
1

U N I T

1 ELECTROSTATICS

In this unit, student is exposed to
•	 Historical background of electricity and magnetism
•	 The role of electrostatic force in day – to-day life
•	 Coulomb’s law and superposition principle 
•	 The concept of electric field
•	 Calculation of electric field for various charge configurations
•	 Electrostatic potential and electrostatic potential energy
•	 Electric dipole and dipole moment
•	 Electric field and electrostatic potential for a dipole
•	 Electric flux 
•	 Gauss law and its various applications
•	 Electrostatic properties of conductors and dielectrics
•	 Polarisation
•	 Capacitors in series and parallel combinations
•	 Effect of a dielectric in a capacitor
•	 Distribution of charges in conductors, corona discharge
•	 Working of a Van de Graaff generator

Electricity is really just organized lightning 
– George Carlin

Learning Objectives

1.1

INTRODUCTION

Electromagnetism is one of the most 
important branches of physics. The 
technological developments of the modern 
21st century are primarily due to our 
understanding of electromagnetism. The 
forces we experience in everyday life are 
electromagnetic in nature except gravity. 

In standard XI, we studied about the 
gravitational force, tension, friction, normal 
force etc. Newton treated them to be 
independent of each other with each force 
being a separate natural force. But what is the 
origin of all these forces? It is now understood 
that except gravity, all forces which we 
experience in every day life (tension in the 
string, normal force from the surface, friction 
etc.) arise from electromagnetic forces within 
the atoms. Some examples are
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after rubbing with animal fur attracted 
small pieces of leaves and dust. The amber 
possessing this property is said to be 
‘charged’. It was initially thought that amber 
has this special property. Later people found 
that not only amber but even a glass rod 
rubbed with silk cloth, attracts pieces of 
papers. So glass rod also becomes ‘charged’ 
when rubbed with a suitable material.

Consider a charged rubber rod hanging 
from a thread as shown in Figure 1.1. Suppose 
another charged rubber rod is brought near 
the first rubber rod; the rods repel each other. 
Now if we bring a charged glass rod close to 
the charged rubber rod, they attract each 
other. At the same time, if a charged glass rod 
is brought near another charged glass rod, 
both the rods repel each other. 

From these observations, the following 
inferences are made
(i)	 The charging of rubber rod and that of 

glass rod are different from one another.
(ii)	 The charged rubber rod repels another 

charged rubber rod, which implies 
that ‘like charges repel each other’. We 
can also arrive at the same inference 
by observing that a charged glass rod 
repels another charged glass rod.

(iii)	The charged rubber rod attracts the 
charged glass rod, implying that the 
charge in the glass rod is not the same 
kind of charge present in the rubber. 
Thus unlike charges attract each other.

Therefore, two kinds of charges exist  
in the universe. In the 18th century, Benjamin 
Franklin called one type of charge as  
positive (+) and another type of charge as 
negative (–). Based on Franklin’s convention, 
rubber and amber rods are negatively 
charged while the glass rod is positively 
charged. If the net charge is zero in the 
object, it is said to be electrically neutral.

(i)	 When an object is pushed, the atoms 
in our hand interact with the atoms in 
the object and this interaction is basically 
electromagnetic in nature.

(ii)	 When we stand on Earth's surface, the 
gravitational force on us acts downwards 
and the normal force acts upward to counter 
balance the gravitational force. What is the 
origin of this normal force? 

	 It arises due to the electromagnetic 
interaction of atoms on the surface of the 
Earth with the atoms present in the feet of 
the person. Though, we are attracted by the 
gravitational force of the Earth, we stand on 
Earth only because of electromagnetic force 
of atoms. 

(iii)	 When an object is moved on a surface, 
static friction resists the motion of the 
object. This static friction arises due to 
electromagnetic interaction between the 
atoms present in the object and atoms on 
the surface. Kinetic friction also has similar 
origin.

From these examples, it is clear that 
understanding electromagnetism is very 
essential to understand the universe in 
a holistic manner. The basic principles 
of electromagnetism are dealt with 
in volume 1 at XII standard physics.  
This unit deals with the behaviour and other 
related phenomena of charges at rest. This 
branch of electricity which deals with 
stationary charges is called Electrostatics.

1.1.1  Historical background 
of electric charges

Two millenniums ago, Greeks noticed 
that amber (a solid, translucent material 
formed from the resin of a fossilized tree) 
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is another intrinsic and fundamental 
property of particles. The nature of charges 
is understood through various experiments 
performed in the 19th and 20th century. The 
SI unit of charge is coulomb.

(ii) Conservation of charges
Benjamin Franklin argued that when one 

object is rubbed with another object, charges 
get transferred from one to the other. Before 
rubbing, both objects are electrically neutral 
and rubbing simply transfers the charges 
from one object to the other. (For example, 
when a glass rod is rubbed against silk cloth, 
some negative charge are transferred from 
glass to silk. As a result, the glass rod is 
positively charged and silk cloth becomes 
negatively charged). 

From these observations, he concluded 
that charges are neither created or nor 
destroyed but can only be transferred 
from one object to other. This is called 
conservation of total charges and is one of the 
fundamental conservation laws in physics. It 
is stated more generally in the following way.

The total electric charge in the universe 
is constant and charge can neither be 
created nor be destroyed. In any physical 

Following the pioneering work of 
J. J. Thomson and E. Rutherford, in the late 
19th century and in the beginning of 20th 
century, we now understand that the atom 
is electrically neutral and is made up of 
the negatively charged electrons, positively 
charged protons, and neutrons which have 
zero charge. The material objects made 
up of atoms are neutral in general. When 
an object is rubbed with another object 
(for example rubber with silk cloth), some 
amount of charge is transferred from 
one object to another due to the friction 
between them and the object is then 
said to be electrically charged. Charging 
the objects through rubbing is called 
triboelectric charging.

1.1.2  Basic properties of 
charges

(i) Electric charge
Most objects in the universe are made 

up of atoms, which in turn are made up 
of protons, neutrons and electrons. These 
particles have mass, an inherent property 
of particles. Similarly, the electric charge 
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A negatively charged rubber
rod is attracted to a positively

charged glass rod

A negatively charged rubber
rod is repelled by another

negatively charged
rubber rod

Figure 1.1  (a) Unlike charges attract each other (b) Like charges repel each other
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1.2

COULOMB’S LAW

In the year 1786, Coulomb deduced 
the expression for the force between two 
stationary point charges in vacuum or 
free space. Consider two point charges q1 
and q2 at rest in vacuum, and separated 
by a distance of r as shown in Figure 1.2. 
According to Coulomb, the force on the 
point charge q2 exerted by another point 
charge q1 is 



F k
q q
r

r21
1 2

2 12=  � (1.2)

where r12  is the unit vector directed 
from charge q1 to charge q2 and k is the 
proportionality constant.

F21
�

+

+

q1

q2

r12

r

Figure 1.2  Coulomb force between two 
positive point charges

Important aspects of Coulomb’s law
(i)	 Coulomb's law states that the electrostatic 
force is directly proportional to the product of 
the magnitude of the two point charges and 
is inversely proportional to the square of the 
distance between the two point charges.

(ii)	 The force on the charge q2 exerted 
by the charge q1 always lies along the line 

process, the net change in charge will 
always be zero. 

(iii) Quantisation of charges
What is the smallest amount of charge 

that can be found in nature? Experiments 
show that the charge on an electron is −e 
and the charge on the proton is +e. Here, e 
denotes the fundamental unit of charge. The 
charge q on any object is equal to an integral 
multiple of this fundamental unit of charge e.

q = ne� (1.1)

Here n is any integer (0, ±1, ±2, ±3, 
±4………..). This is called quantisation of 
electric charge.

Robert Millikan in his famous experiment 
found that the value of e = 1.6 × 10–19 C. The 
charge of an electron is −1.6 × 10–19 C and 
the charge of the proton is +1.6 × 10–19 C.
When a glass rod is rubbed with silk cloth, 
the number of charges transferred is usually 
very large, typically of the order of 1010. So 
the charge quantisation is not appreciable 
at the macroscopic level. Hence the charges 
are treated to be continuous (not discrete). 
But at the microscopic level, quantisation of 
charge plays a vital role.

EXAMPLE 1.1

Calculate the number of electrons in one 
coulomb of negative charge.

Solution

According to the quantisation of charge,

q = ne

Here q = 1C.  So the number of electrons in 
1 coulomb of charge is

n q
e

C= =
×

= ×−

1

1 6 10
6 25 10

19

18

.
. electrons
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(vi)	 Coulomb’s law has same structure 
as Newton’s law of gravitation. Both are 
inversely proportional to the square of 
the distance between the particles. The 
electrostatic force is directly proportional 
to the product of the magnitude of  
two point charges and gravitational force 
is directly proportional to the product  
of two masses. But there are some 
important differences between these two 
laws. 

•	 The gravitational force between two 
masses is always attractive but Coulomb 
force between two charges can be attractive 
or repulsive, depending on the nature of 
charges. 

•	 The value of the gravitational constant 
G = 6.67 × 10–11 N m2 kg–2. The value  
of the constant k in Coulomb law is  
k = 9 × 109 N m2 C–2. Since k is much 
more greater than G, the electrostatic 
force is always greater in magnitude than 
gravitational force for smaller size objects.
•	 The gravitational force between two 
masses is independent of the medium. For 
example, if 1 kg of two masses are kept in 
air or inside water, the gravitational force 
between two masses remains the same. 
But the electrostatic force between the two 
charges depends on nature of the medium 
in which the two charges are kept at rest. 

(vii)	 The force on a charge q1 exerted by a 
point charge q2 is given by

�

�

F
q q
r

r12
1 2

2 21
1

4
=

πe


Here r21  is the unit vector from charge 
q2 to q1. 

But r r 21 12=− ,

joining the two charges. r12 is the unit vector 
pointing from charge q1 to q2 .It is shown 
in the Figure 1.2. Likewise, the force on the 
charge q1 exerted by q2 is along -r12  (i.e., in 
the direction opposite to r12 ).

(iii)	 In SI units, k
o

=
1

4πe
 and its value is  

9 × 109 N m2 C–2. Here eo is the permittivity of free 
space or vacuum and its value is 

eo k
= = × − − −1

4
8 85 10 12

π
. .C N m2 1 2

(iv)	 The magnitude of the electrostatic 
force between two charges each of one 
coulomb and separated by a distance of 1 m 
is calculated as follows:

�F = × × ×
= ×

9 10 1 1
1

9 10
9

2
9 N . 

This is a huge quantity, almost equivalent 
to the weight of one million ton. We 
never come across 1 coulomb of charge in 
practice. Most of the electrical phenomena 
in day-to-day life involve electrical charges 
of the order of µC (micro coulomb) or nC 
(nano coulomb).

(v)	 In SI units, Coulomb’s law in vacuum 

takes the form 
�

�

F
q q
r

r21
1 2

2 12
1

4
=

πe
 .  In a medium 

of permittivity e, the force between two 

point charges is given by 


F
q q
r

r21
1 2

2 12
1

4
=

πe
 .  

Since e>eo, the force between two point 
charges in a medium other than vacuum is 
always less than that in vacuum. We define 
the relative permittivity for a given medium 

as e
e

e
r =



. For vacuum or air, er = 1 and for 

all other media er> 1.
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Solution

y

y

y

x

x

x

Case (a)

Case (b)

    Case (c)

q1 q2

q1 q2

F12
�

F12
�

F12
�

F21
�

F21
�

F21
�

+

+

_

_
q1 q2

(a)	 q1 = +2 μC, q2 = +3 μC, and r = 1m. 
Both are positive charges. so the force will 
be repulsive.

Force experienced by the charge q2 due 
to q1 is given by

�

�

F
q q
r

r21
1 2

2 12
1

4
=

πe


Here r12  is the unit vector from q1 to 
q2. Since q2 is located on the right of q1,  
we have 

r i



12 =  and 
�

�

F i

i

21

9 6 6

2
9

3

9 10 2 10 3 10
1

1
4

9 10

54 10

=
× × × × ×

= ×

= ×

− −

−





πe

N

 so that

 

�

�

F i

i

21

9 6 6

2
9

3

9 10 2 10 3 10
1

1
4

9 10

54 10

=
× × × × ×

= ×

= ×

− −

−





πe

N

�

� �

F
q q
r

r
q q
r

r12
1 2

2 12
1 2

2 12
1

4
1

4
= −( )=− ( )

π πe e
 

(or) F F
�� ��

12 21=−

Therefore, the electrostatic force obeys 
Newton’s third law.

(viii)	 The expression for Coulomb force 
is true only for point charges. But the point 
charge is an ideal concept. However we 
can apply Coulomb’s law for two charged 
objects whose sizes are very much smaller 
than the distance between them. In fact, 
Coulomb discovered his law by considering 
the charged spheres in the torsion balance 
as point charges. The distance between the 
two charged spheres is much greater than the 
radii of the spheres.

EXAMPLE 1.2

Consider two point charges q1 and q2 at rest 
as shown in the figure.

y

x

1m

q1 q2

They are separated by a distance of 1m. 
Calculate the force experienced by the two 
charges for the following cases:

(a)	 q1 = +2 μC and q2 = +3 μC

(b)	 q1 = +2 μC and q2 = –3 μC

(c)	�  q1= +2 μC and q2 = –3 μC kept in 
water (er = 80)
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Therefore,



F i iW
21

3
354 10

80
0 675 10=−

×
=− ×

−
−N N .

Note that the strength of 
the force between the two 
charges in water is reduced by 

80 times compared to the force between 
the same two charges in vacuum.

When common salt (NaCl) is taken 
in water, the electrostatic force between 
Na and Cl ions is reduced due to the high 
relative permittivity of water (er = 80). 
This is the reason water acts as a good 
solvent.

Note

EXAMPLE 1.3

Two small-sized identical equally charged 
spheres, each having mass 1 g are hanging 
in equilibrium as shown in the figure. The 
length of each string is 10 cm and the angle 
θ is 30° with the vertical. Calculate the 
magnitude of the charge in each sphere.

(Take g = 10 ms−2)

L L

q

� �

a+q +

Solution

If the two spheres are neutral, the 
angle between them will be 0o when 

According to Newton’s third law, the force 
experienced by the charge q1 due to q2 is
 

F F12 21=− . Therefore, 



F i12
354 10=− × −
 N.

The directions of 
 

F F21 12and  are shown in 
the above figure in case (a)

(b)	 q1 = +2 μC, q2 = –3 μC, and r = 1m. 
They are unlike charges. So the force will 
be attractive.

Force experienced by the charge q2 due 
to q1 is given by



F r

i r

21

9 6 6

2 12

3
12

9 10 2 10 3 10

1
54 10

=
× × ×( )× − ×( )

=− ×

− −

−

�

�  �N (Using == i�)

The charge q2 will experience an 
attractive force towards q1 which is in the 
negative x direction.

According to Newton’s third law, the 
force experienced by the charge q1 due to 
q2 is  

 

F F12 21=− . Therefore,



F i12
354 10= × −
 N

The directions of 
 

F F21 12and  are shown 
in the figure (case (b)).

