

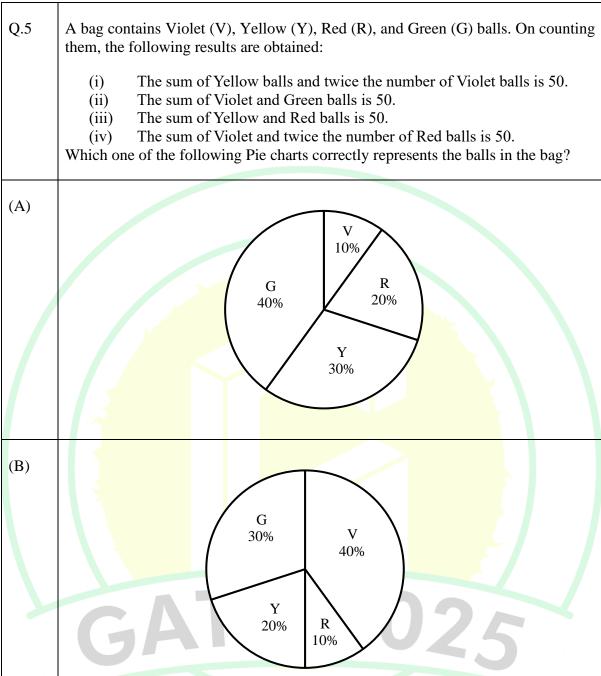
General Aptitude

Q.1 – Q.5 Carry ONE mark Each

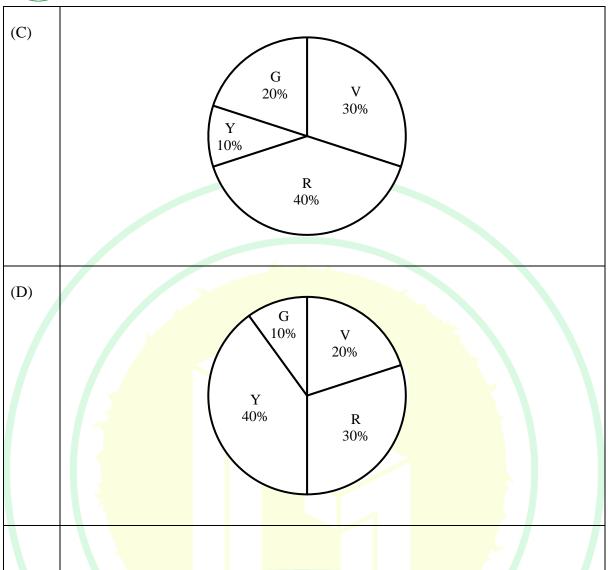
Q.1	Even though I had planned to go skiing with my friends, I had to at the last moment because of an injury. Select the most appropriate option to complete the above sentence.
(A)	back up
(B)	back of
(C)	back on
(D)	back out
Q.2	The President, along with the Council of Ministers, to visit India next week.
	Select the most appropriate option to complete the above sentence.
(A)	wish Section 1997
(B)	wishes
(C)	will wish
(D)	is wishing

Organizing Institute: IIT Roorkee Page 1 of 76

Q.3	An electricity utility company charges ₹ 7 per kWh (kilo watt-hour). If a 40-watt desk light is left on for 10 hours each night for 180 days, what would be the cost of energy consumption? If the desk light is on for 2 more hours each night for the 180 days, what would be the percentage-increase in the cost of energy consumption?
(A)	₹ 604.8; 10%
(B)	₹ 504; 20%
(C)	₹ 604.8; 12%
(D)	₹ 720; 15%



Q.4	In the context of th represents the entrie					
		N 21 H	U 14 L (iv)	F 9 (ii) 15	(i) 6 O (iii)	
(A)	Q, M, 12, and 8					
(B)	K, L, 10 and 14					
(C)	I, J, 1 <mark>0, and 8</mark>					
(D)	L, K, 12 and 8					

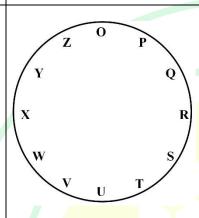

MIL 4025

/// Roorkee

GATE 2025 Week

Q.6 – Q.10 Carry TWO marks Each

Q.6	"His life was divided between the books, his friends, and long walks. A solitary man, he worked at all hours without much method, and probably courted his fatal illness in this way. To his own name there is not much to show; but such was his liberality that he was continually helping others, and fruits of his erudition are			
	widely scattered, and have gone to increase many a comparative stranger's reputation."			
	(From E.V. Lucas's "A Funeral")			
	Based only on the information provided in the above passage, which one of the following statements is true?			
(A)	The solitary man described in the passage is dead.			
(B)	Strangers helped create a grand reputation for the solitary man described in the passage.			
(C)	The solitary man described in the passage found joy in scattering fruits.			
(D)	The solitary man worked in a court where he fell ill.			



Q.7 For the clock shown in the figure, if

 $O^* = O Q S Z P R T$, and

 $X^* = X Z P W Y O Q,$

then which one among the given options is most appropriate for P^* ?

- (A) PUWRTVX
- (B) PRTOQSU
- (C) PTVQSUW
- (D) PSUPRTV

Q.8	Consider a five-digit number $PQRST$ that has distinct digits P , Q , R , S , and T , and satisfies the following conditions:					
	P < Q					
	S > P > T					
	R < T					
	If integers 1 through 5 are used to construct such a number, the value of <i>P</i> is:					
(A)	1					
(B)	2					
(C)	3					
(D)	4					
Q.9	A business person buys potatoes of two different varieties P and Q, mixes them in a certain ratio and sells them at ₹ 192 per kg.					
	The cost of the variety P is ₹ 800 for 5 kg.					
	The cost of the variety Q is ₹ 800 for 4 kg.					
	If the person gets 8% profit, what is the P:Q ratio (by weight)?					
(A)	5:4 Roorkee					
(B)	3:4					
(C)	3:2					
(D)	1:1					

Q.10	Three villages P, Q, and R are located in such a way that the distance PQ = 13 km, QR = 14 km, and RP = 15 km, as shown in the figure. A straight road joins Q and R. It is proposed to connect P to this road QR by constructing another road. What is the minimum possible length (in km) of this connecting road?
	Note: The figure shown is representative.
	P
(A)	10.5
(B)	11.0
(C)	12.0
(D)	12.5
	ATE 200
	GAIE ZUZS
	17 Roorkee

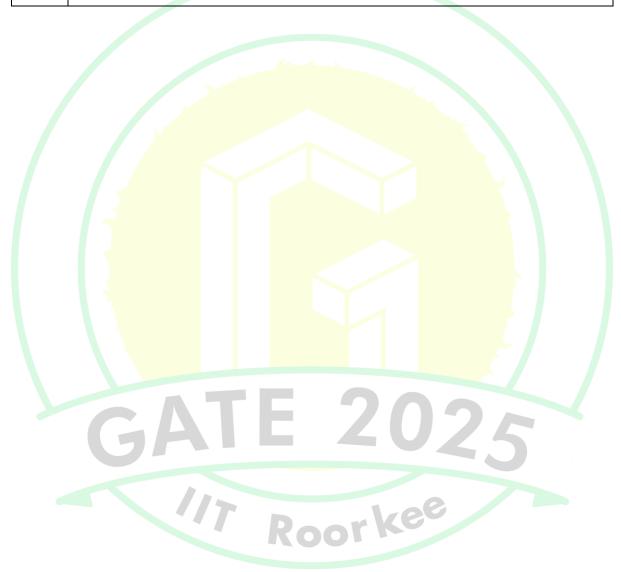
Chemistry (XL-P)

Q.11 – Q.19 Carry ONE mark Each

Q.11	The rate of solvolysis for the following tertiary halides in 80% aqueous ethanol at 25 °C follows the order
	Br Br
	I II III
(A)	I < II < III
(B)	
(C)	
(D)	
	ATE 200
Q. 12	The CORRECT order of boiling points for the hydrogen halides is
(A)	HF > HI > HBr > HCl
(B)	HF > HCl > HBr > HI
(C)	HI > HBr > HCl > HF
(D)	HI > HF > HBr > HCl

