.2 34
—g= -lj=-f"+3
myc ( 1-4° ] Zﬁ SB
2
2T 3 2 2r 3/ 2T
So 2 - -=(g? L] -
Pra my ¢ (ﬂ”' myc? 4 ("’o cz)
2 1-9- z
Thus —Hg = 2T2‘3"'12:7 VZT?. 4 myc”
myc®  mgc myc
But Classically, = 2T2 S0 P =Pa_ 3 T2 £
my Ber 4 myc
Hence if <7 E
myct 3

the velocity P is given by the classical formula with an error less than .

From the formula
2
myc myv
E:: P -
/ vi ’ ;1—v2,fc2
1__
o
we find E%= c2p2+m'2,c4 or (m0c2+T)2= 1:'21:)"’+1rng¢:'4

or T@my+ )= Ap? ie. p= %VT(Zmocz+T)

Let the total force exerted by the beam on the target surface be F and the power liberated
there be P. Then, using the result of the previous problem we see

F=Np= %\/T(ﬂ 2myc?) = —;—rc— VT (T +2myc?)

since { = Ne, N being the number of particles striking the target per second. Also,
2
my ¢ 1
P=N|-==—-myc®|= =T
V1-vi/é €
These will be, respectively, equal to the pressure and power developed per unit area of
the target if [ is current density.
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1.377 In the frame fixed to the sphere :- The momentum transferred to the eastically scatterred

particle is
2 mv
v
1-—
&2
The density of the moving element is, from 1.369, n 1

2

V

1--3

and the momentum transferred per unit time per unit area is
2

2my 1 2mnv

p= the pressure = ——— n Py o= 5
2 v

s Ve 1%

¢
In the frame fixed to the gas :- When the sphere hits a stationary particle, the latter recoils

with a velocity
Vv 2v
_f
1+ _f 1+ ?-
m2v
PR )
The momentum transferred is 1+v'/c = 2 mvz
4l 1-5
(1 -3y c

mv 2 mmv*

.2
and the pressure i ——-n-v= ——p
v v
1- 1-
2 P

1.378 The equation of motion is
my v
—_— = F

4
dt
1-—

&

F,
v/e , using v= 0 for t= 0

Integrating = \/TT MigC
Vi-5
C
B> _(F 2 2_ (F1)* . Fet
( ) o ® (F) + (my c)? oY Y(myc)® + (Fey
[ Ee e [ RIS VEFE  comsan

myc V2 myc?
F | F

2ty

orusing x=0 at = 0, we get, x=



181

a+c’t?
2 2z
v ct d{ MV m, ¢
or, = —- Thus — - =
2 a dt 2 a
P 1 v
-2 -2
¢ ¢
— .
—
1.380 = d myv v ;.--c—h 1
= = = m +My— vV
dt 0 0 2 ¥
2 2 < 2
v vV v
1——2 1—-'—2 1——'2-
¢ c c
—
g w
Thus F, = m, W=V, W v
1-p°

—
= m a7

0 ’
] (1 ﬂ2)3/2
1.38]. By deﬁmtioﬂ,

¢ m ¢ dt v, ¢ mydx

vz_ ds !px‘mov—:z‘_ ds
1-=5 1-=

where ds® = ¢ di® - dx” is the invariant interval {dy = dz = 0)
dx’ (de-Vd) _ P~ VE/S

E=m

12}
¢

T, plm omy = omoy ST B
- [
Vd,
ar B
Eﬂl_"10(:374‘9__‘:3’nﬂY = - Py »
1-=
C2

1.382 For a photon moving in the x direction
€= cp,, Py=P,= 0,

. ] 1 E f1-vse
in the moving frame, ¢’ = (s—V c) € vw1+V/c

o &y L 1-B -2 ya 3
Note that 3 21f,4 1+p or B 5,V 5"
1.383 As before
dt
E= mncaa,px- M€ i
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Similarly py= M[}C%) p,=myc %
Then Ez—czpstz-cz(pz+p§+pi)
2 4 (cPdf -dP - dy*-d?) 2 4
My ¢

E = myc is invariant

1.384 (b) & (a) In the CM frame, the total momentum is zero, Thus
V. P, VI(T+2mc /
¢ E+E, T+ 2m, ¢ T+ 2m &

where we have used the result of probiem (1.375)

Then
1 1 1 /T+ 2my c?
Vi-v/& /1 ?

T 2my ¢
T+2m,c*
. Total energy in the CM frame is

2my ¢ .‘/T+2m ?
OC \/Zmnc (T +2m, c)—T+2m é

Vl Vit

So %= 2m0C2 \/ 1+—T—2 -1
2m,c
Also 2V amic = Vamg T4 2myc) , 43 P2 = 2my P, or 5=\ ';'"’(}T
1.385 M0c2= 1/Ez_czp"‘z

\/(2m0c2+1')2—1'(2m0c2+1') = VZchz(bnoc2+T) = c\/2m0(2m0c2+1‘)

Also cp = VT(T+2moc , Ve ——2- c I

T+2m, r:2

1.386 Let T = kinetic energy of a proton striking another stationary particle of the same rest
mass. Then, combined kinetic energy in the CM frame

’ 2 1
-2m0c2( 1+ I 2-1)-21', (de-l):l-r )
: myc

2my ¢ 2m, ¢

T’ _.T(2m0c2+T) T 2T(T+2moc2)

7= 7 4 4= 3
2m, € mgyc m, €
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1.387 We have
E +E,+Ey~ mocz, ﬁ;-l-};;-l-ﬁ;- 0
Hence (mocz-El)z-czﬁ- (£, +E3)2—(§;+E; )2c
The LH.S. = (m% ¢t —151)2 - p1 (mc + ’"1) ¢ -2m, 62E1
The R.H.S. is an invariant. We can evaluate it in any frame. Choose the CM frame of the
particles 2 and 3.
In this frame RH.S. = (E', +E'3)2= (m, 4 mg,)2 ¢t
Thus  {mi+m?) c* = 2my P E, = (m, + mp)* c*
”'o + m1 (m, + m3)
2m,

: 2 2, .2 2 .4
or 2myc E; s {m0+m1-(m2+m3) ]c , or Ex

1.388 The velocity of ejected gases is u realtive to the rocket. In an earth centred frame it is

vV—-u
vit

1-
P

in the direction of the rocket. The momentum conservation equation then reads

(m + dm) (v +dv) + v-uv (-dm)= my

1-—
&2
V=i
or mdv - ( -v|dm=0
1w
o
Here — dm is the mass of the ejected gases. so
uv?
-Uu+ -'“i" 2
mdy - ————dm= 0, or mdv+u(1— )dm= 0
1- uy C
2
{neglecting 1 - — ¥ since u is non- relativistic.)
. 14 L
Integrating (B = c)’ f = 0, ln — B p Inm = constant

u . .
The constant = —Inm, since fi = 0 initially.
c

w/'e 1_l$_]
Thus I_B-(—'F—) or P= 0