(c)	 If these two charges are kept inside 
the water, then the force experienced by q2 
due to q1



F
q q
r

rW
21

1 2
2 12

1
4

=
πe



since  e = er eo 

we have 
� �

�

F q q
r

r FW

r r
21

1 2
2 12

211
4

= =
πe e e



UNIT-1(XII-Physics_Vol-1).indd   7UNIT-1(XII-Physics_Vol-1).indd   7 23-12-2021   19:00:1423-12-2021   19:00:14



Unit 1   Electrostatics8

tanθ=
F

mg
e � (3)

Since they are equally charged, the 
magnitude of the electrostatic force is	

F k q
re =

2

2  where k =
1

4 0πe

Here r = 2a = 2Lsinθ. By substituting 
these values in equation (3),

tan
sin

θ
θ

=
( )

k q

mg L

2

2
2

� (4)

Rearranging the equation (4) to get q

q L
mg

k
= 2 sin

tan
θ

θ

   = × × ×
× ×
×

−

2 0 1 30 10 10 30
9 10

3

9. sin tan




q = 8.01 × 10–8 C = 80.1 nC

EXAMPLE 1.4

Calculate the electrostatic force and 
gravitational force between the proton and 
the electron in a hydrogen atom. They are 
separated by a distance of 5.3 × 10–11 m. 
The magnitude of charges on the electron 
and proton are 1.6 × 10–19 C. Mass of the 
electron is me = 9.1 × 10–31 kg and mass of 
proton is mp = 1.6 × 10–27 kg. 

Solution

The proton and the electron attract each 
other. The magnitude of the electrostatic 
force between these two particles is given by

F ke
re =

2

2 =
× × ×( )

×( )

−

−

9 10 1 6 10

5 3 10

9 19 2

11 2

.

.

    = ×
× −9 2 56

28 09
10 7.

.
= 8.2 × 10–8 N 

hanged vertically. Since they are positively 
charged spheres, there will be a repulsive 
force between them and they will be at 
equilibrium with each other at an angle 
of 30° with the vertical.  At equilibrium, 
each charge experiences zero net force in 
each direction. We can draw a free body 
diagram for one of the charged spheres and 
apply Newton’s second law for both vertical 
and horizontal directions.

The free body diagram is shown below.

mg�

Fe
�

�

T sinθ

T cosθ

θ

θ�

x

y

+

In the x-direction, the acceleration of 
the charged sphere is zero. 

Using Newton’s second law 


F matot =( ),  
we have

T i F iesinθ − = 0

T Fesinθ= � (1)

Here T is the tension acting on the 
charge due to the string and Fe is the 
electrostatic force between the two charges.

In the y-direction also, the net acceleration 
experienced by the charge is zero.

T j mg jcosθ − = 0

T mgcosθ= .� (2)

By dividing equation (1) by equation (2), 
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1.2.1  Superposition principle

Coulomb’s law explains the interaction 
between two point charges. If there are 
more than two charges, the force on one 
charge due to all the other charges needs 
to be calculated. Coulomb’s law alone does 
not give the answer. The superposition 
principle explains the interaction between 
multiple charges. 

According to this superposition 
principle, the total force acting on a given 
charge is equal to the vector sum of forces 
exerted on it by all the other charges. 

Consider a system of n charges, namely 
q1, q2, q3 ….qn. The force on q1 exerted by the 
charge q2



F k
q q
r

r12
1 2

21
2 21= 

where r21 is the unit vector from q2 to q1 
along the line joining the two charges and 
r21  is the distance between the charges q1 
and q2. The electrostatic force between two 
charges is not affected by the presence of 
other charges in the  neighbourhood.

The force on q1 exerted by the charge q3 is



F k
q q
r

r13
1 3

31
2 31= 

By continuing this, the total force acting 
on the charge q1 due to all other charges is 
given by

    

F F F F Ftot
n1 12 13 14 1= + + + ..........



F k q q
r

r
q q
r

r q q
r

rtot
1

1 2

21
2 21

1 3

31
2 31

1 4

41
2 41= + + +






   ...

.....+






q q
r

rn

n
n

1

1
2 1

� (1.3)

The gravitational force between the 
proton and the electron is attractive. 
The magnitude of the gravitational force 
between these particles is 

F
Gm m

rG
e p= 2

     =
× × × × ×

×( )

− − −

−

6 67 10 9 1 10 1 6 10

5 3 10

11 31 27

11 2

. . .

.

     = × −97 11
28 09

10 47.
.

= 3.4 × 10–47 N

The ratio of the two forces

F
F

e

G

=
×
×

−

−

8 2 10
3 4 10

8

47

.
.

 = 2.41 × 1039

Note that F Fe G»1039

The electrostatic force between a proton 
and an electron is enormously greater 
than the gravitational force between them. 
Thus the gravitational force is negligible 
when compared with the electrostatic force 
in many situations such as for small size 
objects and in the atomic domain. This is 
the reason why a charged comb attracts an 
uncharged piece of paper with 
greater force even though the 
piece of paper is attracted 
downward by the Earth. This 
is shown in Figure 1.3

Fe
�

FG
�

Figure 1.3  Electrostatic attraction 
between a comb and pieces of papers
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r21

r41     

�

�

�

�

F14      sin�

F12      sin�

F14      cos �

F12      cos �

x

y
q2

q1

q1

q4

q3
+ r31

+

+

+

F14

F13

�

F13

�

�

F14
�

�F12

�F12

+

The charges q2 and q4 are equi-
distant from q1. As a result the strengths 
(magnitude) of the forces 



F12  and 


F14  are 
the same even though their directions 
are different. Therefore the vectors 
representing these two forces are drawn 
with equal lengths. But the charge q3 is 
located farther compared to q2 and q4. 
Since the strength of the electrostatic force 
decreases as distance increases, the strength 
of the force 



F13  is lesser than that of forces 


F12  and 


F14 . Hence the vector representing 
the force 



F13  is drawn with smaller length 
compared to that for forces 



F12  and 


F14 .

From the figure, r r r21 41 312 2= = =m and m

The magnitudes of the forces are given by

F kq
r13

2

31
2= =

× × −9 10 10
4

9 12

Without the superposition 
principle, Coulomb’s law will 
be incomplete when applied 

to more than two charges. Both the 
superposition principle and Coulomb’s 
law form fundamental principles 
of electrostatics and explain all the 
phenomena in electrostatics. But they 
are not derivable from each other. 

Note

EXAMPLE 1.5

Consider four equal charges q1, q2, q3 and q4 

= q = +1 μC located at four different points 
on a circle of radius 1m, as shown in the 
figure. Calculate the total force acting on 
the charge q1 due to all the other charges. 

x

y
q2

q1

q4

q3

+

++

+

Solution

According to the superposition 
principle, the total electrostatic force on 
charge q1 is the vector sum of the forces 
due to the other charges,

   

F F F Ftot
1 12 13 14= + +

The following diagram shows the 
direction of each force on the charge q1.
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Unit 1   Electrostatics 11

1.3
ELECTRIC FIELD AND 
ELECTRIC FIELD LINES

1.3.1  Electric Field

The interaction between two charges is 
determined by Coulomb’s law. How does 
the interaction itself occur? Consider a point 
charge kept at a point in space. If another 
point charge is placed at some distance from 
the first point charge, it experiences either 
an attractive force or repulsive force. This is 
called ‘action at a distance’. But how does the 
second charge know about existence of the 
first charge which is located at some distance 
away from it? To answer this question, Michael 
Faraday introduced the concept of field.

According to Faraday, every charge in 
the universe creates an electric field in the 
surrounding space, and if another charge 
is brought into its field, it will interact 
with the electric field at that point and will 
experience a force. It may be recalled that 
the interaction of two masses is similarly 
explained using the concept of gravitational 
field (Refer unit 6, volume 2, XI physics). 
Both the electric and gravitational forces are 
non-contact forces, hence the field concept 
is required to explain action at a distance.

Consider a source point charge q located 
at a point in space. Another point charge qo 

(test charge) is placed at some point P which 
is at a distance r from the charge q. The 
electrostatic force experienced by the charge 
qo due to q is given by Coulomb’s law.

 


F
kqq

r
r

qq
r

r= =0
2

0

0
2

1
4

 

πe
 where  k =

1
4 0πe

 

The charge q creates an electric field in the 
surrounding space within which its effect can 
be felt by another charge. It is measured in 

F13 = 2.25 × 10–3 N

F kq
r

F12

2

21
2 14= = =

× × −9 10 10
2

9 12

      = 4.5 × 10–3 N

From the figure, the angle θ = 45o. In terms 
of the components, we have



F F i F j12 12 12= −cos sinθ θ 

      = × × − × ×− −4 5 10 1
2

4 5 10 1
2

3 3. .i j 



F F i i13 13
32 25 10= = × −

 . N


F F i F j14 14 14= +cos sinθ θ 

      = × × + × ×− −4 5 10 1
2

4 5 10 1
2

3 3. .i j 

Then the total force on q1 is


F F i F j F i

F i F j

tot
1 12 12 13

14 14

= −( )+
+ +( )

cos sin

cos sin

θ θ

θ θ

  

 



F F F F i

F F j

tot
1 12 13 14

12 14

= + +( )
+ − +( )

cos cos

sin sin

θ θ

θ θ





Since F12 = F14, the jth component is zero. 
Hence we have



F F F F itot
1 12 13 14= + +( )cos cosθ θ 

substituting the values in the above 
equation,

        = + +








× = +( )×− −4 5

2
2 25 4 5

2
10 4 5 2 2 25 103 3. . . . .i i 

       
= + +








× = +( )×− −4 5

2
2 25 4 5

2
10 4 5 2 2 25 103 3. . . . .i i 



F itot
1

38 61 10= × −.  N

The resultant force is along the positive x 
axis.
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Unit 1   Electrostatics12

 

F q E= 0 � (1.5)

This is Coulomb’s law in terms of electric 
field. This is shown in Figure 1.5

q0

q0

q0F
� E

�=

q0F
� E

�=

E
→

E
→

+
q

P

P

–q
r

r

_

q0

q

P

q0

qF
� =

E
→

+

+

If q is positive, 
the force on 

the test charge
q0 is directed 
away from q.

If q is negative , 
the force on 

the test charge
q0 is directed 

toward q. 

Figure 1.5  Coulomb’s law in terms of 
electric field 

(iii)	 The equation (1.4) implies that the 
electric field is independent of the test 
charge qo and it depends only on the source 
charge q. 
(iv)	 Since the electric field is a vector 
quantity, at every point in space, this field 
has unique direction and magnitude as 
shown in Figures 1.6(a) and (b). From 
equation (1.4), we can infer that as distance 
increases, the electric field decreases in 
magnitude.

Note that in Figures 1.6 (a) and (b) the 
length of the electric field vector is shown 
for three different points. The strength 
or magnitude of the electric field at point 
P is stronger than at the points Q and R 
because the point P is closer to the source 
charge.

terms of a quantity called electric field intensity 
or simply called electric field 



E,. The electric 
field at the point P at a distance r from the 
point charge q is defined as the force that 
would be experienced by a unit positive 
charge placed at that point P and is given by





E F
q

kq
r

r q
r

r= = =
0

2
0

2

1
4

 

πe
� (1.4)

Here r  is the unit vector pointing from q to 
the point of interest P. The electric field is a 
vector quantity and its SI unit is newton per 
coulomb (NC–1).
Important aspects of Electric field
(i)	 If the charge q is positive then the electric 
field points away from the source charge and 
if q is negative, the electric field points towards 
the source charge q. This is shown in the 
Figure 1.4.

E
→

E
→

+
q

P

P

q
r

r

_

q

P

E
→ P

For a positive 
source charge,

the electric
�eld at P points
radially outward

from q.

For a negative 
source charge,

the electric
�eld at P points
radially inward

toward q.

Figure 1.4  Electric field of positive and 
negative charges

(ii)	  If the electric field at a point P is 


E,
then the force experienced by the test charge 
qo placed at the point P is 
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Unit 1   Electrostatics 13

(vii)  There are two kinds of the electric 
field: uniform (constant) electric field 
and non-uniform electric field. Uniform 
electric field will have the same direction 
and constant magnitude at all points in 
space. Non-uniform electric field will 
have different directions or different 
magnitudes or both at different points 
in space. The electric field created by a 
point charge is basically a non uniform 
electric field. This non-uniformity arises, 
both in direction and magnitude, with 
the direction being radially outward (or 
inward) and the magnitude changes as 
distance increases. These are shown in 
Figure 1.7.

Uniform Electric �eld Non uniform electric 
�eld

Non uniform electric 
�eld

Non uniform
electric �eld

Figure 1.7  Uniform and non-uniform 
electric field

EXAMPLE 1.6

Calculate the electric field at points P, Q 
for the following two cases, as shown in the 
figure.

+

R

q

Q

P

EQ

P
–

R

q

Q

ER

�ER

�

�

EP

�

EP

�

EQ

�

(a)

(b)

Figure 1.6  (a) Electric field due to 
positive charge (b) Electric field due to 
negative charge

(v)	 In the definition of electric field, 
it is assumed that the test charge q0 is 
taken sufficiently small, so that bringing 
this test charge will not move the source 
charge. In other words, the test charge is 
made sufficiently small such that it will 
not modify the electric field of the source 
charge.
(vi)	 The expression (1.4) is valid only for 
point charges. For continuous and finite size 
charge distributions, integration techniques 
must be used (Refer Appendix A1.1). 
However, this expression can be used as an 
approximation for a finite-sized charge if 
the test point is very far away from the finite 
sized source charge. Note that we similarly 
treat the Earth as a point mass when we 
calculate the gravitational field of the Sun 
on the Earth (Refer unit 6, volume 2, XI 
physics).
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Unit 1   Electrostatics14

Case (b)

The magnitude of the electric field at 
point P



E kq
r

q
rP = = =

× × × −

2
0

2

9 61
4

9 10 2 10
4πe

       = 4.5 × 103 NC–1

Since the source charge is negative, the 
electric field points towards the charge. So 
the electric field at the point P is given by


E iP =− × −4 5 103.  NC 1


For the point Q, 


EQ =
× × × −9 10 2 10

36

9 6

                                        = 0.5 × 103 NC–1



E iQ = × −0 5 103.  NC 1�  

At the point Q the electric field is 
directed along the positive x-axis.