Q. 13	The bond order in N_2^{2-} species is
(A)	2
(B)	2.5
(C)	3
(D)	3.5
Q. 14	The standard enthalpy of the reaction, $C \text{ (graphite)} + H_2O \text{ (g)} \rightarrow CO \text{ (g)} + H_2 \text{ (g)} \text{ is found to be } +131.3 \text{ kJ mol}^{-1}$ and the $\Delta_f H^0$ value for CO (g) is $-110.5 \text{ kJ mol}^{-1}$. The value of $\Delta_f H^0$ (in kJ mol $^{-1}$) for H_2O (g) is (The standard enthalpies of formation of elements in their reference states are zero at all temperatures)
(A)	+241.8 TE
(B)	0.0 5 4 1 4 4 5
(C)	-241.8
(D)	+20.8

Q. 15	The temperature dependence of reaction rates is generally given by the Arrhenius equation. A plot of $\ln k_r$ against $1/T$ is a straight line from which the pre-exponential factor 'A' and the activation energy ' E_a ' can be determined. The CORRECT option regarding this plot is
(A)	Slope: $-E_a/R$; Intercept on the y-axis: $\ln A$
(B)	Slope: $+E_a/2.303R$; Intercept on the y-axis: A
(C)	Slope: $+E_a/R$; Intercept on the y-axis: A
(D)	Slope: $-E_a/2.303R$; Intercept on the y-axis: $\ln A$


Q. 16	The isothermal expansion of one mole of an ideal gas from V_i to V_f at temperature, T occurs in two ways.
	Path I: a reversible isothermal expansion;
	Path II: free expansion against zero external pressure
	The CORRECT option for the values of ΔU , q and w for Path I and Path II is
(A)	Path I: $\Delta U = 0, q > 0, w < 0$
	Path II: $\Delta U = 0, q = 0, w = 0$
(B)	Path I: $\Delta U = 0, q > 0, w < 0$
	Path II: $\Delta U > 0$, $q > 0$, $w = 0$
(C)	Path I: $\Delta U = 0, q < 0, w > 0$
	Path II: $\Delta U = 0, q > 0, w < 0$
(D)	Path I: $\Delta U = 0, q < 0, w > 0$
	Path II: $\Delta U < 0, q = 0, w = 0$
	ATE 202

Q. 17	The CORRECT statement(s) regarding the given molecules is(are)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(A)	Both I and II are achiral molecules.
(B)	Both II and III are chiral molecules.
(C)	IV is a chiral molecule.
(D)	Both III and IV are chiral molecules.
Q.18	The CORRECT statement(s) about [Ni(CN) ₄] ²⁻ , [Ni(CO) ₄] and [NiCl ₄] ²⁻ is(are) (Given: Atomic number of Ni: 28)
(A)	Both $[Ni(CN)_4]^{2-}$ and $[Ni(CO)_4]$ are square planar complexes.
(B)	$[Ni(CN)_4]^{2-}$ is diamagnetic and $[NiCl_4]^{2-}$ is paramagnetic.
(C)	Both $[Ni(CO)_4]$ and $[NiCl_4]^{2-}$ are paramagnetic.
(D)	$[Ni(CN)_4]^{2-}$ is square planar and $[NiCl_4]^{2-}$ is tetrahedral in shape.

Q.19	Consider the two pK_a values of values as 2.32 and 9.62. The isoelectric point (pI) of this amino acid is (rounded off to two decimal places)

Q.20 - Q.27 Carry TWO marks Each

Q. 20 A few species are given in **Column I. Column II** contains the hybrid orbitals used by the central atom of the species for bonding.

The CORRECT match for the species to their central atom hybridization is

(Given: Atomic numbers of B: 5; C: 6; O: 8; F: 9; P: 15; Cl: 17; I: 53)

Column I Species	Column II Hybrid orbitals used by the central atom for bonding
i. I ₃	a. sp
ii. PCl ₃	b. sp ²
iii. BF ₃	c. sp ³
iv. CO ₂	d. sp ³ d

- (A) i-d, ii-c, iii-b, iv-a
- (B) i-a, ii-d, iii-b, iv-c
- (C) i-d, ii-c, iii-a, iv-b
- (D) i-d, ii-b, iii-c, iv-a

_	For product formation from only one type of reactant (e.g. $A \rightarrow$ product), the CORRECT match for the order of the reaction (given in Column I) with the half-
	life expression (given in Column II) is

($[A]_0$ is the initial concentration and k_r is the rate constant)

Column I	Column II
Order	Half-life expression
i. Zero	P. $\frac{\ln 2}{k_r}$
ii. First	$Q. \frac{[A]_0}{2k_r}$
iii. Second	$R. {}^{1}/k_{r}[A]_{0}$
	S. $\frac{2k_r}{[A]_0}$

- (A) i-R, ii-P, iii-S
- (B) i-Q, ii-P, iii-R
- (C) i-S, ii-R, iii-Q
- (D) i-Q, ii-P, iii-S

Q. 22	The CORRECT sta	tement(s) for the given reactions is(are)
	Reactions:	
	I) Me H	i) MeMgBr
		ii) H ₃ O ⁺
	II) Macho	i) ⁱ PrMgBr
	MeCHO	ii) H ₃ O ⁺
	III) O	i) MeMgBr (excess)
	Me OM	e ii) H ₃ O ⁺
/	IV) O	i) ^j PrMgBr
	Me Me	ii) H ₃ O ⁺
	Possible products:	
	OH Me Me Me	OH O Me
\	Me Me	Me Me Me Me
	P	Q R
(A)	P is formed as the r	major product in reaction I .
(B)	P is formed as the r	najor product in reaction II.
(C)	Q is formed as the	major product in reaction IV.
(D)	R is formed as the I	major product in reaction III.

Q. 23	Addition of a few drops of concentrated HCl to an aqueous solution of $CoCl_2$ forms a dark blue complex \mathbf{X} .
	The CORRECT statement(s) for this reaction is(are)
	(Given: Atomic number of Co: 27)
(A)	X is a centrosymmetric complex.
(B)	The oxidation state of cobalt does not change in this reaction.
(C)	The number of unpaired electrons on cobalt in X and in CoCl ₂ (aqueous solution) are the same.
(D)	The spin only magnetic moment value for X is 3.87 BM.
Q. 24	The CORRECT statement(s) regarding biomolecules is(are)
(A)	The N-terminal amino acid of a polypeptide can be identified by Edman's reagent (phenyl isothiocyanate).
(B)	L-Threonine has only one chiral center.
(C)	Cytosine is present both in RNA and DNA.
(D)	A mixture of different amino acids can be separated by ion-exchange chromatography.

