CHAPTER-8

BINOMIAL THEOREM

THREE MARKS QUESTIONS:	
1. Using Binomial Theorem evaluate i) $(102)^5 ii$) $(99)^5$.	(K)
2. Show that $9^{n+1} - 8n - 9$ is divisible by 64, whenever n is a positive integer.	(A)
3. Using Binomial theorem, prove that $6^n - 5n$ always leaves remainder 1 when divide	d by 25. (S)
4. Find $aifthe17^{th}and18^{th}terms of the expansion (2 + a)^{50}are equal.$ (U)	
5. Find the coefficient of $a^5 b^7 in(a-2b)^{12}$. (U)	
6. Find a positive value of m for which the coefficient of x^2 in the expansion $(1 + x)^m$ i	s 6. (U)
7. In the expansion of $(1 + a)^{m+n}$, prove that coefficients of $a^m and a^n$ are equal.	(A)
8. Prove that the coefficient of x^n in the expansion of $(1 + x)^{2n}$ is twice the coefficient of x^n in the	
expansion of $(1 + x)^{2n-1}$.	(U)
9. Which is larger $(1.01)^{100000}$ or 10,000?	(K)
10. Prove that $\sum_{r=0}^{n} 3^{r}$. $n_{C_{r}} = 4^{n}$.	(K)
11. Find the coefficient of $x^5 in(x + 3)^8$.	(U)
12. Find the 4^{th} term in the expansion of $(x - 2y)^{12}$.	(U)
13. Find the 13^{th} term in the expansion of $\left(9x - \frac{1}{3\sqrt{x}}\right)^{18}$.	(U)
14. Find the middle term in the expansion of $\left(\frac{x}{3} + 9y\right)^{10}$.	(U)
15. Show that the middle term in the expansion of $(1 + x)^{2n}$ is $\frac{1.3.5(2n-1)}{n!}$ 2n. x^n .	(A)
16. If the coefficients of $(r - 5)^{th}$ and $(2r - 1)^{th}$ terms of the expansion $(1 + x)^{34}$ are equal, find r. (A)	
17. Find the r^{th} term from the end in the expansion of $(x + a)^n$.	(A)
18. Find the value of $(a^2 + \sqrt{a^2 - 1})^4 + (a^2 - \sqrt{a^2 - 1})^4$.	(A)
19. If a and b are distinct integers, prove that $a - b$ is a factor of $a^n - b^n$, when n is a positive integer. (A)	
20. Find the coefficient of x^5 in the product $(1 + 2x)^6(1 - x)^7$.	(A)
21. Expand each of the following and find the sum of the binomial coefficients in each case:	
i) $\left(\frac{2}{x} - \frac{x}{2}\right)^5$ ii) $\left(\frac{x}{3} + \frac{1}{x}\right)^6$ iii) $(2x - 3)^7$.	(U)
FIVE MARKS QUESTIONS:	()
1. State and prove Binomial Theorem for any positive integer n.	(К)
2. Find $(a + b)^4 - (a - b)^4$. Hence, evaluate $(\sqrt{3} + \sqrt{2})^4 - (\sqrt{3} - \sqrt{2})^4$.	(S)
3. The second, third and fourth terms in the binomial expansion $(x + a)^n$ are 24, 720 and	d 1080
respectively. Find x , a and n. (A)	
4. The coefficients of the $(r-1)^{th}$, $r^{th}and(r+1)^{th}$ terms in the expansion of $(x+1)^n$ a	re in the ratio
1 : 3 : 5. Find nandr.	(A)
5. Find the middle terms in the expansion of i) $\left(3 - \frac{x^3}{6}\right)^7$ ii) $\left(\frac{x}{3} + 9y\right)^{11}$.	(U)
Department of Pre-university Education 35	

6. Find the term independent of x in the expansion of i) $\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^6$ ii) $\left(\sqrt[3]{x} + \frac{1}{2\sqrt[3]{x}}\right)^{18}$, x > 0. (U)

7. The coefficients of three consecutive terms in the expansion of $(1 + a)^n$ are in the ratio of 1:7:42. Find n. (A)

8. The sum of the coefficients of the first three terms in the expansion $of\left(x - \frac{3}{x^2}\right)^m$, $m \neq 0$, m being natural number, is 559. Find the term of the expansion containing x^3 . (A) 9. Show that the coefficient of the middle term in the expansion of

 $(x + 1)^{2n}$ is equal to the sum of the coefficients of two middle terms in the expansion of $(x + 1)^{2n-1}$.

(A)

10. Find n, if the ratio of fifth term from the beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{2} + \frac{1}{\frac{4}{3}}\right)^n$ is $\sqrt{6}$: 1. (S)

11. If the coefficients of a^{r-1} , a^r , and a^{r+1} in the expansion of $(1 + x)^n$ are in arithmetic progression, prove that $n^2 - n(4r+1) + 4r^2 - 2 = 0$. (A)

Department of Pre-university Education