4m

2m

Q

y

xP+1�C
+

Ep

�

EQ

�

Q
2m6m

y

xP–2�C
–

Ep

�

EQ

�

(a)	� A positive point charge +1 µC is 
placed at the origin 

(b)	� A negative point charge –2 µC is 
placed at the origin

4m

2m

2m

Q

y

xP+1�C
+

Ep

�

Q
6m

y

xP–2�C
–

Solution

Case (a)
The magnitude of the electric field at 

point P is

E q
rP = =

× × ×

= ×

−

−

1
4

9 10 1 10
4

2 25 10
0

2

9 6

3

πe

. NC 1

Since the source charge is positive, the 
electric field points away from the charge. So 
the electric field at the point P is given by


E iP = × −2 25 103. NC 1

For the point Q


EQ =
× × ×

= ×
−

−9 10 1 10
16

0 56 10
9 6

3. NC 1

Hence 


E jQ = × −0 56 103 1.  NC
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Unit 1   Electrostatics 15

E2P E3P= E1P+ 

q2

q1

r1P
r2P

r3Pq3 P

+ 

E3P

�

E3P

�

Etot

�

Etot

�

E2P

�

E2P

�

� � � �

E1P

�

+

+

+

Figure 1.8  Superposition of Electric field

EXAMPLE 1.7

Consider the charge configuration as shown 
in the figure. Calculate the electric field at 
point A. If an electron is placed at points 
A, what is the acceleration experienced 
by this electron? (mass of the electron =  
9.1 × 10–31 kg and charge of electron =  
−1.6 × 10–19 C)

 = q1 +1µC

 = q2 +1µC

x

y

A

2mm

2mm

+

+

Solution

By using superposition principle, the 
net electric field at point A is
�

� �

E
q
r

r
q
r

rA
A

A
A

A= +
1

4
1

4
1

1
2 1

2

2
2 2π πe e

 

where r1A and r2A are the distances of point 
A from the two charges respectively. 



E j iA =
× × ×

×( )
( )+ × × ×

×( )
( )

−

−

−

−

9 10 1 10

2 10

9 10 1 10

2 10

9 6

3 2

9 6

3 2




1.3.2  Electric field due to the 
system of point charges

Suppose a number of point charges are 
distributed in space. To find the electric field 
at some point P due to this collection of point 
charges, superposition principle is used. The 
electric field at an arbitrary point due to a 
collection of point charges is simply equal to 
the vector sum of the electric fields created 
by the individual point charges. This is 
called superposition of electric fields.

Consider a collection of point charges 
q q n1 2 3, , ..........q q  located at various points in 
space. The total electric field at some point 
P due to all these n charges is given by

    

E E E E Etot n= + + + +1 2 3 ....... � (1.6)



E q
r

r q
r

r
q
r

rtot
P

P
P

P
P

P= + + +






1
4 0

1

1
2 1

2

2
2 2

3

3
2 3πe

   ...

....++






q
r

rn

nP
nP2


� (1.7)

where r P P P nP1 2 3, , ..........r r r  are the distance of 
the the charges q n1 2 3, , ..........q q q  from the 
point P respectively. Alsor r r rP P P nP   1 2 3, , ..........  are 
the corresponding unit vectors directed from 
q n1 2 3, , ..........q q q to P. Equation (1.7) can be  
re-written as, 

�

�

E
q
r

rtot
i

iP
iP

i

n

=








=

∑1
4 2

1πe
 � (1.8)

For example in Figure 1.8, the resultant 
electric field due to three point charges 
q q q1 2 3, ,  at point P is shown.

Note that the relative lengths of the electric 
field vectors for the charges depend on relative 
distances of the charges to the point P.
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Unit 1   Electrostatics16

field due to a charged sphere or a charged 
wire etc., it is very difficult to look at 
individual charges in these charged 
bodies. Therefore, it is assumed that 
charge is distributed continuously on the 
charged bodies and the discrete nature 
of charges is not considered here. The 
electric field due to such continuous 
charge distributions is found by invoking 
the method of calculus. (For further 
reading, refer Appendix A1.1).

EXAMPLE 1.8

A block of mass m carrying a positive charge 
q is placed on an insulated frictionless 
inclined plane as shown in the figure. A 
uniform electric field E is applied parallel 
to the inclined surface such that the block 
is at rest. Calculate the magnitude of the  
electric field E.

m

h L

q

�

E
�

Solution

Note: A similar problem is solved in 
XIth Physics volume I, unit 3 section 3.3.2. 
There are three forces that acts on the mass m:

(i)	� The downward gravitational force 
exerted by the Earth (mg)

(ii)	� The normal force exerted by the 
inclined surface (N)

(iii)	� The Coulomb force given by uniform 
electric field (qE) 

The free body diagram for the mass m 
is drawn below.

= × + × = × +( )2 25 10 2 25 10 2 25 109 9 9. . .j i i j   

The magnitude of electric field


EA = ×( ) + ×( )
= × × −

2 25 10 2 25 10

2 25 2 10

9 2 9 2

9 1

. .

. NC  

The direction of 


EA  is given by 




E
E

i j i jA

A

=
× +( )
× ×

=
+( )2 25 10

2 25 2 10 2

9

9

.

.
,

   

 which is 

the unit vector along OA as shown in the 
figure.

y

A+

+
 = q1 +1µC

 = q1 +1µC

xO
2mm

2mm

Eq1

�

Eq2

�

EA

�

aA
�

The acceleration experienced by an 
electron placed at point A is 



 

a F
m

qE
m

i j

A
A= =

=
− ×( )× ×( ) +( )

×

−

−

1 6 10 2 25 10

9 1 10

19 9

31

. .

.

 

     =− × +( ) −3 95 1020 1. i j  N kg  

The electron is accelerated in a direction 
exactly opposite to 



EA .

1.3.3  Electric field due 
to continuous charge 
distribution

The electric charge is quantized 
microscopically. The expressions (1.2), 
(1.3), (1.4) are applicable to only point 
charges. While dealing with the electric 
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Unit 1   Electrostatics 17

m,q

mgmg

m

θ

θ

x

y

mg cosθ mg sin θ 

Free body diagram

Forces acting on the mass m

NqE

mg

N
qE

mg

A convenient inertial coordinate system 
is located in the inclined surface as shown 
in the figure. The mass m has zero net 
acceleration both in x and y-direction.

Along x-direction, applying Newton’s 
second law, we have

mg i qEisinθ − = 0

    mg qEsinθ− = 0

                      E
mg

q
=

sinθ

Note that the magnitude of the electric 
field is directly proportional to the mass m 
and inversely proportional to the charge q. 
It implies that, if the mass is increased by 
keeping the charge constant, then a strong 
electric field is required to stop the object 
from sliding.  If the charge is increased by 

keeping the mass constant, then a weak 
electric field is sufficient to stop the mass 
from sliding down the plane.

The electric field also can be expressed 
in terms of height and the length of the 
inclined surface of the plane.

E mg h
qL

=

1.3.4  Electric field lines

Electric field vectors are visualized by 
the concept of electric field lines. They form 
a set of continuous lines which are the visual 
representation of the electric field in some 
region of space. The following rules are 
followed while drawing electric field lines 
for charges.
•	 The electric field lines start from 
a positive charge and end at negative 
charges or at infinity. For a positive point 
charge the electric field lines point radially 
outward and for a negative point charge, 
the electric field lines point radially 
inward. These are shown in Figure 1.9 (a) 
and (b).

(a)

(b)

-- -q_

q

For a positive point charge,
the �eld lines are directed 

radially outward.

For a negative point charge,
the �eld lines are directed 

radially inward.

+
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Unit 1   Electrostatics18

the electric field in that region. This is shown 
in Figure1.11

A B

+

Figure 1.11  Electric field has larger 
magnitude at surface A than B

Figure 1.11 shows electric field lines from 
a positive point charge. The magnitude of 
the electric field for a point charge decreases 

as the distance increases


E
r

∝










1
2 .  So the 

electric field has greater magnitude at the 
surface A than at B. Therefore, the number 
of lines crossing the surface A is greater than 
the number of lines crossing the surface B. 
Note that at surface B the electric field lines 
are farther apart compared to the electric 
field lines at the surface A.
•	 No two electric field lines intersect each 
other. If two lines cross at a point, then there 
will be two different electric field vectors at the 
same point, as shown in Figure 1.12. 

= Electric �eld
= Electric �eld lines

P

Figure 1.12  Two electric field lines never 
intersect each other

= Electric �eld
= Electric �eld lines

P

(a)

(b)

-- -q_

q

For a positive point charge,
the �eld lines are directed 

radially outward.

For a negative point charge,
the �eld lines are directed 

radially inward.

+

Figure 1.9  Electric field lines for isolated 
positive and negative charges

Note that for an isolated positive point 
charge the electric field line starts from 
the charge and ends only at infinity. For an 
isolated negative point charge the electric 
field lines start at infinity and end at the 
negative charge.  

•	 The electric field vector at a point in 
space is tangential to the electric field line at 
that point. This is shown in Figure 1.10

P

E�

_+

Figure 1.10  Electric field at a point P

•	 The electric field lines are denser (more 
closer) in a region where the electric field has 
larger magnitude and less dense in a region 
where the electric field is of smaller magnitude. 
In other words, the number of lines passing 
through a given surface area perpendicular to 
the lines is proportional to the magnitude of 

UNIT-1(XII-Physics_Vol-1).indd   18UNIT-1(XII-Physics_Vol-1).indd   18 23-12-2021   19:00:4223-12-2021   19:00:42



Unit 1   Electrostatics 19

the number of field lines drawn for –2q 
is twice in number than that for charge 
+q.

EXAMPLE 1.9

The following pictures depict electric field 
lines for various charge configurations.

A C

B

(b)

+ +

q1

q2

(a)

A C

B

(b)

+ +

q1

q2

(a)

(c)

_ q2q1 q3

(i)	 In figure (a) identify the signs of two 

charges and find the ratio q
q

1

2

(ii)	 In figure (b), calculate the ratio of two 
positive charges and identify the strength 
of the electric field at three points A, B, and 
C

(iii)	 Figure (c) represents the electric field 
lines for three charges. If q2 = –20 nC, then 
calculate the values of q1 and q3

As a consequence, if some charge is 
placed in the intersection point, then it 
has to move in two different directions 
at the same time, which is physically 
impossible. Hence, electric field lines do 
not intersect.
•	 The number of electric field lines that 
emanate from the positive charge or end at 
a negative charge is directly proportional to 
the magnitude of the charges.

For example in the Figure 1.13, the 
electric field lines are drawn for charges 
+q and –2q. Note that the number of 
field lines emanating from +q is 8 and 
the number of field lines ending at –2q 
is 16. Since the magnitude of the second 
charge is twice that of the first charge, 

Figure 1.13  Electric field lines and 
magnitude of the charge

+q

-2q

Electric �eld lines

Electric �eld lines

(a)

(b)

+

_
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Unit 1   Electrostatics20

not coincide. Such molecules behave as 
permanent dipoles. Examples: CO, water, 
ammonia, HCl etc. 

Consider two equal and opposite point 
charges (+q, –q) that are separated by a 
distance 2a as shown in Figure 1.14(a).
The electric dipole moment is defined as 


 p qr q r= + −+ −( ) � (1.9)

where r+  is the position vector of +q from 
the origin and r-  is the position vector of –q 
from the origin. Then, from Figure 1.14 (a),

+_

(b)

(a)

p

-q +qa a

y

x
_ +

�

Figure 1.14  (a) Electric dipole (b) 
Electric field lines for the electric dipole



p qai qa i qai= − −( )=  2 � (1.10)

The electric dipole moment vector lies along 
the line joining two charges and is directed 
from –q to +q. The SI unit of dipole moment is 
coulomb metre (Cm). The electric field lines for 
an electric dipole are shown in Figure 1.14 (b).
•	 For simplicity, the two charges are 
placed on the x-axis. Even if the two charges 
are placed on y or z-axis, dipole moment will 
point from –q to +q. 

•	 The magnitude of the electric dipole 
moment is equal to the product of the 
magnitude of one of the charges and the 
distance between them, 

Solution

(i)	 The electric field lines start at q2 and 
end at q1. In figure (a), q2 is positive and q1 

is negative. The number of lines starting 
from q2 is 18 and number of the lines ending 
at q1 is 6. So q2 has greater magnitude. The 

ratio of q
q

N
N

1

2

1

2

6
18

1
3

= = = . It implies that 

q q2 13=

(ii)	 In figure (b), the number of field 
lines emanating from both positive charges 
are equal (N=18). So the charges are equal. 
At point A, the electric field lines are 
denser compared to the lines at point B. 
So the electric field at point A is greater in 
magnitude compared to the field at point 
B. Further, no electric field line passes 
through C, which implies that the resultant 
electric field at C due to these two charges 
is zero.
(iii)	 In the figure (c), the electric field 
lines start at q1 and q3 and end at q2. This 
implies that q1 and q3 are positive charges. 
The ratio of the number of field lines is 

q
q

q
q

1

2

3

2

8
16

1
2

= = = , implying that q1and q3 

are half of the magnitude of q2. So q1 = q3 = 
+10 nC.

1.4
ELECTRIC DIPOLE AND 
ITS PROPERTIES

1.4.1  Electric dipole
Two equal and opposite charges 

separated by a small distance constitute 
an electric dipole. In many molecules, the 
centres of positive and negative charge do 
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From both cases (a) and (b), we can 
infer that in general the electric dipole 
moment depends on the choice of the 
origin and charge configuration. But 
for one special case, the electric dipole 
moment is independent of the origin. If the 
total charge is zero, then the electric dipole 
moment will be the same irrespective of 
the choice of the origin. It is because of this 
reason that the electric dipole moment of 
an electric dipole (total charge is zero) is 
always directed from –q to +q, independent 
of the choice of the origin.

Case (c) p q aj q a j qaj= − + − =−( ) ( )( ) .2 2 4     
Note that in this case p  is directed from 
–2q to +q.

Case (d) 


p qa i qaj qa j
qa i

=− − + + −
=

2
2

( ) ( )  



The water molecule (H2O) has this 
charge configuration. The water molecule 
has three atoms (two H atom and one O 
atom). The centres of positive (H) and 
negative (O) charges of a water molecule 
lie at different points, hence it possess 
permanent dipole moment. The electric 
dipole moment p  is directed from centre 
of negative charge to the centre of positive 
charge, as shown in the figure.

H

H

O
+

+

+

Centre of 
positive charge

Centre of 
negative
charge

–
p1
�

p2
�

p�

104�

H

H

+q

-2q

+q

O

+

+

–



p qa= 2 � (1.11)

•	 Though the electric dipole moment for 
two equal and opposite charges is defined, 
it is possible to define and calculate the 
electric dipole moment for a collection of 
point charges. The electric dipole moment 
for a collection of n point charges is given by


p q ri i

i

n

=
=
∑

1

� (1.12)

where ri  is the position vector of charge qi

from the origin.

EXAMPLE 1.10

Calculate the electric dipole moment for 
the following charge configurations.

+q +q
a a

y y

y y
(a)

+q +q
a

(b)

+q

a

(c)

-2q
+q

+q
aa
a

(d)

-2q

2a

x x

x x

+ + + +

+

+
+

_

_

Solution
Case (a) The position vector for the +q on 
the positive x-axis is aiand position vector 
for the +q charge the negative x axis is -ai .  
So the dipole moment is,



p q ai q ai= +( )( )+ +( ) −( )=  0

Case (b) In this case one charge is placed 
at the origin, so its position vector is zero.  
Hence only the second charge +q with 
position vector aicontributes to the dipole 
moment, which is p qai= .
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

E q
r a r a

ptot =
−( )

−
+( )











4
1 1

0
2 2πe

 � (1.15)



E q ra

r a
ptot =

−( )













1
4

4

0
2 2 2πe

 � (1.16)

Note that the total electric field is along 


E+ , since +q  is closer to C than –q. The 
direction of 



Etot  is shown in Figure 1.16.