Q. 25	Energy of the transition from $n_h = 4$ to $n_l = 2$ for hydrogen atom is $\mathbf{E} \times 10^3$ cm ⁻¹ .
	Given: Rydberg constant for hydrogen: $1.097 \times 10^7 m^{-1}$.
	Value of E is (rounded off to two decimal places)
Q. 26	A non-volatile solute has a molecular weight of 180 g mol ⁻¹ . Assume that the solute does not associate or dissociate in water, and the boiling-point constant (ebullioscopic constant) of water is 0.51 K kg mol ⁻¹ . The amount (in g) of solute added to 500 g of water to elevate the boiling point by 0.153 K is (answer in integer)
Q. 27	The standard potentials (E^0) for the Fe ³⁺ /Fe and Fe ³⁺ /Fe ²⁺ couples are -0.04 V and $+0.76 \text{ V}$, respectively. Given: Faraday constant = 96500 C mol ⁻¹ . The value for E^0 (Fe ²⁺ /Fe), in V, is (rounded off to two decimal places)
	112
	Roorke

Biochemistry (XL-Q)

Q.28 – Q.35 Carry ONE mark Each

Q.28	Zinc is essential for the function of
(A)	carboxypeptidase A.
(B)	chlorophyll a.
(C)	myoglobin.
(D)	vitamin B ₁₂ .
Q.29	Which one of the following molecules captures CO ₂ in the C ₄ cycle?
(A)	1,3-Bisphosphoglycerate
(B)	Oxaloacetate
(C)	Phosphoenolpyruvate
(D)	Ribulose-1,5-bisphosphate
	117 Darkee
	KOOIII

Q.30	Which one of the following methods separates biomolecules based on their hydrodynamic volumes?	
(A)	Anion-exchange chromatography	
(B)	Cation-exchange chromatography	
(C)	Size-exclusion chromatography	
(D)	Thin-layer chromatography	
Q.31	Which one of the following restriction endonucleases is a blunt cutter?	
(A)	BamHI	
(B)	<i>Eco</i> RI	
(C)	HindIII	
(D)	<i>Eco</i> RV	
	GA: 1 4 4 5 5	
	17 Roorkee	

Q.32	Which one of the following DNA repair systems requires DNA glycosylases?
(A)	Base-excision
(B)	Direct
(C)	Mismatch
(D)	Nucleotide-excision
Q.33	Which one of the following ion channels opens to repolarize the neuronal membrane when an action potential is generated?
(A)	Ca ²⁺ channel
(B)	H ⁺ channel
(C)	Na ⁺ channel
(D)	K ⁺ channel
	17 Roorkee

Q. 34	Which one of the following is the most sensitive immunoassay?	
(A)	Immunoelectrophoresis	
(B)	Immunofluorescence	
(C)	Radial immunodiffusion	
(D)	Radioimmunoassay	
Q.35	Which of the following statements about antibodies is/are correct?	
(A)	Different antibody classes have different effector functions.	
(B)	Each antibody chain consists of an amino-terminal constant region and a carboxy-terminal variable region.	
(C)	Variable domains harbour complementarity-determining regions.	
(D)	All antibodies have same half-life.	
	1/17 1.08	
	Roorke	

Q.36 – Q.46 Carry TWO marks Each

Q.36	Which one of the following molecules does NOT contain phosphoanhydride bond(s)?	
(A)	Adenosine diphosphate	
(B)	Adenosine triphosphate	
(C)	Fructose-1,6-bisphosphate	
(D)	Pyrophosphate	
/		
Q.37	For an enzyme that follows Michaelis-Menten kinetics, a competitive inhibitor	
(A)	increases both K_m and V_{max} .	
(B)	decreases both K_m and V_{max} .	
(C)	increases K_m but does not affect V_{max} .	
(D)	decreases K_m but does not affect V_{max} .	
	1/17 - 1-08	
	Roork	

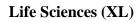
Q.38	Förster Resonance Energy Transfer does NOT depend on the	
(A)	relative orientation of donor and acceptor.	
(B)	fluorescence quantum yield of acceptor.	
(C)	distance between donor and acceptor.	
(D)	overlap between donor's emission and acceptor's absorption spectra.	
Q.39	Phospholipid vesicles prepared in 50 mM KCl were diluted in water. Based on this information, statements P and Q are made. P: The diluted vesicles will develop membrane potential. Q: There is a K ⁺ concentration difference across the vesicular membrane. Which one of the following options is correct?	
(A)	Both P and Q are true.	
(B)	P is true but Q is false.	
(C)	P is false but Q is true.	
(D)	Both P and Q are false.	
	Koork	

Q.40	Peptide-binding cleft in MHC-I is formed by						
(A)	α_1 and α_2 domains.						
(B)	α_1 and α_3 domains.						
(C)	α_1 domain and β_2 -microglobulin.						
(D)	α_2 domain and β_2 -microglobulin.						
Q.41	Which of the following peptides do/does NOT absorb ultraviolet light above 250 nm wavelength?						
(A)	MQRTVWG						
(B)	YDEIGVL						
(C)	PLASNGK						
(D)	GSQTKRL SQUARE S						
	17 Roorkee						

Q.42	Which of the following is/are peptide hormone(s)?					
(A)	Calcitonin					
(B)	Glucagon					
(C)	Serotonin					
(D)	Thyroxine					
Q.43	Which of the following is/are heteropolysaccharide(s)?					
(A)	Chondroitin-4-sulfate					
(B)	Chitin					
(C)	Cellulose					
(D)	Heparin					
	GAIL 2025					
	1/17 - 1,08					
Q.44	The equilibrium dissociation constant of acetic acid is $1.74 \times 10^{-5} M$. The pK_a of acetic acid (rounded off to one decimal place) is					

Q.45	The DNA double helix measures 0.34 <i>nm/bp</i> . The diameter of a nucleosome core particle is 11 <i>nm</i> . If the ratio of wrapped DNA length to nucleosome diameter is 4.51, the length of DNA around the nucleosome (<i>to the nearest integer</i>) is <i>bp</i> .
Q.46	E. coli is grown exclusively in a medium containing ¹⁵ NH ₄ Cl as the sole nitrogen source. Subsequently, the cells were shifted to a medium containing ¹⁴ NH ₄ Cl. The molar ratio of hybrid DNA (¹⁵ N- ¹⁴ N) to light DNA (¹⁴ N- ¹⁴ N) after four generations (rounded off to two decimal places) will be

Botany (XL-R)


Q.47 – Q.54 Carry ONE mark Each

Q.47	Correctly match the names of the plant taxonomists (Group I) with the titles of the books they authored (Group II).							
	Group I	Group II						
	(P) John Hutchinson	(1)	Classification of Flowering Plants					
	(Q) Adolf Engler and Karl Prantl	(2)	Evolution and Classification of Flowering Plants					
	(R) Arthur Cronquist	(3)	Die Naturlichen Pflanzenfamilien					
	(S) Alfred Barton Rendle	(4)	The Families of Flowering Plants					
(A)	P-4; Q-3; R-2; S-1							
(B)	P-1; Q-3; R-2; S-4							
(C)	P-1; Q-2; R-4; S-3							
(D)	P-2; Q-1; R-4; S-3							
Q.48	Which one of the following mature cell types is live but usually lacks nucleus?							
(A)	Phloem parenchyma							
(B)	Phloem companion							
(C)	Phloem sieve element							
(D)	Phloem-pole pericycle							

Organizing Institute: IIT Roorkee Page **30** of **76**

Q.49	Correctly match the carnivorous plants (Group I) with the organs (Group II) they modify to trap the prey.							
		Group II Group II						
		(P) Pitcher plant (Nepenthes) (1) Leaf						
		(Q) Bladderwort (<i>Utricularia</i>) (2) Fruit						
		(R) Sundew (<i>Drosera</i>) (3) Stem						
		(S) Venus flytrap (<i>Dionaea</i>) (4) Tendril						
(A)	P-1; Q-2; R-3;	S-1						
(B)	P-1; Q-1; R-1;	S-1						
(C)	P-2; Q-2; R-2; S-2							
(D)	P-2; Q-4; R-1; S-1							
		ATE 202						
Q.50		he following commercially important carbohydrates is naturally by the members of the plant kingdom?						
(A)	Cellulose	Roorkee						
(B)	Pectin							
(C)	Chitin							
(D)	Starch							

Q.51	Which one of the following agents causes the necrotic ring spot disease in stone
_	fruits?
(A)	Fungi
(B)	Bacteria
(C)	Virus
(D)	Nematodes
Q.52	Identify the correct statement(s) with respect to plant disease.
(A)	Hairy root disease in tobacco is caused by Agrobacterium tumefaciens
(B)	Loose smut of barley is caused by <i>Ustilago nuda</i>
(C)	Stem rust of grape is caused by <i>Plasmopara viticola</i>
(D)	Fire blight in pear is caused by Erwinia amylovora
	17 Roorkee

Q.53	Which of the following molecular approaches can be used to generate complete knock-out of a target gene in plants?						
(A)	Homologous recombination						
(B)	CRISPR-Cas9						
(C)	Antisense RNA technique						
(D)	Activation tagging						
Q.54	If an egg cell of a diploid plant species has 10 chromosomes, the expected number of chromosomes in a double trisomic somatic cell of this species would be (Answer in integer).						
<u> </u>							

Q.55-Q.65 Carry TWO marks Each

Q.55	In the history of photosynthetic research, the empirical reaction of photosynthesis was first proposed for green plants (equation 1), followed by another reaction for purple sulfur bacteria (equation 2), leading to a generalized equation for photosynthesis (equation 3)								
	$CO_2 + H_2O \xrightarrow{light} (CH_2O) + O_2$ (equation 1)								
	$CO_2 + 2H_2S \xrightarrow{light} (CH_2O) + H_2O + 2S$ (equation 2)								
	$CO_2 + 2H_2A \xrightarrow{light} (CH_2O) + H_2O + 2A$ (equation 3)								
	where H ₂ A in equation 3 is a generalized electron donor.								
	Which one of the following statements is DISPROVEN by equation 3?								
(A)	The source of oxygen produced in photosynthesis in green plants is CO ₂								
(B)	The source of oxygen produced in photosynthesis in green plants is H ₂ O								
(C)	Light is essential in every form of photosynthesis								
(D)	Glucose is the end product in all forms of photosynthesis								
	GATE 2025								

Q.56	Consider a diploid plant species where the cells in the epidermis (the outermost single cell layer) always divide in the anticlinal orientation. If one such cell within the central zone of the shoot apical meristem (SAM) spontaneously becomes tetraploid at the seedling stage, which one of the following cellular arrangements would be most likely observed if the meristem is examined at the adult stage?						
(A)	Only	one to	etraploid ce	ll in t	he epidermis		
(B)	Man	y tetra	ploid cells i	n the	epidermis		
(C)	All c	ells in	the entire S	SAM	tetraploid		
(D)	All c	ells in	the entire S	SAM	diploid		
Q.57	Correctly match the photosynthetic pathways (Group I) with their first stable products (Group II) in respective plants (Group III)						
\		G	Froup I		Group II	G	Group III
\		(P)	C3 cycle	(1)	3-Phosphoglycerate	(a)	Wheat
		(Q)	C4 cycle	(2)	Glyceraldehyde-3-phosphate	(b)	Sugarcane
		(R)	CAM	(3)	Oxaloacetate	(c)	Pineapple
(A)	P-1-a; Q-3-b; R-3-c						
(B)	P-1-a; Q-2-b; R-3-c						
(C)	P-1-b; Q-3-a; R-2-c						
(D)	P-1-b; Q-2-c; R-2-a						

Q.58	The following table summarizes the flowering time behavior (days to flower)
	and the transcript levels in four genotypes of a plant species.

Genotype	Days to flower	Transcript level of gene A	Transcript level of gene B
Wild type	30	Normal	Normal
a mutant	15	Nil	Increased
b mutant	60	Normal	Nil
ab double mutant	60	Nil	Nil

Which one of the following genetic pathways best explains the observations shown in the table?

- (A) A gene activates B, which suppresses flowering transition
- (B) A gene suppresses B, which promotes flowering transition
- (C) B gene activates A, which suppresses flowering transition
- (D) B gene suppresses A, which promotes flowering transition

	Q.59	•	n the economically implement the the the the the the the the the th	oortant specialized metabolite oup II).	s (Group I)
			Group I	Group II	

		Group I	Group II		
	(P) Azadirachtin(Q) Saponin		(1)	Monoterpene	
			(2)	Alkaloid	
	(R)	Gallocatechin	(3)	Triterpene glycoside	
	(S)	Cocaine	(4)	Polyphenol	
	(T)	Menthol	(5)	Triterpene	

(A)	P-5; Q-3; R-2; S-4; T-1

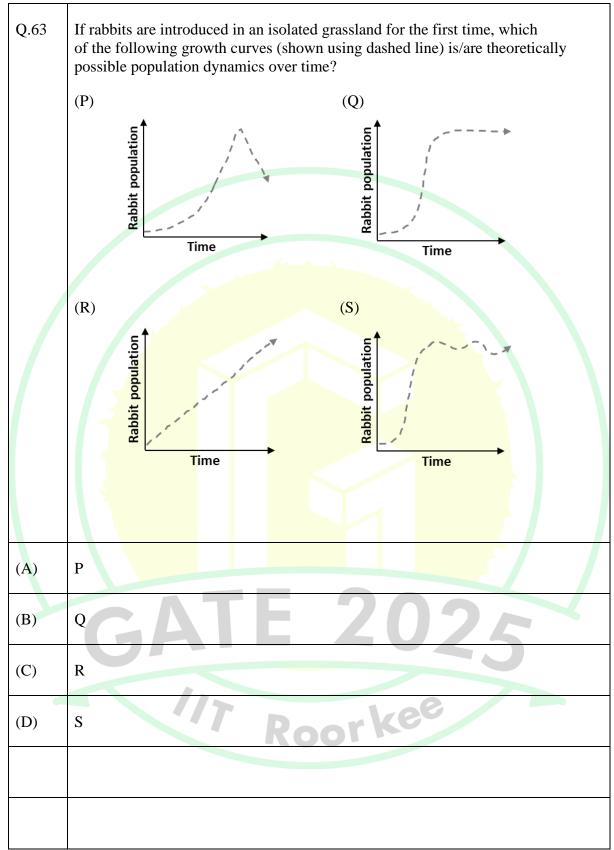
- (B) P-2; Q-4; R-3; S-1; T-5
- (C) P-5; Q-3; R-4; S-2; T-1
- (D) P-3; Q-5; R-4; S-2; T-1

(D)

P-4; Q-1; R-3; S-2

Q.60		rectly match the following Arabidopsis genes (Group I) and the biological cesses they primarily regulate (Group II).					
		Group II Group II			Group II		
		(P)	CLAVATA3	(1)	Organ identity in flower		
		(Q)	CONSTANS	(2)	Cell-type specification in root meristem		
		(R)	SCARECROW	(3)	Meristem size in shoot		
		(S)	AGAMOUS	(4)	(4) Photoperiodic floral transition		
(A)	P-3; (P-3; Q-4; R-1; S-2					
(B)	P-1; Q-3; R-2; S-4						
(C)	P-3; Q-4; R-2; S-1						

Organizing Institute: IIT Roorkee


Q.61	Correctly match the enzymes used as selectable markers (Group I) and the
	chemicals used for their selection (Group II).

	Group I	Group II		
(P)	Neomycin phosphotransferase	(1)	Bialaphos	
(Q)	Phosphinothricin acetyltransferase	(2)	Kanamycin	
(R)	Dihydrofolate reductase	(3)	Glyphosate	
(S)	5-Enolpyruvyl shikimate 3-phosphate synthase	(4)	Methotrexate	

Q.62	Which of the following sequential reactions correctly represent(s) the flow of
	electrons from NADH to O ₂ in plant mitochondrial electron transport chain?