A a a B Etot

-q +q C

r

O
_ +

�

Figure 1.16  Total electric field of the 
dipole on the axial line

If the point C is very far away from the 
dipole (r >> a). Then under this limit the 
term r a r2 2

2
4−( ) ≈ . Substituting this into 

equation (1.16), we get


E aq
r

ptot =










1
4

4

0
3πe
 (r >> a)

� since 2aq p p =






E p
rtot =

1
4

2

0
3πe

 (r >> a)� (1.17)

If the point C is chosen on the left side 
of the dipole, the total electric field is still 
in the direction of p . We infer this result 
by examining the electric field lines of the 
dipole shown in Figure 1.14(b).

Case (ii) Electric field due to an electric 
dipole at a point on the equatorial plane 

Consider a point C at a distance r 
from the midpoint O of the dipole on the 
equatorial plane as shown in Figure 1.17.
Since the point C is equi-distant from +q and 
–q, the magnitude of the electric fields at C 
due to +q and –q are the same. The direction 

1.4.2  Electric field due to a 
dipole

Case (i) Electric field due to an electric 
dipole at points on the axial line

Consider an electric dipole placed on the 
x-axis as shown in Figure 1.15. A point C is 
located at a distance of r from the midpoint 
O of the dipole on the axial line.

A
a a

B E–
E+

-q +q C

r

O
_ +

→ →p→ Axial line

Figure 1.15  Electric field of the dipole 
along the axial line

The electric field at a point C due to +q is 


E q
r a

+ =
−( )

1
4 0

2πe
 along BC 

Since the electric dipole moment vector 


p   
is from –q to +q and is directed along BC, 
the above equation is rewritten as



E q
r a

p+ =
−( )

1
4 0

2πe
 � (1.13)

where p  is the electric dipole moment unit 
vector from –q to +q.

The electric field at a point C due to –q is 


E q
r a

p− =−
+( )

1
4 0

2πe
� (1.14)

Since +q is located closer to the point C than 
–q, 



E+  is stronger than 


E- . Therefore, the 
length of the 



E+  vector is drawn larger than 
that of 



E-  vector. 
The total electric field at point C is 

calculated using the superposition principle 
of the electric field.

  

E E Etot = ++ −

       =
−( )

−
+( )

1
4

1
40

2
0

2π πe e

q
r a

p q
r a

p 
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



E p

r a
tot =−

+( )
1

4 0 2 2
3
2πe

since p qap= 2 � (1.20)

At very large distances (r  >>  a), the 
equation (1.20) becomes

� �

�

E p
r

r atot =− >>
1

4 3πe
( ) � (1.21)

Important inferences
(i)	 From equations (1.17) and (1.21), it 
is inferred that for very large distances, the 
magnitude of the electric field at point on 
the dipole axis is twice the magnitude of the 
electric field at the point at the same distance 
on the equatorial plane. The direction of the 
electric field at points on the dipole axis is 
directed along the direction of dipole moment 
vector p  but at points on the equatorial plane 
it is directed opposite to the dipole moment 
vector, that is along -p .
(ii)	 At very large distances, the electric 

field due to a dipole varies as 1
3r

. Note 

that for a point charge, the electric field 

of 


E+  is along BC and the direction of 


E- is 
along CA. 



E+  and 


E-  can be resolved into 
two components; one component parallel to 
the dipole axis and the other perpendicular 
to it. Since perpendicular components 


E+ sinθ  and 


E- sinθ  are eqaul in magnitude 
and oppositely directed, they cancel each 
other. The magnitude of the total electric 
field at point C is the sum of the parallel 
components of 



E+ and 


E- and its direction 
is along -p  as shown in the Figure 1.17.

  

E E p E ptot =− −+ −cos cosθ θ
� (1.18)

The magnitudes 


E+ and 


E- are the same 
and are given by

 

E E q
r a+ −= =
+( )

1
4 0

2 2πe
� (1.19)

By substituting equation (1.19) into 
equation (1.18), we get



E q
r a

ptot =− +( )
1

4
2

0
2 2π

θ
e

cos


       =−
+( )

1
4

2

0 2 2
3
2πe

qa

r a
p

since cosθ=
+

a

r a2 2

Figure 1.17  Electric field due to a dipole at a point on the equatorial plane

E+  sinθ

E+  cosθ

–p

E–  sinθ

E–  cosθ

C

A B

a aO

θθθ

θ

-q +q

r

+–

Etot
→

E+
→

→

E+
→

E–
→

E–
→

→

→

→

→

Equatorial plane
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� � ��� � � ��� �
τ= × −( )+ ×OA qE OB qE � (1.22)

Using right-hand corkscrew rule (Refer 
XI, volume 1, unit 2), it is found that total 
torque is perpendicular to the plane of the 
paper and is directed into it.

The magnitude of the total torque 
τ θ θ= −( ) +OA qE OB qE
� ��� � � ��� �

sin sin

τ θ= ⋅qE a2 sin � (1.23)

where θ is the angle made by p  with 


E . 
Since p = 2aq, the torque is written in terms 
of the vector product as

 



τ= ×p E � (1.24)

The magnitude of this torque is 
τ θ= pE sin  and is maximum when θ = 90 .

This torque tends to rotate the dipole 
and align it with the electric field 



E . Once 


p is aligned with 


E , the total torque on the 
dipole becomes zero.

If the electric field is not uniform, then 
the force experienced by +q is different from 
that experienced by –q. In addition to the 
torque, there will be net force acting on the 
dipole. This is shown in Figure 1.19.

varies as 1
2r

.  This implies that the electric 

field due to a dipole at very large distances 
goes to zero faster than the electric field 
due to a point charge. The reason for this 
behavior is that at very large distance, the 
two charges appear to be close to each 
other and neutralize each other.
(iii)	The equations (1.17) and (1.21) 
are valid only at very large distances 
(r>>a). Suppose the distance  
2a approaches zero and q approaches 
infinity such that the product of  
2aq = p is finite, then the dipole is called 
a point dipole. For such point dipoles, 
equations (1.17) and (1.21) are exact and 
hold true for any r.

1.4.3  Torque experienced 
by an electric dipole in the 
uniform electric field

Consider an electric dipole of dipole 
moment p  placed in a uniform electric 
field 



E  whose field lines are equally 
spaced and point in the same direction. 
The charge +q will experience a force q



E  
in the direction of the field and charge –q 
will experience a force –q



E  in a direction 
opposite to the field. Since the external 
field 



E  is uniform, the total force acting 
on the dipole is zero. These two forces 
acting at different points will constitute 
a couple and the dipole experience a 
torque as shown in Figure 1.18. This 
torque tends to rotate the dipole. (Note 
that electric field lines of a uniform field 
are equally spaced and point in the same 
direction).
The total torque on the dipole about the 
point O 

E
B+q

-q

2a sinθ

-qE

a

a

Torque is into the paper
A

θ

θ

O

+

→

qE→

→

–

Figure 1.18  Torque on dipole
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1.5
ELECTROSTATIC 
POTENTIAL AND 
POTENTIAL ENERGY

Introduction
In mechanics, potential energy is 

defined for conservative forces. Since 
gravitational force is a conservative 
force, its gravitational potential energy 
is defined in XI standard physics (Unit 
6). Since Coulomb force is an inverse-
square-law force, its also a conservative 
force like gravitational force. Therefore, 
we can define potential energy for charge 
configurations.

1.5.1  Electrostatic Potential 
energy and Electrostatic 
potential

Consider a positive charge q kept fixed 
at the origin which produces an electric 
field 



E  around it. A positive test charge q′ is 
brought from point R to point P against the 
repulsive force between q and q′ as shown in 
Figure 1.20. Work must be done to overcome 
the repulsion between the charges and this 
work done is stored as potential energy of 
the system. 

Net torque, Net force

Non uniform E

O

+q

-q

qE1→

qE2→

→

+

––

Figure 1.19  The dipole in a non-uniform 
electric field

EXAMPLE 1.11

A sample of HCl gas is placed in  
a uniform electric field of magnitude  
3 × 104 N C–1. The dipole moment of each 
HCl molecule is 3.4 × 10–30 Cm. Calculate 
the maximum torque experienced by 
each HCl molecule.

Solution
The maximum torque experienced 

by the dipole is when it is aligned 
perpendicular to the applied field.

τmax sin .= = × × ×−pE 90 3 4 10 3 1030 4

τmax .= × −10 2 10 26 Nm

Microwave oven works on the principle of 
torque acting on an electric dipole. The food 
we consume has water molecules which are 
permanent electric dipoles. Oven produces 

microwaves that are oscillating electromagnetic fields and 
produce torque on the water molecules. Due to this torque 
on each water molecule, the molecules rotate very fast and 
produce thermal energy.  Thus, heat generated is used to 
heat the food.
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The above equation (1.29) is independent 

of q′. The quantity ∆U
q

E dr
R

P

′
=− ⋅∫



  is called 

electric potential difference between P and 
R and is denoted as VP – VR = ∆V. 

In otherwords, the electric potential 
difference is defined as the work done by an 
external force to bring unit positive charge 
from point R to point P.

V V V E drP R
R

P

− = = − ⋅∫∆


 � (1.30)

The electric potential energy difference 
can be written as ∆U = q′ ∆V. Physically 
potential difference between two points 
is a meaningful quantity.  The value of 
the potential itself at one point is not 
meaningful. Therefore the point R is taken 
to infinity and the potential at infinity is 
considered as zero V∞ =( )0 . 

Then the electric potential at a point P is 
equal to the work done by an external force 
to bring a unit positive charge with constant 
velocity from infinity to the point P in 
the region of the external electric field 



E .  
Mathematically this is written as

V E drP

P

=− ⋅
∞
∫




� (1.31)

Important points
1.	 Electric potential at point P depends 

only on the electric field which is due 
to the source charge q and not on the 
test charge q′. Unit positive charge is 
brought from infinity to the point P 
with constant velocity because external 
agency should not impart any kinetic 
energy to the test charge. 

q

q´

P

R

+

+

Figure 1.20  Work done is equal to 
potential energy

The test charge q′ is brought from R to 
P with constant velocity which means that 
external force used to bring the test charge 
q′ from R to P must be equal and opposite 
to the coulomb force 

 

F Fext coulomb=−( ).  The 
work done is

W F drext
R

P

= ⋅∫


 � (1.25)

Since coulomb force is conservative, 
work done is independent of the path and 
it depends only on the initial and final 
positions of the test charge. If potential 
energy associated with q′ at P is UP and that 
at R is UR, then difference in potential energy 
is defined as the work done to bring a test 
charge q′ from point R to P and is given as
UP – UR = W = ΔU

∆U F drext
R

P

= ⋅∫


 � (1.26)

Since 
  

F F q Eext coulomb=− =− ′ � (1.27)

∆U q E dr q E dr
R

P

R

P

= − ′( )⋅ = ′ −( )⋅∫ ∫






  
� (1.28)

The potential energy difference per unit 
charge is given by

∆U
q

q E dr

q
E drR

P

R

P

′
=

′ −( )⋅

′
=− ⋅

∫
∫







 � (1.29) 
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V q
r

r drr q
r

dr
r r

=− ⋅ =−
∞ ∞
∫ ∫

1
4

1
42 2π πe e

 

 

After the integration,

V q
r

q
r

r

=− −









=

∞

1
4

1 1
4π πe e

 

Hence the electric potential due to a 
point charge q at a distance r is

V q
r

=
1

4 0πe
� (1.33)

Important points
(i)	 If the source charge q is positive, V > 0. 
If q is negative, then V is negative and equal 

to V q
r

=−
1

4 0πe

(ii)	 From expression (1.33), it is clear 
that the potential due to positive charge 
decreases as the distance increases, but for 
a negative charge the potential increases 
as the distance is increased. At infinity 
( )r =∞  electrostatic potential is zero  
(V = 0).

In the case of gravitational force, 
mass moves from a point of higher 
gravitational potential to a point of lower 

2.	 From equation (1.29), the unit of 
electric potential is Joule per coulomb. 
The practical unit is volt (V) named 
after Alessandro Volta (1745-1827) 
who invented the electrical battery. The 
potential difference between two points 
is expressed in terms of volt. 

The description of motion of 
objects using the concept of 
potential or potential energy is 

simpler than that using the concept of field.

Note

1.5.2  Electric potential due 
to a point charge

Consider a positive charge q kept fixed at 
the origin. Let P be a point at distance r from 
the charge q. This is shown in Figure 1.21.

q

P

+
r

Figure 1.21  Electrostatic potential at a 
point P

The electric potential at the point P is

V E dr E dr
r r

= −( )⋅ =− ⋅
∞ ∞
∫ ∫









� (1.32)

Electric field due to positive point charge 
q is



E q
r

r=
1

4 0
2πe


V q
r

r dr
r

=
−

∞
∫

1
4 0

2πe
. 

The infinitesimal displacement vector, 
dr drr

= and using r r . ,=1  we have

Figure 1.22  Motion of masses in terms of 
gravitational potential

Earth

Higher gravitational
potential

Lower gravitational
potential

Mass moves from higher
gravitational potential to lower

gravitational potential

O
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r1

r2

r3
rn

q1

q2

q3

qn

P

Figure 1.24  Electrostatic potential due to 
collection of charges

EXAMPLE 1.12

(a)	 Calculate the electric potential at 
points P and Q as shown in the figure 
below. 

(b)	 Suppose the charge +9 µC is replaced 
by –9 µC find the electrostatic potentials at 
points P and Q

gravitational potential (Figure 1.22). 
Similarly a positive charge moves from a 
point of higher electrostatic potential to 
a point of lower electrostatic potential. 
However a negative charge moves from 
lower electrostatic potential to higher 
electrostatic potential. This comparison 
is shown in Figure 1.23.

(iii)	  The electric potential at a point P due 
to a collection of charges  q1,q2,q3…..qn is 
equal to sum of the electric potentials due to 
individual charges.

V kq
r

kq
r

kq
r

kq
r

q
r

tot

n

n

i

i
i

n

= + + +

+ =
=∑

1

1

2

2

3

3

0
1

1
4

...

....
πe

� (1.34)

where r1,r2,r3…….rn are the distances  
of q1, q2, q3 ….. qn respectively from P  
(Figure 1.24).

+q P Q R
(a) Positive charge +q´ moves from
higher electric potential to lower 
electric potential (P       Q       R)

+q P Q R –q

+q´

–q´–q´

+q´

P Q R

-q P Q R
(c) Positive charge +q´ moves from
       higher electric potential to lower 
       electric potential  (R       Q       P)

(b) negative charge –q´moves from lower
electric potential to higher electric potential

(R       Q       P)

(d) negative charge –q´ moves from lower
electric potential to higher electric potential

(P       Q       R)

+ –

–– –

VP VQ VR> > VP VQ VR< <

VP VQ VR< <VP VQ VR> >

+ +

+

Figure 1.23   Motion of charges in terms of electric potential
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(c)	 The electric potential V at a 
point Q due to some charge is defined 
as the work done by an external force 
to bring a unit positive charge from 
infinity to Q. So to bring the q amount 
of charge from infinity to the point Q,  
work done is given as follows.