- (A) NADH dehydrogenase → Ubiquinone → Succinate dehydrogenase → Cytochrome bc1 → Cytochrome c → Cytochrome c oxidase
- (B) NADH dehydrogenase → Succinate dehydrogenase → Ubiquinone → Cytochrome c → Cytochrome bc1 → Cytochrome c oxidase
- (C) NADH dehydrogenase → Ubiquinone → Alternative oxidase
- (D) NADH dehydrogenase \rightarrow Alternative oxidase \rightarrow Ubiquinone

Radii					
Q.64	Which of the following reactions in plants is/are catalyzed by the malic enzymes?				
(A)	Malate + $NAD^+ \rightarrow Pyruvate + CO_2 + NADH$				
(B)	$Malate + NAD^{+} \rightleftharpoons Oxaloacetate + NADH$				
(C)	Malate ⇌ Fumarate				
(D)	$Malate + NADP^{+} \rightarrow Pyruvate + CO_{2} + NADPH$				
Q.65	In a genetic cross between a true-breeding tall parent bearing red flowers and a true-breeding dwarf parent bearing white flowers, only tall plants with red flowers are obtained in the F1 population. Considering these two traits segregate independently, if one tall individual is selected from the F2 population, the probability that it would be genotypically homozygous for plant height and make red flowers is(Round off to two decimal places).				
	ATE OO				
	GAIE 4025				
	1/17 Roorkee				

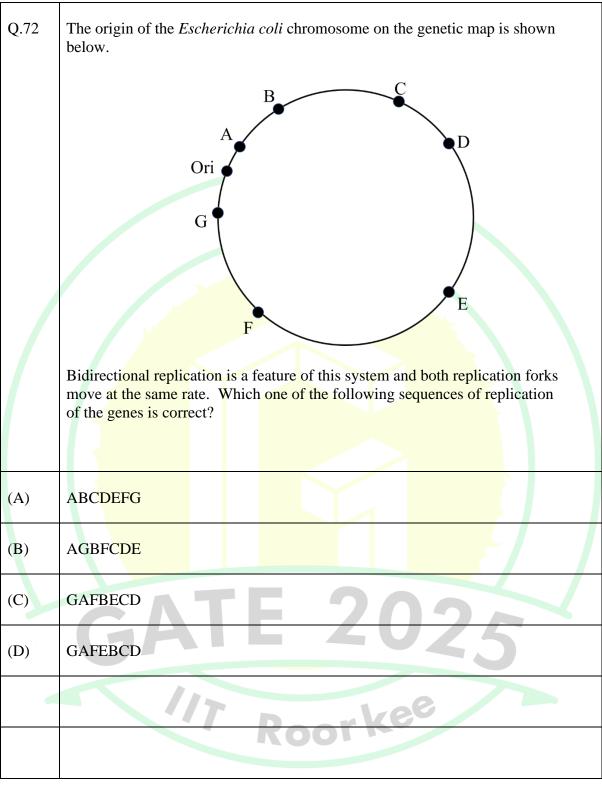
Organizing Institute: IIT Roorkee

Microbiology (XL-S)

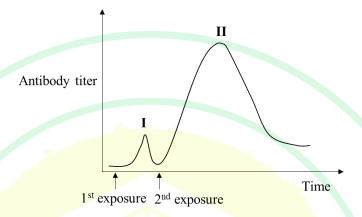
Q.66 – Q.73 Carry ONE mark Each

Q.66	Which one of the following metabolites is associated with bacterial stringent response?		
(A)	Cyclic di-GMP (CDG)		
(B)	Guanosine tetraphosphate (ppGpp)		
(C)	Cyclic-AMP (cAMP)		
(D)	Cyclic-GMP (cGMP)		
Q.67	India is aiming to be free of tuberculosis by 2025. One of the key approaches for this program is DOTS. Which one of the following options is the full form of DOTS?		
(A)	Directly observed therapy short-course		
(B)	Directly observed tuberculosis short-course		
(C)	District operated therapy system		
(D)	Directly operated therapy short-course		
	KOOT		

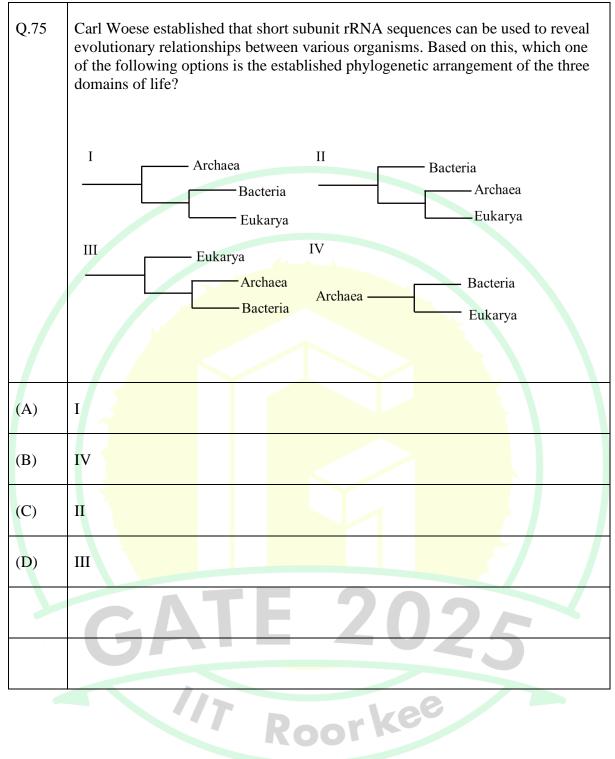
Q.68	Correctly match the bacterial type in Column I with their corresponding environmental niche in Column II .			
	Column I Column II			
		P. Psychrophile	i. Pressure greater than 380 atm	
		Q. Barophile	ii. Temperature between 15°C and 45°C	
		R. Mesophile	iii. Temperature below 15°C	
		S. Halophile	iv. pH less than 3.0	
			v. Salt concentration greater than 2M	
(A)	P - iii; Q - i; R - ii; S - v			
(B)	P - ii; Q - iii; R - i; S - v			
(C)	P - i; Q - iv; R - iii; S - v			
(D)	P - v; Q - iii; R - iv; S - i			


Q.69	Robert Koch used a meat-infused nutrient medium for which one of the following purposes?			
(A)	To grow disease causing microorganisms.			
(B)	To demonstrate presence of microorganisms in air.			
(C)	To test the efficiency of sterilization approaches.			
(D)	To demonstrate antimicrobial activity of soil isolates.			
Q.70	A penicillin sensitive <i>Escherichia coli</i> population is exposed to a lethal dose (200 µg/ml) of penicillin. Assuming density-independent mortality, which one of the following relationships would describe the number of surviving bacteria (N) over time (T)?			
(A)	Exponential			
(B)	Linear			
(C)	Sigmoidal E 2			
(D)	Parabolic			
	17 Roorkee			

Q.71	A bacterium obtains energy from a chemical source by the oxidation of reduced NO_2^- , with CO_2 as the principal carbon source. Which one of the following nutritional groups does this bacterium belong to?
(A)	Photoautotroph.
(B)	Photoheterotroph.
(C)	Chemoautotroph.
(D)	Chemoheterotroph.


Q.73	Which of the following sites is/are the location(s) of ATP generation through oxidative phosphorylation in <i>Escherichia coli</i> ?
(A)	Inner membrane only
(B)	Outer membrane only
(C)	Both outer membrane and inner membrane
(D)	Mesosome

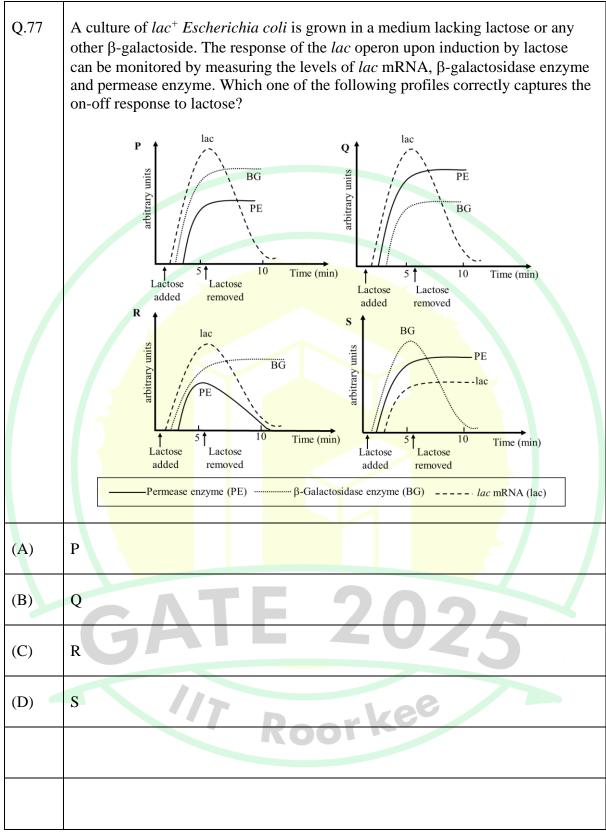
Q.74 – Q.84 Carry TWO marks Each


Q.74 The adaptive immune response in an animal involves the generation of antibodies against an invading bacterial pathogen. The following graph represents antibody titer levels in a mammal exposed twice to the pathogen.