  W = qV 

WQ = × × × = ×− −2 10 5 06 10 10 12 106 3 3. . .J

EXAMPLE 1.13

Consider a point charge +q placed at 
the origin and another point charge -2q  
placed at a distance of 9 m from the charge 
+q. Determine the point between the two 
charges at which electric potential is zero.

Solution

According to the superposition principle, 
the total electric potential at a point is 
equal to the sum of the potentials due to 
each charge at that point.

Consider the point at which the total 
potential zero is located at a distance x 
from the charge +q as shown in the figure. 

+q -2qP

9m

9-xx+ _

Since the total electric potential at P is zero,

V q
x

q
xtot = −
−( )











=

1
4

2
9

0
πe



 (or)

q
x

q
x

=
−( )
2

9
 (or)

1 2
9x x

=
−( )

Hence, x = 3 m 

+9µC
10m P

6m Q+

(c)	 Calculate the work done to bring a 
test charge +2 µC from infinity to the point 
Q. Assume the charge +9 µC is held fixed at 
origin and +2 µC is brought from infinity 
to P.

Solution

(a)	� Electric potential at point P is given by

V q
rP

P

= =
× × ×

= ×
−1

4
9 10 9 10

10
8 1 10

9 6
3

πe


. V

Electric potential at point Q is given by

V q
rQ

Q

= =
× × ×

= ×
−1

4
9 10 9 10

16
5 06 10

9 6
3

πe


. V

Note that the electric potential at point 
Q is less than the electric potential at point 
P. If we put a positive charge at P, it moves 
from P to Q. However if we place a negative 
charge at P it will move towards the charge 
+9 µC.

The potential difference between the 
points P and Q is given by

∆V V VP Q= − =+ ×3 04 103. V

(b)	 Suppose we replace the charge 
+9 µC by –9 µC, then the corresponding 
potentials at the points P and Q are,

V VP Q=− × =− ×8 1 10 5 06 103 3. , .V V

Note that in this case electric potential at 
the point Q is higher than at point P.

The potential difference between the 
points P and Q is given by

∆V V VP Q= − =− ×3 04 103. V

UNIT-1(XII-Physics_Vol-1).indd   29UNIT-1(XII-Physics_Vol-1).indd   29 23-12-2021   19:01:0723-12-2021   19:01:07



Unit 1   Electrostatics30

By the cosine law for triangle BOP

r r a ra1
2 2 2 2= + − cosθ

r r a
r

a
r1

2 2
2

21 2
= + −










cosθ

Since the point P is very far from the 

dipole (r>>a). As a result the term a
r

2

2  is 

very small and can be neglected. Therefore

       r r a
r1

2 2 1 2= −










cosθ

(or) r r a
r1

1
2

1 2
= −








cosθ

	  
1 1 1 2

1

1
2

r r
a
r

= −










−

cosθ

Since a
r
<<1 , we can use binomial theorem 

and retain the terms up to first order 

1 1 1
1r r

a
r

= +








cosθ � (1.36)

Similarly applying the cosine law for triangle 
AOP, 

r r a ra2
2 2 2 2 180= + − −( )cos θ

since cos cos180−( )=−θ θ  we get

r r a ra2
2 2 2 2= + + cosθ

Neglecting the term a
r

2

2  (because r>>a)

r r a
r2

2 2 1 2
= +










cosθ

1.5.3  Electrostatic potential 
at a point due to an electric 
dipole

Consider two equal and opposite charges 
separated by a small distance 2a as shown 
in Figure 1.25. The point P is located at a 
distance r from the midpoint of the dipole.  
Let θ be the angle between the line OP and 
dipole axis AB.

A B

r1

r2

180-θ
θ

r

P

+q-q
a a

O
+_

p→

Figure 1.25  Potential due to electric dipole

Let r1 be the distance of point P from +q 
and r2 be the distance of point P from –q. 

Potential at P due to charge +q = 1
4 1πe



q
r

Potential at P due to charge –q =− 1
4 2πe



q
r

Total potential at the point P

V q
r r

= −










1
4

1 1

1 2πe


� (1.35)

Suppose if the point P is far away from 
the dipole, such that r>>a, then equation 
(1.35) can be expressed in terms of r.
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V p
r

=
1

4 2πe


� (1.39)

Case (ii) If the point P lies on the axial line 
of the dipole on the side of –q, then θ = 180o. 
Then

V p
r

=−
1

4 2πe


� (1.40)

Case (iii) If the point P lies on the equatorial 
line of the dipole, then θ = 90o. Hence

V = 0� (1.41)

The potential due to an electric 
dipole falls as  and the 
potential due to a single point 

charge falls as . Thus the potential due 
to the dipole falls faster than that due to a 
monopole (point charge). As the distance 
increases from electric dipole, the effects of 
positive and negative charges nullify each 
other

Note

1.5.4  Equi-potential Surface

Consider a point charge q located at some 
point in space and an imaginary sphere of 
radius r is chosen by keeping the charge q 
at its centre (Figure 1.26(a)). The electric 
potential at all points on the surface of the 
given sphere is the same. Such a surface is 
called an equipotential surface. 

An equipotential surface is a surface 
on which all the points are at the same electric 
potential. For a point charge the equipotential 
surfaces are concentric spherical surfaces 
as shown in Figure 1.26(b). Each spherical 
surface is an equipotential surface but the 

r r a
r2

1
2

1 2
= +










cosθ

Using Binomial theorem, we get

1 1 1
2r r

a
r

= −










cosθ � (1.37)

Substituting equation (1.37) and (1.36) 
in equation (1.35), 

 

V q
r

a
r r

a
r

= +








− −


















1

4
1 1 1 1

π
θ θ

e


cos cos


 V q
r

a
r

a
r

= + − +


















4

1 1 1
π

θ θ
e


cos cos

 V aq
r

=
1

4
2

2π
θ

e


cos

But the electric dipole moment p = 2qa 
and we get,

V p
r

=










1
4 0

2π
θ

e

cos

Now we can write p cosθ = p r× ,  where r  
is the unit vector from the point O to point 
P. Hence the electric potential at a point P 
due to an electric dipole is given by

V p r
r

=
⋅1

4 2πe�

�
  (r>>a)� (1.38)

Equation (1.38) is valid for distances 
very large compared to the size of the dipole. 
But for a point dipole, the equation (1.38) is 
valid for any distance.

Special cases
Case (i) If the point P lies on the axial line 
of the dipole on the side of +q, then  θ = 0. 
Then the electric potential becomes
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Properties of equipotential surfaces 
(i)	 The work done to move a charge 
q between any two points A and B,  
W = q (VB – VA). If the points A and B lie on 
the same equipotential surface, work done is 
zero because VA = VB.
(ii)	 The electric field is normal to an 
equipotential surface. If it is not normal, 
then there is a component of the field 
parallel to the surface. Then work must 
be done to move a charge between two 
points on the same surface. This is a 
contradiction. Therefore the electric field 
must always be normal to equipotential 
surface.	

1.5.5  Relation between 
electric field and potential

Consider a positive charge q kept fixed at 
the origin. To move a unit positive charge by a 
small distance dx towards q in the electric field 
E, the work done is given by dW = −E dx. The 
minus sign implies that work is done against 
the electric field. This work done is equal to 
electric potential difference. Therefore, 

	    dW = dV. 
        (or) dV = −E dx� (1.42)

Hence E dV
dx

=− � (1.43)

The electric field is the negative gradient of 
the electric potential. In vector form,



E V
x

i V
y

j V
z

k=−
∂
∂

+
∂
∂

+
∂
∂














 � (1.44)

EXAMPLE 1.14

The following figure represents the electric 
potential as a function of x – coordinate. 
Plot the corresponding electric field as a 
function of x.

Figure 1.26  Equipotential surface of 
point Charge

1
2
3

q

E

(b)

�
E�

E�E�

A
B

C

D

E
F

G

H

I

J

q

All points in the surface of sphere 
are at same potential

r

(a)

Figure 1.27  Equipotential surface for 
uniform electric field

Equipotential surfaces

E� E�

value of the potential is different for different 
spherical surfaces.

For a uniform electric field, the 
equipotential surfaces form a set of planes 
normal to the electric field 



E . This is shown 
in the Figure 1.27.
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1.5.6  Electrostatic potential 
energy for collection of point 
charges

The electric potential at a point at a 
distance r from point charge q1 is given by

V
q
r

=
1

4
1

πe


This potential V is the work done to 
bring a unit positive charge from infinity to 
the point. Now if the charge q2 is brought 
from infinity to that point at a distance r 
from q1, the work done is the product of q2 
and the electric potential at that point. Thus 
we have

W q V= 2

This work done is stored as the 
electrostatic potential energy U of a system 
of charges q1 and q2 separated by a distance 
r. Thus we have

U q V
q q

r
= =2

1 21
4πe



� (1.45)

The electrostatic potential energy 
depends only on the distance between the 
two point charges. In fact, the expression 
(1.45) is derived by assuming that q1 is fixed 
and q2 is brought from infinity. The equation 
(1.45) holds true when q2 is fixed and q1 is 
brought from infinity or both q1 and q2 are 
simultaneously brought from infinity to a 
distance r between them.

Three charges are arranged in the following 
configuration as shown in Figure 1.28.

To calculate the total electrostatic 
potential energy, we use the following 
procedure. We bring all the charges  
one by one and arrange them according  
to the configuration as shown in Figure 
1.28.

0 1 2 4 5 x(cm)

V(volts)

5

10

15

20

25

30

3

Solution

In the given problem, since the potential 

depends only on x, we can use 


E dV
dx

i=−  

(the other two terms ¶
¶

¶
¶

V
y

V
z

and are zero)

From 0 to 1 cm, the slope is constant and 

so dV
dx
= −25 1Vcm .  So 



E i=− −25 1Vcm 

From 1 to 4 cm, the potential is constant,  

V = 25 V. It implies that dV
dx

= 0.  So 


E = 0

From 4 to 5 cm, the slope dV
dx
=− −25 1Vcm .  

So 


E i=+ −25 1Vcm  .

The plot of electric field for the various 
points along the x axis is given below.

0 1 2 4 5 x(cm)

-25

-12.5

12.5

25

37.5

3

-37.5

E(Vcm-1)
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(iv)	 Adding equations (1.46) and (1.47), 
the total electrostatic potential energy 
for the system of three charges q1, q2 and  
q3 is U = UI + UII

U
q q
r

q q
r

q q
r

= + +










1
4

1 2

12

1 3

13

2 3

23πe


� (1.48)

Note that this stored potential energy 
U is equal to the total external work done 
to assemble the three charges at the given 
locations. The expression (1.48) is same if 
the charges are brought to their positions 
in any other order. Since the Coulomb force 
is a conservative force, the electrostatic 
potential energy is independent of the 
manner in which the configuration of 
charges is arrived at.

EXAMPLE 1.15

Four charges are arranged at the corners of 
the square PQRS of side a as shown in the 
figure.(a) Find the work required to assemble 
these charges in the given configuration. (b) 
Suppose a charge q′ is brought to the centre 
of the square, by keeping the four charges 
fixed at the corners, how much extra work 
is required for this?

+q

+q

-q

-q

RS

P Q

Oa

a

a

a
q́

+

+

–

–

Solution

(a)	 The work done to arrange the charges 
in the corners of the square is independent 

r23
r13

r12

q3

q1 q2

A B

C 

Figure 1.28  Electrostatic potential 
energy for collection of point charges

(i)	 Bringing a charge q1 from infinity to 
the point A requires no work, because there 
are no other charges already present in the 
vicinity of charge q1. 

(ii)	 To bring the second charge q2 to the 
point B, work must be done against the 
electric field created by the charge q1. So the 
work done on the charge q2 is W = q2 V1B. 
Here V1B is the electrostatic potential due to 
the charge q1 at point B.

U q q
rI =

1
4

1 2

12πe


� (1.46)

Note that the expression is same when q2 
is brought first and then q1 later.

(iii)	Similarly to bring the charge q3 to 
the point C, work has to be done against 
the total electric field due to both charges 
q1 and q2. So the work done to bring  
the charge q3 is = q3 (V1C + V2C). Here 
V1C is the electrostatic potential due to  
charge q1 at point C and V2C is the 
electrostatic potential due to charge q2 at 
point C. 

The electrostatic potential energy is

U
q q
r

q q
rII = +











1
4

1 3

13

2 3

23πe


� (1.47)
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Hence no work is required to bring 
any charge to the point O. Physically this 
implies that if any charge q′ when brought 
close to O, then it moves to the point O 
without any external force.

1.5.7  Electrostatic potential 
energy of a dipole in a 
uniform electric field

Consider a dipole  placed in the uniform 
electric field 



E  as shown in the Figure 1.29.
A dipole experiences a torque when kept 
in an uniform electric field 



E . This torque 
rotates the dipole to align it with the 
direction of the electric field.  To rotate the 
dipole (at constant angular velocity) from 
its initial angle θ′ to another angle θ against 
the torque exerted by the electric field, an 
equal and opposite external torque must be 
applied on the dipole.

E
B+q

-q

2a sinθ

2a cosθ

a

a

A

θ

θ

O

+

→

–

Figure 1.29  The dipole in a uniform 
electric field

The work done by the external torque 
to rotate the dipole from angle θ′ to θ at 
constant angular velocity is

W dext=
′
∫ τ θ
θ

θ

� (1.49)

Since τext  is equal and opposite to 
 



τE p E= × , we have

of the way they are arranged. We can follow 
any order. 

(i)  First, the charge +q is brought to the 
corner P. This requires no work since no 
charge is already present, WP = 0 

(ii)  Work required to bring the charge 
–q to the corner Q = (–q) × potential at a 
point Q due to +q located at a point P.

W q q
a

q
aQ =− × =−

1
4

1
4

2

π πe e
 

(iii)  Work required to bring 
the charge +q to the corner  
R = q × potential at the point R due to 
charges at the point P and Q.

W q q
a

q
a

q
a

R = × − +










= − +










1
4 2

1
4

1 1
2

2

π

π

e

e





(iv)  Work required to bring the fourth 
charge –q at the position S = q × potential 
at the point S due the all the three charges 
at the point P, Q and R

W q q
a

q
a

q
aS =− × + −











1
4 2πe



W q
aS =− −










1
4

2 1
2

2

πe


(b)	 Work required to bring the charge q′ 
to the centre of the square = q′ × potential 
at the centre point O due to all the four 
charges in the four corners

The potential created by the two +q 
charges are canceled by the potential 
created by the –q charges which are located 
in the opposite corners. Therefore the net 
electric potential at the centre O due to all 
the charges in the corners is zero. 
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  



τ τext E p E= = × � (1.50)

Substituting equation (1.50) in equation 
(1.49), we get

W pE d=
′
∫ sinθ θ
θ

θ

W pE= ′−( )cos cosθ θ

This work done is equal to the potential 
energy difference between the angular 
positions θ and θ′.

U U U pE pEθ θ θ θ( )− ′( )= =− + ′∆ cos cos

If the initial angle is ′ =θ 90  and 
is taken as reference point, then 
U pE′( )= =θ cos90 0 .

The potential energy stored in the 
system of dipole kept in the uniform 
electric field is given by

U pE p E=− =− ⋅cosθ




� (1.51)

In addition to p and E, the potential 
energy also depends on the orientation 
θ of the electric dipole with respect to the 
external electric field. 

The potential energy is maximum when 
the dipole is aligned anti-parallel (θ = π) 
to the external electric field and minimum 
when the dipole is aligned parallel (θ = 0) to 
the external electric field.

EXAMPLE 1.16

A water molecule has an electric dipole 
moment of  6.3 × 10–30 Cm. A sample contains 
1022 water molecules, with all the dipole 
moments aligned parallel to the external 
electric field of magnitude 3  ×  105  N C–1. 
How much work is required to rotate all the 
water molecules from θ = 0o to 90o?

Solution

When the water molecules are aligned 
in the direction of the electric field, it has 
minimum potential energy. The work 
done to rotate the dipole from θ = 0o to 90o 
is equal to the potential energy difference 
between these two configurations.

W U U U= = ( )− ( )∆ 90 0 

From the equation (1.51), we write  
U = − pE cosθ, Next we calculate the work 
done to rotate one water molecule from  
θ = 0o to 90o.

For one water molecule

W pE pE pE=− + =cos cos90 0 

W = × × × = ×− −6 3 10 3 10 18 9 1030 5 25. . J

For 1022 water molecules, the total work 
done is

Wtot = × × = ×− −18 9 10 10 18 9 1025 22 3. . J

1.6
GAUSS LAW AND ITS 
APPLICATIONS

1.6.1  Electric Flux

The number of electric field lines 
crossing a given area kept normal to the 
electric field lines is called electric flux. 
It is usually denoted by the Greek letter 
ΦE  and its unit is N m2 C–1. Electric flux is 
a scalar quantity and it can be positive or 
negative. For a simpler understanding of 
electric flux, the following Figure 1.30 is 
useful.
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Suppose the same area A is kept parallel 
to the uniform electric field, then no electric 
field lines pass through the area A , as shown 
in Figure 1.31(b). The electric flux for this 
case is zero.

ΦE = 0 � (1.53)

If the area is inclined at an angle θ 
with the field, then the component of the 
electric field perpendicular to the area alone 
contributes to the electric flux. The electric 
field component parallel to the surface area 
will not contribute to the electric flux. This 
is shown in Figure 1.31 (c). For this case, the 
electric flux

ΦE = (E cosθ) A� (1.54)

Further, θ is also the angle between 
the electric field and the direction normal  
to the area. Hence in general, for uniform 
electric field, the electric flux is defined  
as

ΦE E A EA= ⋅ =
 

cosθ � (1.55)

Here, note that 


A  is the area vector 


A An= .  
Its magnitude is simply the area A and 
its direction is along the unit vector n  
perpendicular to the area as shown in Figure 
1.31. Using this definition for flux, ΦE E A= ⋅

 

,  
equations (1.53) and (1.54) can be obtained  
as special cases.

In Figure 1.31 (a), θ = 0o. Therefore, 

ΦE E A EA= ⋅ =
 

In Figure 1.31 (b), θ = 90o. Therefore,  

ΦE E A= ⋅ =
 

0

The electric field of a point charge is 
drawn in this figure. Consider two small 
rectangular area elements placed normal to 
the field at regions A and B. Even though 
these elements have the same area, the 
number of electric field lines crossing 
the element in region A is more than that 
crossing the element in region B. Therfore 
the electric flux in region A is more than 
that in region B. Since electric field strength 
for a point charge decreases as the distance 
increases, electric flux also decreases as the 
distance increases. The above discussion 
gives a qualitative idea of electric flux. 
However a precise definition of electric flux 
is needed.  

Electric flux for uniform Electric field
Consider a uniform electric field in a 

region of space. Let us choose an area A 
normal to the electric field lines as shown 
in Figure 1.31 (a). The electric flux for this 
case is

ΦE EA= � (1.52)

A

B

+q
+

Figure 1.30  Electric flux
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Electric flux through an arbitrary area 
kept in a non uniform electric field

Suppose the electric field is not uniform 
and the area A is not flat surface (Figure 1.32). 
Then the entire area can be divided into n 
small area segments ∆ ∆ ∆ ∆

   

A A A An1 2 3, , .........  
such that each area element is almost flat 
and the electric field over such area element 
can be considered uniform. 

The electric flux for the entire area A is 
approximately written as

EXAMPLE 1.17

Calculate the electric flux through the 
rectangle of sides 5 cm and 10 cm kept 
in the region of a uniform electric field 
100 NC–1. The angle θ is 60o. If θ becomes 
zero, what is the electric flux?

Area A

�
E→�����

Solution

The electric flux through the rectangular 
area

 

ΦE E A EA= ⋅ =

= × × × ×−

� �

�

cos
cos

θ
100 5 10 10 604

ΦE =
−0 25. Nm C2 1

For θ = 0o, 

      

ΦE E A EA= ⋅ =

= × × ×

=

−

−

 

100 5 10 10
0 5

4

. Nm C2 1

Figure 1.31  The electric flux for Uniform electric field

(c)Electric �ux = (E cos���(b)Electric �ux = 0

Here A  = A �

(a)Electric �ux = EA
A

E→

�

A

E→

�

A

E→

E→
�����

E sin�

�

E cos�

→

���
E� E

�

i

i

Figure 1.32  Electric flux for non-
uniform electric Field
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The total electric flux over this closed 
surface is written as

ΦE E dA= ⋅∫
� �
� � (1.58)

Note the difference between equations 
(1.57) and (1.58). The integration in equation 
(1.58) is a closed surface integration and for 
each areal element, the outward normal is 
the direction of dA



 as shown in the Figure 
1.33(b).

The total electric flux over a closed 
surface can be negative, positive or zero. In 
the Figure 1.33(b), it is shown that in one 
area element, the angle between dA



 and 


E  is less than 90o, then the electric flux is 
positive and in another areal element, the 
angle between dA



 and 


E  is greater than 90o, 
then the electric flux is negative. 

In general, the electric flux is negative 
if the electric field lines enter the closed 
surface and positive if the electric field lines 
leave the closed surface.

1.6.3  Gauss law

A positive point charge Q is surrounded 
by an imaginary sphere of radius r as shown 
in Figure 1.34. We can calculate the total 
electric flux through the closed surface of 
the sphere using the equation (1.58).

ΦE E dA EdA= ⋅ =∫ ∫
� �
� � cosθ

The electric field of the point charge is 
directed radially outward at all points on 
the surface of the sphere. Therefore, the 
direction of the area element dA



 is along 
the electric field 



E  and θ= °0 . 

ΦE EdA= ∫       since cos0 10 =  �(1.59)

Φ ∆ ∆ ∆ ∆

∆

E n n

i i
i

n

E A E A E A E A

E A

= ⋅ + ⋅ + ⋅ ⋅

= ⋅
=
∑

       

 

1 1 2 2 3 3

1

.......

� (1.56)

By taking the limit ∆


Ai → 0 (for all i) 
the summation in equation (1.56) becomes 
integration. The total electric flux for the 
entire area is given by

ΦE E dA= ⋅∫
 

� (1.57)

From Equation (1.57), it is clear that the 
electric flux for a given surface depends on 
both the electric field pattern on the surface 
area and orientation of the surface with 
respect to the electric field.

1.6.2  Electric flux for closed 
surfaces

In the previous section, the electric flux 
for any arbitrary curved surface is discussed. 
Suppose a closed surface is present in the 
region of the non-uniform electric field as 
shown in Figure 1.33 (a).

��
��� ��

�
�

�
�

dA
�

(a)

(b)

�
��� ��

�
�

�
�

dA
�

�

Figure 1.33  Electric flux over a closed 
surface 
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A1

A2

A3

�e net electric �ux is the 
same through all surfaces.

++

Figure 1.35  Gauss law for arbitrarily 
shaped surface

Gauss’s law states that if a charge Q is 
enclosed by an arbitrary closed surface, 
then the total electric flux ΦE through the 
closed surface is 

ΦE
enclE dA

Q
= ⋅ =∫

� �

�
� e

� (1.62)

where Qencl  denotes the charges within the 
closed surface.

Discussion of Gauss law
(i)	 The total electric flux through 
the closed surface depends only on the 
charges enclosed by the surface and the 
charges present outside the surface will 
not contribute to the flux and the shape 
of the closed surface which can be chosen 
arbitrarily. 

(ii)	 The total electric flux is independent of 
the location of the charges inside the closed 
surface.

E is uniform on the surface of the sphere, 

ΦE E dA= ∫ � (1.60)

Substituting for dA r=∫ 4 2π


 and 

E Q
r

=
1

4 0
2πe

 in equation (1.60), we get

ΦE
Q
r

r Q= × =
1

4
4 4 1

42
2

π
π π

πe e
 

ΦE
Q

=
e


� (1.61)

The equation (1.61) is called as Gauss’s 
law. 

The remarkable point about this result is 
that the equation (1.61) is equally true for 
any arbitrary shaped surface which encloses 
the charge Q and as shown in the Figure 
1.35. It is seen that the total electric flux is 
the same for closed surfaces A1, A2 and A3 as 
shown in the Figure 1.35.

Spherical
gaussian
surface

r

Q

�
�

�
d�

When the charge is at the center 
of the sphere, the electric �eld is

everywhere normal to the surface
and constant in magnitude.

+

Figure 1.34  Total electric flux of point 
charge
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Solution
(i)	 In figure (a), the area A1 encloses the 

charge Q. So electric flux through this 

closed surface A1 is Q
e


. But the closed 

surface A2 contains no charges inside, so 
electric flux through A2 is zero.

(ii)	 In figure (b), the net charge inside the 
cube is 3q and the total electric flux in the 

cube is therefore ΦE
q

=
3
e


. Note that the 

charge -10 q lies outside the cube and it 
will not contribute the total flux through 
the surface of the cube.

1.6.4  Applications of Gauss law

Electric field due to any arbitrary charge 
configuration can be calculated using 
Coulomb’s law or Gauss law. If the charge 
configuration possesses some kind of 
symmetry, then Gauss law is a very efficient 
way to calculate the electric field. It is 
illustrated in the following cases.
(i) �Electric field due to an infinitely long 

charged wire
Consider an infinitely long straight 

wire having uniform linear charge density 
λ(charge per unit length). Let P be a point 
located at a perpendicular distance r from 
the wire (Figure 1.36(a)). The electric field 
at the point P can be found using Gauss law. 

We choose two small charge elements 
A1 and A2 on the wire which are at equal 
distances from the point P. The resultant 
electric field due to these two charge 
elements points radially away from the 
charged wire and the magnitude of electric 
field is same at all points on the circle 
of radius r. This is shown in the Figure 
1.36(b). Since the charged wire possesses 

(iii)	To arrive at equation (1.62), we have 
chosen a spherical surface. This imaginary 
surface is called a Gaussian surface. The 
shape of the Gaussian surface to be chosen 
depends on the type of charge configuration 
and the kind of symmetry existing in that 
charge configuration. The electric field is 
spherically symmetric for a point charge, 
therefore spherical Gaussian surface is 
chosen. Cylindrical and planar Gaussian 
surfaces can be chosen for other kinds of 
charge configurations.

(iv)	 In the LHS of equation (1.62),  
the electric field 



E  is due to charges 
present inside and outside the Gaussian 
surface but the charge Qencl denotes the 
charges which lie only inside the Gaussian 
surface.

EXAMPLE 1.18

-10q

(a)

(b)

+

+

–

–

A1

A2                -q 

 +q 

+Q

-2q

+5q +

–

(i)	 In figure (a), calculate the electric flux 
through the closed areas A1 and A2.

(ii)	 In figure (b), calculate the electric flux 
through the cube 
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Figure 1.37  Cylindrical Gaussian surface

taken out of the integration and Qencl is given 
by Q Lencl = λ , where λ is the linear charge 
density (charge present per unit length). 

E dA L

Curved
surface

=∫
λ
e


� (1.65)

a cylindrical symmetry, let us choose a 
cylindrical Gaussian surface of radius r and 
length L as shown in the Figure 1.37.

The total electric flux through this closed 
surface is calculated as follows.

 

ΦE

top
surface

Curved
surface

b

E dA

E dA E dA E dA

= ⋅

= ⋅ + ⋅ + ⋅

∫
∫∫

� �

� � � � � �
�

oottom
surface

∫ �(1.63)

It is seen from Figure (1.37) that for 
the curved surface, 



E  is parallel to 


A and 
 

E dA E dA⋅ = . For the top and bottom 
surfaces, 



E  is perpendicular to 


A and  
 

E dA⋅ = 0
Substituting these values in the equation 

(1.63) and applying Gauss law to the 
cylindrical surface, we have

ΦE
encl

Curved
surface

EdA
Q

= =∫ e


� (1.64)

Since the magnitude of the electric field 
for the entire curved surface is constant, E is 

Figure 1.36  Electric field due to infinite long charged wire
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Here dA
Curved
surface

=∫  total area of the curved 

surface = 2πrL. Substituting this in equation 
(1.65), we get

E rL L
⋅ =2π λ

e


E
r

=
1

2π
λ

e


� (1.66)

In vector form,

�

�

E
r

r=
1

2π
λ

e
� (1.67)

The electric field due to the infinite 
charged wire depends on 1

r
 rather than 1

2r
 

which is for a point charge. 
Equation (1.67) indicates that 

the electric field is always along the 
perpendicular direction ( r) to wire. In 
fact, if  λ > 0 then 



E  points perpendicularly 
outward ( r) from the wire and if λ < 0, 
then 



E  points perpendicularly inward 
( )- r . 

The equation (1.67) is true only for an 
infinitely long charged wire. For a charged 
wire of finite length, the electric field 
need not be radial at all points. However, 
equation (1.67) for such a wire is taken 
approximately true around the mid-point 
of the wire and far away from the both ends 
of the wire

(ii) �Electric field due to charged infinite 
plane sheet
Consider an infinite plane sheet of 

charges with uniform surface charge 
density σ (charge present per unit area). 
Let P be a point at a distance of r from the 
sheet as shown in the Figure 1.38.

+
+
+
+
+
+
+
+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

E P

P´

dA�
dA�

dA�� E
�E

�

r

Gaussian
surface

Figure 1.38  Electric field due to charged 
infinite planar sheet

Since the plane is infinitely large, the 
electric field should be same at all points 
equidistant from the plane and radially 
directed outward at all points. A cylindrical 
Gaussian surface of length 2r and two flats 
surfaces each of area A is chosen such that the 
infinite plane sheet passes perpendicularly 
through the middle part of the Gaussian 
surface. 