Which one of the following options correctly pairs antibodies to peak I and peak II in the graph?

- (A) Peak I IgG; Peak II IgM
- (B) Peak I IgM; Peak II IgG
- (C) Peak I IgE; Peak II IgG
- (D) Peak I IgG; Peak II IgG

Q.76	Correctly match the viruses listed in Column I with the nature of their
	corresponding genetic materials listed in Column II.


Column I	Column II
P. Bacteriophage lambda	i. dsDNA
Q. Bacteriophage M13	ii. ssDNA
R. Coronavirus	iii. ssRNA
S. Reovirus	iv. dsRNA

- (A) P i; Q iv; R iii; S ii
- (B) P iv; Q ii; R i; S iii
- (C) P i; Q ii; R iii; S iv
- (D) P i; Q iii; R ii; S iv

GATE 2025

Write Roorkee

Q.78	Which option(s) correctly match(es) the structures in a bacterial cell (Column I)
	with their corresponding functions (Column II).

Column I	Column II
P. Cell wall	i. Protection from osmotic stress
Q. Fimbriae	ii. Attachment to surfaces
R. Flagella	iii. Motility
S. Pili	iv. Transfer of genetic material

()	D	:. 0	. ::.	D	:::.	C	:
(A)	Ρ-	-1, Q	- ii;	K -	т,	\mathbf{o} .	- IV

Q.79	Which of the following statements regarding micro-organisms is/are correct?
(A)	The free-living bacterium Wolbachia is a human parasite.
(B)	Myxococcus are a group of predatory bacteria.
(C)	Dictyostelium is a slime mold that aggregates to form social groups.
(D)	Actinomycetes in soil are involved in producing earthy odours.
/	
Q.80	Which of the following is/are example(s) of animal-microbe mutualism?
(A)	Human - Mycobacterium tuberculosis
(B)	Dog - Rabies lyssavirus
(C)	Human - Lactobacillus plantarum
(D)	Cow - Ruminococcus albus
	Roorkee

Q.81	Which of the following reactions is/are catalyzed by aldolase?			
(A)	Dihydroxyacetone phosphate + Glyceraldehye-3-phosphate → Fructose 1,6-biphosphate			
(B)	Dihydroxyacetone phosphate + Erythrose-4-phosphate → Sedoheptulose-1,7-biphosphate			
(C)	Dihydroxyacetone phosphate → Glyceraldehyde-3-phosphate			
(D)	Glyceraldehye-3-phosphate + Erythrose-4-phosphate → Sedoheptulose-1,7-biphosphate			

Q.82	Which option(s) correctly match(es) the Antibiotic with their corresponding
	Target?

Antibiotic	Target
P. Penicillin	i. Ribosome
Q. Kanamycin	ii. RNA polymerase
R. Rifampicin	iii. DNA gyrase
S. Nalidixic acid	iv. Transpeptidase
T. Ciprofloxacin	

- (A) P iv; Q i; R ii; S iii
- (B) P ii; Q iv; R i; S iii
- (C) P iv; Q i; R ii; T iii
- (D) P iv; Q iii; R ii; T i

GATE 2025 Wr Roorkee

Q.83	The doubling time of <i>Escherichia coli</i> is 30 minutes in a culture medium containing glucose and yeast extract. Phage T7 has a life cycle of 20 minutes and a burst size of 200 phage per infected <i>E. coli</i> cell. Phage absorption is instantaneous and occurs at 1 multiplicity of infection (MOI). Bacteria infected with multiple or single phage give the same burst. 5000 plaque forming units of T7 phage are added to a culture of 2 × 10 ⁷ <i>E. coli</i> cells. Assuming normal division, the <i>E. coli</i> culture will lyse completely by full cycles of bacterial division. (<i>Answer in integer</i>)
Q.84	A polymerase chain reaction (PCR) based diagnosis test was performed on a bacterial sample targeting a specific gene. There are 3 copies of this gene in the bacterial genome. Prior to DNA extraction, the bacteria were incubated to allow one cycle of growth. 3072 amplicon copies were obtained after 9 cycles of the PCR. Assume 100% efficiency at each step. The initial bacterial count in the sample was (Answer in integer)

GAIL 2025

/// Roorkee

Zoology (XL-T)

Q.85 – Q.92 Carry ONE mark Each

Q.85	Which one of the following is a "brood parasite"?
(A)	Pigeon
(B)	Sparrow
(C)	Goose
(D)	Cuckoo
Q.86	During the development of a mammalian embryo, "yolk sac" is formed by which one of the following?
(A)	Syncytiotrophoblast
(B)	Primitive endoderm (hypoblast)
(C)	Amniotic ectoderm
(D)	Embryonic epiblast
	7 Roorkee

Q.87	The animals belonging to which one of the following phyla are characterized by "segmented body"?
(A)	Annelida
(B)	Cnidaria
(C)	Echinodermata
(D)	Porifera
Q.88	Which one of the following is a "post-zygotic" isolating mechanism of speciation?
(A)	Behavioral isolation
(B)	Fertilization failure
(C)	Hybrid sterility
(D)	Seasonal isolation
	1/17 1-08
	Roorke

Q.89	Desmosomes are
(A)	intermediate filament-based cell adhesion complexes.
(B)	protein synthesizing macromolecular complexes.
(C)	subcellular organelles.
(D)	DNA-protein complexes.
Q.90	The "foramen of Panizza" is found in which one of the following groups of animals?
(A)	Fishes
(B)	Crocodiles
(C)	Frogs
(D)	Dolphins
	GAIL 4025
	1/17 - 1/08 /-
Q.91	Imagine a population of diploid species in Hardy-Weinberg equilibrium. The population has two alleles for a gene which are 'a' and 'A'. The number of individuals with 'aa' genotype in this population is 1 in 10000. The frequency of the allele 'A' in the population is (up to two decimal places)

Q.92	A PCR was setup to amplify a 500 nucleotides-long DNA. The dNTPs in the reaction mixture were radiolabeled. The percentage (%) of radiolabeled single-stranded DNA after three cycles will be (up to one decimal place)

Q.93 – Q.103 Carry TWO marks Each

Q.93	Match the molecules in Column-I with Column-II	h their properties/functions mentioned in
	Column-I	Column-II
	P. IgM	1. Involved in antigen presentation
	Q. IgE	2. Predominant antibody type in various body secretions
	R. IgA	3. Can pass through placenta
	S. MHC	4. Associated with allergic reaction
	G	5. Contains ten heavy and light chains
(A)	P-3; Q-2; R-4; S-5	
(B)	P-5; Q-4; R-2; S-1	
(C)	P-2; Q-3; R-4; S-1	200
(D)	P-5; Q-4; R-2; S-5	4025
	- 1/17 -	1,00
	Roc	orke

Q.94	Match the following human diseases Column-II	in Column-I with their causal organism i
	Column-I	Column-II
	P. Sleeping sickness	1. Trypanosoma cruzi
	Q. Chagas disease	2. Trypanosoma brucei
	R. Elephantiasis	3. Borrelia burgdorferi
	S. Lyme disease	4. Wuchereria bancrofti
		5. Rickettsia rickettsii
(A)	P-3; Q-1; R-4; S-5	
(B)	P-1; Q-2; R-3; S-4	
(C)	P-2; Q-4; R-1; S-3	
(D)	P-2; Q-1; R-4; S-3	
	GAIL	4025
	Ro	orkee