Total electric flux linked with the 
cylindrical surface, 

ΦE

PCurved
surface

encl

P

E dA

E dA E dA E dA
Q

= ⋅

= ⋅ + ⋅ + ⋅ =

∫

∫∫
′

� �

� � � � � �
�

e0
∫∫

� (1.68)

The electric field is perpendicular to 
the area element at all points on the curved 
surface and is parallel to the surface areas 
at P and ′P  (Figure 1.38). Then, applying 
Gauss' law,

ΦE
encl

PP

EdA EdA
Q

= + =
′
∫∫ e0

� (1.69)

Since the magnitude of the electric field 
at these two equal flat surfaces is uniform, 
E is taken out of the integration and Qencl  is 
given by Q Aencl = σ , we get
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densities +σ and -σ which are placed parallel 
to each other as shown in the Figure 1.39.

The electric field between the plates and 
outside the plates is found using Gauss law. 
The magnitude of the electric field due to 

an infinite charged plane sheet is σ
2e



and it 

points perpendicularly outward if σ > 0 and 
points inward if σ < 0.

At the points P2 and P3, the electric field 
due to both plates are equal in magnitude 
and opposite in direction (Figure 1.39). As 
a result, electric field at a point outside the 
plates is zero. But between the plates, electric 
fields are in the same direction i.e., towards 
the right and the total electric field at a point 
P1 is

Einside = + =
σ σ σ

2 2e e e
  

� (1.72)

The direction of the electric field between 
the plates is directed from positively charged 
plate to negatively charged plate and is 
uniform everywhere between the plates.

(iv)	Electric field due to a uniformly 
charged spherical shell

Consider a uniformly charged spherical 
shell of radius R carrying total charge Q as 
shown in Figure 1.40. The electric field at 
points outside and inside the sphere can be 
found using Gauss law.

Case (a) At a point outside the shell (r > R)
Let us choose a point P outside the shell 

at a distance r from the centre as shown in 
Figure 1.40 (a). The charge is uniformly 
distributed on the surface of the sphere 
(spherical symmetry). Hence the electric 
field must point radially outward if Q > 0 and 
point radially inward if Q < 0. So a spherical 
Gaussian surface of radius r is chosen and 

2
0

E dA A

P

=∫
σ
e

The total area of surface either at P or P′

dA A
P

=∫

Hence 2
20 0

EA A E= =
σ σ
e e

or � (1.70)

In vector form, 
�

�

E n=
σ

2e
 � (1.71)

Here n  is the outward unit vector 
normal to the plane.  Note that the electric 
field due to an infinite plane sheet of charge 
depends on the surface charge density and is 
independent of the distance r. 

The electric field will be the same at any 
point farther away from the charged plane. 
Equation (1.71) implies that if σ > 0 the 
electric field at any point P is along outward 
perpendicular n  drawn to the plane and 
if σ < 0, the electric field points inward 
perpendicularly to the plane (-n ). 

For a finite charged plane sheet, equation 
(1.71) is approximately true only in the 
middle region of the plane and at points far 
away from both ends.

(iii)	Electric field due to two parallel 
charged infinite sheets

Consider two infinitely large charged 
plane sheets with equal and opposite charge 

–
–
–
–
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–
–
–
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–
–
–
–
–
–
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E– E+ E+
E–

E–

Figure 1.39  Electric field due to two 
parallel charged sheets
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In vector form,

 
�

�

E Q
r

r=
1

4 2πe
 � (1.75)

The electric field is radially outward 
if Q > 0 and radially inward if Q < 0. From 
equation (1.75), we infer that the electric field 
at a point outside the shell will be the same as 
if the entire charge Q is concentrated at the 
centre of the spherical shell. (A similar result 
is observed in gravitation, for gravitational 
force due to a spherical shell with mass M)  

Case (b): At a point on the surface of the 
spherical shell (r = R)

 The electrical field at points on the 
spherical shell (r = R) is given by

�

�

E Q
R

r=
4 2πe

 � (1.76)

Case (c): At a point inside the spherical 
shell (r < R)

Consider a point P inside the shell at 
a distance r from the centre. A Gaussian 

the total charge enclosed by this Gaussian 
surface is Q. Applying Gauss law

� �
�

�

E dA Q

Gaussian
surface

∫ ⋅ =
e

� (1.73)

The electric field 


E  and d A


 point in 
the same direction (outward normal) at 
all the points on the Gaussian surface. The 
magnitude of 



E  is also the same at all points 
due to the spherical symmetry of the charge 
distribution.

Hence  E dA Q

Gaussian
surface

�
�

∫ =
e

� (1.74)

But dA
Gaussian
surface

∫ =  total area of Gaussian surface 

= 4πr2. Substituting this value in equation (1.74)

E r Q
⋅ =4 2π

e


E r Q
⋅ =4 2π

e


  (or)  E Q
r

=
1

4 2πe


P

For points outside the spherical 
shell, a large, spherical gaussian
surface is drawn concentric
with the spherical shell.

Gaussian
sphere

Gaussian
sphere

r

r
R

R
Q

Q

P

For points inside the spherical 
shell, a spherical gaussian surface 
smaller than the spherical 
shell is drawn.

(a) (b)

r

Figure 1.40  The electric field due to a charged spherical shell 
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1.7
ELECTROSTATICS OF 
CONDUCTORS AND 
DIELECTRICS

1.7.1  Conductors at 
electrostatic equilibrium

An electrical conductor has a large 
number of mobile charges which are free 
to move in the material. In a metallic 
conductor, these mobile charges are free 
electrons which are not bound to any 
atom and therefore are free to move on the 
surface of the conductor. When there is no 
external electric field, the free electrons 
are in continuous random motion in all 
directions. As a result, there is no net 
motion of electrons along any particular 
direction which implies that the conductor 
is in electrostatic equilibrium. Thus at 
electrostatic equilibrium, there is no net 
current in the conductor. A conductor at 
electrostatic equilibrium has the following 
properties.

(i)	 The electric field is zero everywhere 
inside the conductor. This is true 
regardless of whether the conductor is 
solid or hollow.

This is an experimental fact. Suppose 
the electric field is not zero inside the 
metal, then there will be a force on the 
mobile charge carriers due to this electric 
field. As a result, there will be a net motion 
of the mobile charges, which contradicts 
the conductors being in electrostatic 
equilibrium. Thus the electric field is 
zero everywhere inside the conductor. We 
can also understand this fact by applying 
an external uniform electric field on the 
conductor. This is shown in Figure 1.42.

sphere of radius r is constructed as shown in 
the Figure 1.40 (b). Applying Gauss law 

� �
�

�

E dA Q

Gaussian
surface

⋅ =∫ e

      E r Q
⋅ =4 2π

e


� (1.77)

Since Gaussian surface encloses no 
charge, Q = 0. The equation (1.77) becomes

E = 0 	 (r < R) � (1.78)

The electric field due to the uniformly 
charged spherical shell is zero at all points 
inside the shell.

A graph is plotted between the electric 
field and radial distance. This is shown in  
Figure 1.41.

R

RO
Er = 0

Er = 1
4�e�

Q
r2

Er 

r
+

+

+
R

Figure 1.41  Electric field versus distance 
for a spherical shell of radius R

Gauss law is a powerful 
technique whenever a given 
charge configuration possesses 

spherical, cylindrical or planar symmetry, 
then the electric field due to such a charge 
configuration can be easily found. If there 
is no such symmetry, the direct method 
(Coulomb’s law and calculus) can be used. 
For example, it is difficult to use Gauss law to 
find the electric field for a dipole since it has 
no spherical, cylindrical or planar symmetry.

Note
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inside the conductor, it immediately reaches 
the surface of the conductor.

(iii)	 The electric field outside the conductor 
is perpendicular to the surface of the  

conductor and has a magnitude of σ
0e  where 

σ is the surface charge density at that point.
If the electric field has components 

parallel to the surface of the conductor, 
then free electrons on the surface of the 
conductor would experience acceleration 
(Figure 1.44(a)). This means that the 

Eint

E
�

�

E
�

E
�

---------

+
+
+
+
+
+
+
+
+

Figure 1.42  Electric field of conductors

Before applying the external electric 
field, the free electrons in the conductor are 
uniformly distributed in the conductor. When 
an electric field is applied, the free electrons 
accelerate to the left causing the left plate to 
be negatively charged and the right plate to be 
positively charged as shown in Figure 1.42. 

Due to this realignment of free 
electrons, there will be an internal electric 
field created inside the conductor which 
increases until it nullifies the external 
electric field. Once the external electric 
field is nullified the conductor is said to 
be in electrostatic equilibrium. The time 
taken by a conductor to reach electrostatic 
equilibrium is in the order of 10–16s, which 
can be taken as almost instantaneous.
(ii)	 There is no net charge inside the 
conductors. The charges must reside only 
on the surface of the conductors.

We can prove this property using 
Gauss law. Consider an arbitrarily shaped 
conductor as shown in Figure 1.43.

A Gaussian surface is drawn inside the 
conductor such that it is very close to the 
surface of the conductor. Since the electric 
field is zero everywhere inside the conductor, 
the net electric flux is also zero over this 
Gaussian surface. From Gauss’s law, this 
implies that there is no net charge inside the 
conductor. Even if some charge is introduced 

Gaussian
surface

Qnet=0

Figure 1.43  No net charge inside the 
conductor

-
-

-
-
-

E = 0

E
�

E
�

�

E
�

Conductor

Conductor

��

����

Figure 1.44  (a) Electric field is along the 
surface (b)Electric field is perpendicular 
to the surface of the conductor
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In vector form,

�

�

E n=
σ
e
 � (1.79)

where n represents the unit vector outward 
normal to the surface of the conductor. 
Suppose σ < 0, then electric field points 
inward perpendicular to the surface.
(iv)	 The electrostatic potential has the 
same value on the surface and inside of the 
conductor.

We know that the conductor has no 
parallel electric component on the surface 
which means that charges can be moved on 
the surface without doing any work. This is 
possible only if the electrostatic potential 
is constant at all points on the surface and 
there is no potential difference between any 
two points on the surface. 

Since the electric field is zero inside 
the conductor, the potential is the same 
as the surface of the conductor. Thus at 
electrostatic equilibrium, the conductor is 
always at equipotential.

1.7.2  Electrostatic shielding

Using Gauss law, we can prove that the 
electric field inside the charged spherical shell 
is zero, Further, we can show that the electric 
field inside both hollow and solid conductors 
is zero. It is a very interesting property which 
has an important consequence. 

Consider a cavity inside the conductor 
as shown in Figure 1.46 (a). Whatever be 
the charges at the surfaces and whatever 
be the electrical disturbances outside, the 
electric field inside the cavity is zero.  A 
sensitive electrical instrument which is 
to be protected from external electrical 
disturbance can be kept inside this cavity. 
This is called electrostatic shielding. 

conductor is not in equilibrium. Therefore 
at electrostatic equilibrium, the electric 
field must be perpendicular to the surface 
of the conductor. This is shown in Figure 
1.44 (b).

We now prove that the electric field has 

magnitude σ
e


 just outside the conductor’s 

surface. Consider a small cylindrical 
Gaussian surface, as shown in the Figure 
1.45. One half of this cylinder is embedded 
inside the conductor.

E
�

� �
�
�
�

�
�

�
�

�
�

���
�
�
�
�

�

�

�e �ux through the
gaussian surface is EA.

A

Figure 1.45  The electric field on the 
surface of the conductor

Since electric field is normal to the 
surface of the conductor, the curved part 
of the cylinder has zero electric flux. Also 
inside the conductor, the electric field is zero. 
Hence the bottom flat part of the Gaussian 
surface has no electric flux. 

Therefore the top flat surface alone 
contributes to the electric flux. The electric 
field is parallel to the area vector and the 
total charge inside the surface is σA. By 
applying Gaus’s law,

EA A
=

σ
e

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rod is touched by another conductor, 
charges start to flow from charged rod 
to the conductor. Is it possible to charge 
a conductor without any contact? The 
answer is yes. This type of charging 
without actual contact is called 
electrostatic induction. 

(i)	 Consider an uncharged (neutral) 
conducting sphere at rest on an insulating 
stand. Suppose a negatively charged rod 
is brought near the conductor without 
touching it, as shown in Figure 1.47(a).

The negative charge of the rod repels the 
electrons in the conductor to the opposite 
side. As a result, positive charges are induced 
near the region of the charged rod while 
negative charges on the farther side. 

Before introducing the charged rod, the 
free electrons were distributed uniformly 
on the surface of the conductor and the 
net charge is zero. Once the charged rod is 
brought near the conductor, the distribution 
is no longer uniform with more electrons 
located on the farther side of the rod and 
positive charges are located closer to the 
rod. But the total charge is zero.

Faraday cage is an instrument used 
to demonstrate this effect. It is made up 
of metal bars as shown in Figure1.46 (b).  
If an artificial lightning jolt is created 
outside, the person inside is not affected.

During lightning accompanied by a 
thunderstorm, it is always safer to sit inside a 
bus than in open ground or under a tree. The 
metal body of the bus provides electrostatic 
shielding, since the electric field inside is 
zero. During lightning, the charges flow 
through the body of the conductor to the 
ground with no effect on the person inside 
that bus.

1.7.3  Electrostatic induction

In section 1.1, we have learnt that an 
object can be charged by rubbing using an 
appropriate material. Whenever a charged 

Electric �eld line 

E=0

Figure 1.46  (a) Electric field inside the 
cavity	  (b) Faraday cage

Figure 1.47  Various steps in electrostatic 
induction
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hmax

R
x

y E

+

+ +

+

+

�

v0
�

Solution

If the conductor has no net charge, then 
its motion is the same as usual projectile 
motion of a mass m which we studied in 
Kinematics (unit 2, vol-1 XI physics). 
Here, in this problem, in addition to 
downward gravitational force, the charge 
also will experience a downward uniform 
electrostatic force.

The acceleration of the charged ball due 
to gravity = -g j

The acceleration of the charged ball due 

to uniform electric field = -qE
m

j

The total acceleration of charged ball in 

downward direction 
a g qE

m
j=− +












It is important here to note that the 
acceleration depends on the mass of the 
object. Galileo’s conclusion that all objects 
fall at the same rate towards the Earth is 
true only in a uniform gravitational field. 
When a uniform electric field is included, 
the acceleration of a charged object 
depends on both mass and charge. 

But still the acceleration a g qE
m

= +








  is 

constant throughout the motion. Hence we 
use kinematic equations to calculate the 

(ii)	 Now the conducting sphere is connected 
to the ground through a conducting wire. 
This is called grounding. Since the ground 
can always receive any amount of electrons, 
grounding removes the electron from 
the conducting sphere. Note that positive 
charges will not flow to the ground because 
they are attracted by the negative charges of 
the rod (Figure 1.47(b)). 

(iii)	When the grounding wire is removed 
from the conductor, the positive charges 
remain near the charged rod (Figure 
1.47(c))

(iv)	 Now the charged rod is taken away 
from the conductor. As soon as the charged 
rod is removed, the positive charge gets 
distributed uniformly on the surface of the 
conductor (Figure 1.47 (d)). By this process, 
the neutral conducting sphere becomes 
positively charged.