Q.95	Match the molecules in Column-I with the II	heir correct property/function in Column-
	Column-I	Column-II
	P. RNase P	1. rRNA gene transcription
	Q. RNA Polymerase-I	2. Gene silencing
	R. siRNA	3. Cas9-mediated genome editing
	S. Guide RNA	4. Ribozymes
		5. tRNA gene transcription
(A)	P-4; Q-5; R-2; S-3	
(B)	P-5; Q-1; R-3; S-4	
(C)	P-4; Q-1; R-2; S-3	202
(D)	P-1; Q-3; R-4; S-2	4025
		Livee /
	Roc	

Q.96	What would be the number of genotypes and phenotypes, respectively, from a cross between genotypes AaBBCcDd and AaBBCcDd? Assume independent assortment and simple dominant-recessive relationship in each gene pair.
(A)	8 and 4
(B)	12 and 4
(C)	27 and 8
(D)	14 and 8
/	
Q.97	Nucleosomes are made up of DNA and histones. Histones undergo various kind of modifications by different groups of proteins. They are known as histone writers, readers and erasers. Which of the following is/are histone writer(s)?
(A)	Histone acetyl transferases
(B)	Histone methyl transferases
(C)	Histone deacetylases
(D)	DNA methyl transferases
	17 Roorkee

Q.98	The expression of a gene is regulated by a transcription factor. Which of the following techniques can be used to identify the region in its promoter where the transcription factor binds?
(A)	S1 nuclease mapping
(B)	Chromatin immunoprecipitation followed by sequencing
(C)	Electrophoretic mobility shift assay
(D)	DNase I footprinting
/	
Q.99	Which of the following animals in India are included under "critically endangered" threat category as per the Red Data List of IUCN?
(A)	Namdapha Flying Squirrel
(B)	Indian Rhinoceros
(C)	Nicobar Shrew
(D)	Clouded Leopard
	1/17 - 1/08
	Roork

100.	Which of the following statements in relation to cell movement during gastrulation in Sea urchin is/are correct?	
(A)	Delamination leads to the formation of endoderm	
(B)	Ingression leads to the development of mesoderm	
(C)	Involution leads to the development of ectoderm	
(D)	Invagination leads to the development of endoderm	
Q.101	Which of the following genetic disorders is/are caused by trinucleotide repeat expansions?	
(A)	Huntington's disease	
(B)	β-thalassemia	
(C)	Fragile X syndrome	
(D)	Cystic fibrosis	
	Roorkee	
Q.102	The mother and the father of five children are carriers (heterozygous) of an autosomal recessive allele that causes cystic fibrosis. The probability of having exactly three normal children among five is (up to two decimal places)	

Q.103	An enzyme, which follows Michaelis-Menten equation, catalyzes the reaction A \rightarrow B. When enzyme and substrate concentrations are 15 nM and 10 μ M, respectively, the reaction velocity is 5 μ Ms ⁻¹ . If K_m for the substrate A is 5 μ M, the kinetic efficiency of the enzyme will be×10 ⁶ M ⁻¹ s ⁻¹ (in integer)

Food Technology (XL-U)

Q.104–Q.111 Carry ONE mark Each

Q.104	Which of the following contains the phytonutrient allicin?
(A)	Grape
(B)	Cauliflower
(C)	Garlic
(D)	Chilli
Q.105	Which mold is responsible for the characteristic blue marbling in blue-veined cheese?
(A)	Rhizopus oryzae
(B)	Penicillium roqueforti
(C)	Aspergillus niger
(D)	Penicillium camemberti
	7 Roorkee

Q.106	Which genus of bacteria does NOT have cell wall?						
Q.1 00	The state of the s						
(A)	Lactobacillus						
(B)	Staphylococcus						
(C)	Mycoplasma						
(D)	Escherichia						
Q.107	Which of the following pigment does NOT have pro-vitamin A activity?						
(A)	β-Carotene						
(B)	β-Cryptoxanthin						
(C)	Lycopene						
(D)	α-Carotene						
	GAIL ZUZS						
	1/17 - 1/08						

Q.108	Identify the analysis that must be performed FIRST to judge 'cleanliness' of spice/herb powders.						
(A)	Acid-insoluble ash content						
(B)	Pesticide residue levels						
(C)	Volatile oil content						
(D)	Mycotoxin levels						
Q.109	If there is a delay in oil extraction after bran is separated from the brown rice, the quality of rice bran oil deteriorates. Identify the suitable CAUSE and EFFECT for the deterioration in oil quality.						
(A)	Lipase activity; increase in FFA						
(B)	Oil hydrolysis; decrease in FFA						
(C)	Lipase activity; decrease in FFA						
(D)	Bran stabilization; decrease in lipase activity						
	1/7 - 1/08						
	Roorko						

Q.110	Among the following, which is/are the process(es) that lead to generation of new fats from existing ones?
(A)	Transesterification
(B)	Degumming
(C)	Hydrogenation
(D)	Winterization
Q.111	The true density and bulk density of wheat grains are 1280 kg/m ³ and 740 kg/m ³ , respectively. The porosity of the grains is (rounded off to 2 decimal places)

Q.112 – Q.122 Carry TWO marks Each

Q.112	Identify the gas composition (in percent) suitable for packaging cured meat under MAP conditions.
(A)	$O_2 = 0$; $CO_2 = 50$; $N_2 = 50$
(B)	$O_2 = 50$; $CO_2 = 0$; $N_2 = 50$
(C)	$O_2 = 0$; $CO_2 = 0$; $N_2 = 100$
(D)	$O_2 = 50$; $CO_2 = 50$; $N_2 = 0$
Q.113	Which of the following sequence of events occurs during formation of egg-white gel?
	Assume: P _N : Native protein; P _D : Denatured protein; P _A : Aggregated protein; P _G : Protein gel →: forward reaction; ↔: reversible reaction; Δ: heating; ∇: cooling
(A)	$P_{N} \overset{\Delta}{\leftrightarrow} P_{D} \overset{\nabla}{\leftrightarrow} P_{A} \overset{\nabla}{\leftrightarrow} P_{G}$
(B)	$P_{N} \stackrel{\Delta}{\leftrightarrow} P_{D} \stackrel{\Delta}{\to} P_{A} \stackrel{\Delta}{\to} P_{G}$
(C)	$P_{N} \stackrel{\Delta}{\leftrightarrow} P_{D} \stackrel{\nabla}{\to} P_{G}$
(D)	$P_N \overset{\Delta}{\leftrightarrow} P_A \overset{\Delta}{\to} P_G$

Organizing Institute: IIT Roorkee

ROOT	
Q.114	In canning and retorting of foods, which of the following is the correct expression of Ball process time (B)? Assume: $t_p = \text{processor's process time}$; $t_c = \text{come-up time}$
(A)	$B = t_p + 0.42 t_c$
(B)	$B = t_p + 0.30 t_c$
(C)	$B = t_p + 0.50 t_c$
(D)	$B = t_p + 0.25 t_c$
Q.115	Which of the following is the most suitable flexible packaging laminate for dry fruits?
(A)	PET/LDPE
(B)	PS/LDPE
(C)	BOPP/LDPE
(D)	Nylon/LDPE
	17 Roorkee

Q.116	Identify the CORRECT sequence of operations for dressing of poultry.						
(A)	Slaughtering and bleeding \rightarrow scalding \rightarrow defeathering \rightarrow eviscerating \rightarrow chilling						
(B)	Slaughtering and bleeding → defeathering → scalding → eviscerating → chilling						
(C)	Slaughtering and bleeding → eviscerating → defeathering → scalding → chilling						
(D)	Slaughtering and bleeding \rightarrow defeathering \rightarrow eviscerating \rightarrow scalding \rightarrow chilling						
Q.117	Which of the following statement(s) is/are TRUE for a package of gamma-irradiated (7.5 kGy) whole chicken?						
(A)	Nutritional quality of the product deteriorates after irradiation.						
(B)	Spores of <i>C. botulinum</i> can survive in the irradiated product.						
(C)	'Radura' symbol does not ensure safety of the irradiated product for consumption.						
(D)	Energy needed for the irradiation process is much higher than that required for freezing of the product.						
	Roorkee						

Q.118	Match the following food products in Column I with their corresponding processes in Column II.							
	Column I Column II							
	P Idli 1 Baking							
	Q Parboiled rice 2 Fermentation							
	R Soda beverage 3 Gelatinization							
	S Cookies 4 Carbonation							
(A)	P-2;Q-3;R-4;S-1							
(B)	P-3;Q-2;R-4;S-1							
(C)	P-2;Q-4;R-1;S-3							
(D)	P-2;Q-3;R-1;S-4							
Q.119	Which of the following is/are inhibitor(s) of enzymatic browning in peeled potatoes?							
(A)	Citric acid							
(B)	EDTA							
(C)	Mannitol							
(D)	Ascorbic acid							

Q.120	Match the following enzymes in Column I with their applications in Column II.						
	Column I				. I		Column II
	P β-Glucanase				1	Fruit juice clarification	
	Q α- and β-Amylases		2	Bread making			
		R	Pectinas	se		3	Meat tenderization
		S	Papain		44	4	Brewing
(A)	P-3;	Q-1;F	R-2;S-4				
(B)	P-4;	Q-2; <mark>F</mark>	R-1;S-3				
(C)	P-2;	Q-4;F	R-1;S-3				
(D)	P-1;	Q-2;F	R-3;S-4		5		
\							1 / /
Q.121	The F_{121} value of a known microorganism with Z value of 11 °C is 2.4 min for 99.9999% inactivation. For a 12D inactivation of the said microorganism at 143 °C, the F value (in min) is (rounded off to 3 decimal places)						
	17 Roorkee						
Q.122	In a typical grinding operation, 80% of the feed material passes through a sieve opening of 4.75 mm; whereas, 80% of the ground product passes through 0.5 mm opening. If the power required to grind 2 tonnes/h of the feed material is 3.8 kW, the work index of the material is (rounded off to 2 decimal places)						

GRADUATE APTITUDE TEST IN ENGINEERING 2025 अभियांत्रिकी स्नातक अभिक्षमता परीक्षा २०२५

Organising Institute: INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Answer Key for Life Sciences (XL)

Q. No.	Session	Q. Type	Section	Key/Range	Marks
1	8	MCQ	GA	D	1
2	8	MCQ	GA	В	1
3	8	MCQ	GA	В	1
4	8	MCQ	GA	С	1
5	8	MCQ	GA	Α	1
6	8	MCQ	GA	А	2
7	8	MCQ	GA	В	2
8	8	MCQ	GA	С	2
9	8	MCQ	GA	Α	2
10	8	MCQ	GA	С	2
11	8	MCQ	XL-P	В	1
12	8	MCQ	XL-P	Α	1
13	8	MCQ	XL-P	Α	1
14	8	MCQ	XL-P	С	1
15	8	MCQ	XL-P	Α	1
16	8	MCQ	XL-P	Α	1
17	8	MSQ	XL-P	A;C	1
18	18 8		XL-P	B;D	1
19	8	NAT	XL-P	5.96 to 5.98	1
20	8	MCQ	XL-P	Α	2
21	8	MCQ	XL-P	В	2
22	8	MSQ	XL-P	A;B;C	2
23	8	MSQ	XL-P	B;C;D	2
24	8	MSQ	XL-P	A;C;D	2
25	8	NAT	XL-P	20.55 to 20.59	2
26	8	NAT	XL-P	27 to 27	2
27	8	NAT	XL-P	-0.46 to -0.42	2
28	8	MCQ	XL-Q	А	1
29	8	MCQ	XL-Q	С	1
30	8	MCQ	XL-Q	С	1

31	8	MCQ	XL-Q	D	1
32	8	MCQ	XL-Q	А	1
33	8	MCQ	XL-Q	D	1
34	8	MCQ	XL-Q	D	1
35	8	MSQ	XL-Q	A;C	1
36	8	MCQ	XL-Q	С	2
37	8	MCQ	XL-Q	С	2
38	8	MCQ	XL-Q	В	2
39	8	MCQ	XL-Q	С	2
40	8	MCQ	XL-Q	А	2
41	8	MSQ	XL-Q	C;D	2
42	8	MSQ	XL-Q	A;B	2
43	8	MSQ	XL-Q	A;D	2
44	8	NAT	XL-Q	4.7 to 4.8	2
45	8	NAT	XL-Q	146 to 146	2
46	8	NAT	XL-Q	0.14 to 0.14	2
47	8	MCQ	XL-R	Α	1
48	8	MCQ	XL-R	С	1
49	8	MCQ	XL-R	В	1
50	8	MCQ	XL-R	В	1
51	8	MCQ	XL-R	С	1
52	8	MSQ	XL-R	B;D	1
53	8	MSQ	XL-R	A;B	1
54	8	NAT	XL-R	22 to 22	1
55	8	MCQ	XL-R	Α	2
56	8	MCQ	XL-R	В	2
57	8	MCQ	XL-R	Α	2
58	8	MCQ	XL-R	В	2
59	8	MCQ	XL-R	С	2
60	8	MCQ	XL-R	С	2
61	8	MCQ	XL-R	А	2
62	8	MSQ	XL-R	A;C	2
63	8	MSQ	XL-R	A;B;D	2
64	8	MSQ	XL-R	A;D	2
65	8	NAT	XL-R	0.24 to 0.26	2
66	8	MCQ	XL-S	В	1
67	8	MCQ	XL-S	А	1
68	8	MCQ	XL-S	А	1

69	8	MCQ	XL-S	А	1
70	8	MCQ	XL-S	А	1
71	8	MCQ	XL-S	С	1
72	8	MCQ	XL-S	В	1
73	8	MSQ	XL-S	A;D	1
74	8	MCQ	XL-S	В	2
75	8	MCQ	XL-S	С	2
76	8	MCQ	XL-S	С	2
77	8	MCQ	XL-S	А	2
78	8	MSQ	XL-S	А	2
79	8	MSQ	XL-S	B;C;D	2
80	8	MSQ	XL-S	C;D	2
81	8	MSQ	XL-S	A;B	2
82	8	MSQ	XL-S	A;C	2
83	8	NAT	XL-S	2 to 2	2
84	8	NAT	XL-S	1 to 1	2
85	8	MCQ	XL-T	D	1
86	8	MCQ	XL-T	В	1
87	8	MCQ	XL-T	Α	1
88	8	MCQ	XL-T	С	1
89	8	MCQ	XL-T	Α	1
90	8	MCQ	XL-T	В	1
91	8	NAT	XL-T	0.99 to 0.99	1
92	8	NAT	XL-T	87.5 to 87.5	1
93	8	MCQ	XL-T	В	2
94	8	MCQ	XL-T	D	2
95	8	MCQ	XL-T	С	2
96	8	MCQ	XL-T	С	2
97	8	MSQ	XL-T	A;B	2
98	8	MSQ	XL-T	B;D	2
99	8	MSQ	XL-T	A;C	2
100	8	MSQ	XL-T	B;D	2
101	8	MSQ	XL-T	A;C	2
102	8	NAT	XL-T	0.25 to 0.27	2
103	8	NAT	XL-T	100 to 100	2
104	8	MCQ	XL-U	С	1
105	8	MCQ	XL-U	В	1
106	8	MCQ	XL-U	С	1

107	8	MCQ	XL-U	С	1
108	8	MCQ	XL-U	А	1
109	8	MCQ	XL-U	А	1
110	8	MSQ	XL-U	A;C	1
111	8	NAT	XL-U	0.40 to 0.44	1
112	8	MCQ	XL-U	А	2
113	8	MCQ	XL-U	В	2
114	8	MCQ	XL-U	А	2
115	8	MCQ	XL-U	С	2
116	8	MCQ	XL-U	А	2
117	8	MSQ	XL-U	B;C	2
118	8	MSQ	XL-U	А	2
119	8	MSQ	XL-U	A;B;D	2
120	8	MSQ	XL-U	B;C	2
121	8	NAT	XL-U	0.046 to 0.050	2
122	8	NAT	XL-U	6.25 to 6.32	2