For an arbitrary shaped conductor, the 
intermediate steps and conclusion are the 
same except the final step. The distribution 
of positive charges is not uniform for 
arbitrarily-shaped conductors. Why is it not 
uniform? The reason for it is discussed in 
the section 1.9

EXAMPLE 1.19

A small ball of conducting material 
having a charge +q and mass m is thrown 
upward at an angle θ to horizontal 
surface with an initial speed vo  as shown 
in the figure. There exists an uniform 
electric field E downward along with the 
gravitational field g. Calculate the range, 
maximum height and time of flight in the 
motion of this charged ball. Neglect the 
effect of air and treat the ball as a point 
mass.
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1.7.4  Dielectrics or 
insulators

A dielectric is a non-conducting 
material and has no free electrons. The 
electrons in a dielectric are bound within 
the atoms. Ebonite, glass and mica are some 
examples of dielectrics. When an external 
electric field is applied, the electrons are 
not free to move anywhere but they are 
realigned in a specific way. A dielectric is 
made up of either polar molecules or non-
polar molecules.

Non-polar molecules
A non-polar molecule is one in which 

centres of positive and negative charges 
coincide. As a result, it has no permanent 
dipole moment. Examples of non-polar 
molecules are hydrogen (H2), oxygen (O2), 
and carbon dioxide (CO2) etc. 

When an external electric field is 
applied, the centres of positive and 
negative charges are separated by a small 
distance which induces dipole moment in 
the direction of the external electric field. 
Then the dielectric is said to be polarized 
by an external electric field. This is shown 
in Figure 1.48.

+– +–

p→

E→

Center of negative charge
coincides with center of

positive charge 

(a) (b)

Figure 1.48  Non polar molecules 
(a) without external field (b) with the 
external field

range, maximum height and time of flight. 

In fact we can simply replace g by g qE
m

+  in 

the usual expressions of range, maximum 

height and time of flight of a projectile.

Without 
charge

With the 
charge +q

Time of flight  
T 

2 0v sinθ
g

2 0v sinθ

g qE
m

+








Maximum 
height hmax

v
0

2 2

2
sin θ

g
v

0

2 2

2

sin θ

g qE
m

+








Range R v0
2 2sin θ

g
v0

2 2sin θ

g qE
m

+








Note that the time of flight, maximum 
height, range are all inversely proportional 
to the acceleration of the object. Since 

g qE
m

g+








> for charge +q, the quantities T, 

hmax, and R will decrease when compared to 
the motion of an object of mass m and zero 
net charge. Suppose the charge is –q, then 

g qE
m

g−








< , and the quantities T, hmax and 

R will increase. Interestingly the trajectory is 
still parabolic as shown in the figure.

�

v0

x

y E

� +

+

+

+

_

_

_

_

-q

-q+q q=0
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 

P Ee ext= χ � (1.80)

where χe  is a constant called the electric 
susceptibility which is a characteristic of 
each dielectric.

1.7.5  Induced Electric field 
inside the dielectric

When an external electric field is 
applied on a conductor, the charges are 
aligned in such a way that an internal 
electric field is created which tends to 
cancel the external electric field. But in 
the case of a dielectric, which has no free 
electrons, the external electric field only 
realigns the charges so that an internal 
electric field is produced. The magnitude 
of the internal electric field is smaller than 
that of external electric field. Therefore 
the net electric field inside the dielectric 
is not zero but is parallel to an external 
electric field with magnitude less than that 
of the external electric field. For example, 
let us consider a rectangular dielectric slab 
placed between two oppositely charged 
plates (capacitor) as shown in the Figure 
1.50. 

The uniform electric field between 
the plates acts as an external electric field 


Eext  which polarizes the dielectric placed 
between plates. The positive charges are 
induced on one side surface and negative 
charges are induced on the other side of 
surface. 

But inside the dielectric, the net charge 
is zero even in a small volume. So the 
dielectric in the external field is equivalent 
to two oppositely charged sheets with the 
surface charge densities +σb and –σb. These 
charges are called bound charges. They 
are not free to move like free electrons in 

Polar molecules
In polar molecules, the centres of the 

positive and negative charges are separated 
even in the absence of an external 
electric field. They have a permanent 
dipole moment. Due to thermal motion, 
the direction of each dipole moment 
is oriented randomly (Figure 1.49(a)). 
Hence the net dipole moment is zero in 
the absence of an external electric field. 
Examples of polar molecules are H2O, 
N2O, HCl, NH3.

When an external electric field is 
applied, the dipoles inside the material 
tend to align in the direction of the 
electric field. Hence a net dipole moment 
is induced in it. Then the dielectric is said 
to be polarized by an external electric field 
(Figure 1.49(b)).
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(a) (b)

Polar molecules are
randomly oriented in

the absence of an
external electric �eld.

When an external
electric �eld is applied,
the molecules partially

align with the �eld.

Figure 1.49  (a) Randomly oriented polar 
molecules (b) Align with the external 
electric field

Polarisation
In the presence of an external electric 

field, the dipole moment is induced in 
the dielectric material. Polarisation 



P  is 
defined as the total dipole moment per 
unit volume of the dielectric. For most 
dielectrics (linear isotropic), the Polarisation 
is directly proportional to the strength of 
the external electric field. This is written as
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1.7.6  Dielectric strength

When the external electric field 
applied to a dielectric is very large, it 
tears the atoms apart so that the bound 
charges become free charges. Then the 
dielectric starts to conduct electricity. 
This is called dielectric breakdown. The 
maximum electric field the dielectric can 
withstand before it breaksdown is called 
dielectric strength. For example, the 
dielectric strength of air is  3 × 106 V m–1. If 
the applied electric field increases beyond 
this, a spark is produced in the air. The 
dielectric strengths of some dielectrics are 
given in the Table 1.1.

Table 1.1  Dielectric strength

Substance Dielectric strength (Vm–1)

Mica 100 × 106

Teflon   60 × 106

Paper   16 × 106

Air     3 × 106

Pyrex glass   14 × 106

1.8
CAPACITORS AND 
CAPACITANCE

1.8.1  Capacitors

Capacitor is a device used to store electric 
charge and electrical energy. It consists of two 
conducting objects (usually plates or sheets) 
separated by some distance. Capacitors are 
widely used in many electronic circuits and 
have applications in many areas of science 
and technology.

conductors. This is shown in the Figure 
1.50.

For example, the charged balloon after 
rubbing sticks onto a wall. The reason 
is that the negatively charged balloon is 
brought near the wall, it polarizes opposite 
charges on the surface of the wall, which 
attracts the balloon. This is shown in 
Figure 1.51.

+ _
+ _
+ _
+ _
+ _
+ _
+ _
+ _
+ _
+ _
+ _

_
_
_
_

_

(b)(a)

Wall

Figure 1.51  (a) Balloon sticks to the wall 
(b) Polarisation of wall due to the electric 
field created by the balloon
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+σb
–σb

Figure 1.50  Induced electric field lines 
inside the dielectric
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The SI unit of capacitance is coulomb per 
volt or farad (F) in honor of Michael Faraday. 
Farad is a larger unit of capacitance. In 
practice, capacitors are available in the range 
of microfarad (1µF = 10–6 F) to picofarad (1pF 
= 10–12 F). A capacitor is represented by the 
symbol  or . Note that the total charge 
stored in the capacitor is zero (Q – Q = 0). 
When we say the capacitor stores charges, 
it means the amount of charge that can be 
stored in any one of the plates.

Nowadays there are capacitors available 
in various shapes (cylindrical, disk) and 
types (tantalum, ceramic and electrolytic), 
as shown in Figure 1.53. These capacitors 
are extensively used in various kinds of 
electronic circuits.

Figure 1.53  Various types of capacitors

Capacitance of a parallel plate capacitor
Consider a capacitor with two parallel 

plates each of cross-sectional area A and 
separated by a distance d as shown in  
Figure 1.54. 

The electric field between two infinite 
parallel plates is uniform and is given by 

E =
σ
e


 where σ is the surface charge density 

on either plates σ=










Q
A

. If the separation 

distance d is very much smaller than the size 
of the plate (d2 << A), then the above result 
can be used even for finite–sized parallel 
plate capacitor.

A simple capacitor consists of two 
parallel metal plates separated by a small 
distance as shown in Figure 1.52 (a). 

Area = A

d

+ -+ -

–Q+Q

V

C
-Q+Q

(a) (b) (c)

Figure 1.52  (a) Parallel plate capacitor 
(b) Capacitor connected with a battery  
(c) Symbolic representation of capacitor.

When a capacitor is connected to 
a battery of potential difference V, the 
electrons are transferred from one plate 
to the other plate by battery so that one 
plate becomes negatively charged with a 
charge of –Q and the other plate positively 
charged  with +Q. The potential difference 
between the plates is equivalent to the 
battery’s terminal voltage. This is shown 
in Figure 1.52 (b). If the battery voltage is 
increased, the amount of charges stored 
in the plates also increase. In general, 
the charge stored in the capacitor is 
proportional to the potential difference 
between the plates.

Q V∝
so that  Q = CV

where the C is the proportionality constant 
called capacitance. The capacitance C 
of a capacitor is defined as the ratio of 
the magnitude of charge on either of the 
conductor plates to the potential difference 
existing between them.

C Q
V

= � (1.81)
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(i)	 If the area of cross-section of the 
capacitor plates is increased, more charges 
can be distributed for the same potential 
difference. As a result, the capacitance is 
increased.

(ii)	 If the distance d between the two 
plates is reduced, the potential difference 
between the plates (V = Ed) decreases 
with E constant. As a result, voltage 
difference between the terminals of the 
battery increases which in turn leads to an 
additional flow of charge to the plates from 
the battery, till the voltage on the capacitor 
equals to the battery’s terminal voltage. 
Suppose the distance  is increased, the 
capacitor voltage increases and becomes 
greater than the battery voltage. Then, 
the charges flow from capacitor plates to 
battery till both voltages becomes equal.

EXAMPLE 1.20

A parallel plate capacitor has square 
plates of side 5 cm and separated by a 
distance of 1 mm. (a) Calculate the 
capacitance of this capacitor. (b) If a 10 V 
battery is connected to the capacitor, 
what is the charge stored in any one of 
the plates? (The value of  eo = 8.85 × 10–12  
N–1m–2 C2)

Solution

(a)	 The capacitance of the capacitor is

	
C

A
d

= =
× × ×
×

= ×

− −

−

−

e0
12 4

3

13

8 85 10 25 10
1 10

221 2 10

.

. F
	 C= × =−22 12 10 22 1212. .F pF

(b)	� The charge stored in any one of the 
plates is Q = CV, Then

Q= × × = × =− −22 12 10 10 221 2 10 221 212 12. . .C pC

The electric field between the plates is 

E Q
A

=
e


� (1.82) 

Since the electric field is uniform, the 
electric potential difference between the 
plates having separation d is given by 

V Ed Qd
A

= =
e0

� (1.83)

Therefore the capacitance of the capacitor 
is given by

C Q
V

Q
Qd
A

A
d

= =










=

e

e

0

0 � (1.84)

From equation (1.84), it is evident that 
capacitance is directly proportional to 
the area of cross section and is inversely 
proportional to the distance between the 
plates. This can be understood from the 
following.

--------------------

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+Q -Q
d

E
�

Area
A

Area
A

Figure 1.54  Capacitance of a parallel 
plate capacitor
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W Q
C

dQ Q
C

Q

= =∫
0

2

2
� (1.86)

This work done is stored as electrostatic 
potential energy (UE) in the capacitor.

U Q
C

CVE = =
2

2

2
1
2

  ( )∴ =Q CV � (1.87)

where Q = CV is used. This stored energy 
is thus directly proportional to the 
capacitance of the capacitor and the square 
of the voltage between the plates of the 
capacitor. 

But where is this energy stored in the 
capacitor? To understand this question, the 
equation (1.87) is rewritten as follows using 
the results C

A
d

=
e0  and V = Ed

U
A

d
Ed Ad EE =









( ) = ( )1

2
1
2

0 2
0

2e
e � (1.88)

where Ad = volume of the space between 
the capacitor plates. The energy stored per 
unit volume of space is defined as energy 

density u U
VolumeE = .  From equation (1.88),  

we get

u EE =
1
2

2e


� (1.89)

From equation (1.89), we infer that the 
energy is stored in the electric field existing 
between the plates of the capacitor. Once the 
capacitor is allowed to discharge, the energy 
is retrieved. 

It is important to note that the energy 
density depends only on the electric field 
and not on the size of the plates of the 
capacitor. In fact, expression (1.89) is true 
for the electric field due to any type of charge 
configuration.

Sometimes we notice that the ceiling 
fan does not start rotating as soon as it 
is switched on. But when we rotate the 
blades, it starts to rotate as usual. Why it 
is so? We know that to rotate any object, 
there must be a torque applied on the 
object. For the ceiling fan, the initial 
torque is given by the capacitor widely 
known as a condenser. If the condenser 
is faulty, it will not give sufficient initial 
torque to rotate the blades when the fan is 
switched on.

1.8.2  Energy stored in the 
capacitor

Capacitor not only stores the charge 
but also it stores energy. When a battery is 
connected to the capacitor, electrons of total 
charge –Q are transferred from one plate to 
the other plate. To transfer the charge, work 
is done by the battery. This work done is 
stored as electrostatic potential energy in 
the capacitor. 

To transfer an infinitesimal charge dQ 
for a potential difference V, the work done 
is given by

dW = V dQ� (1.85)

where V Q
C

=

The total work done to charge a 
capacitor is 
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1.8.4  Effect of dielectrics in 
capacitors

In earlier discussions, we assumed that 
the space between the parallel plates of a 
capacitor is either empty or filled with air. 
Suppose dielectrics like mica, glass or paper 
are introduced between the plates, then the 
capacitance of the capacitor is altered. The 
dielectric can be inserted into the plates in 
two different ways. (i) when the capacitor is 
disconnected from the battery. (ii) when the 
capacitor is connected to the battery.

(i) �when the capacitor is disconnected 
from the battery

Consider a capacitor with two parallel 
plates each of cross-sectional area A and are 
separated by a distance d. The capacitor is 
charged by a battery of voltage V0 and the 
charge stored is Q0. The capacitance of the 
capacitor without the dielectric is 

C
Q
V0

0

0

= � (1.90)

The battery is then disconnected from 
the capacitor and the dielectric is inserted 
between the plates. This is shown in  
Figure 1.56.

1.8.3  Applications of 
capacitors

Capacitors are used in various electronics 
circuits. A few of the applications.
(a)	 Flash capacitors are used in digital 
cameras for taking photographs. The 
flash which comes from the camera 
when we take photographs is due  
to the energy released from the capacitor, 
called a flash capacitor (Figure 1.55 (a))
(b)	 During cardiac arrest, a device called 
heart defibrillator is used to give a sudden 
surge of a large amount of electrical energy to 
the patient’s chest to retrieve the normal heart 
function. This is shown in Figure 1.55 (b).

(c)	 Capacitors are used in the ignition 
system of automobile engines to eliminate 
sparking

(d)	 Capacitors are used to reduce power 
fluctuations in power supplies and to increase 
the efficiency of power transmission.

	 However, capacitors have disadvantage 
as well. Even after the battery or power supply 
is removed, the capacitor stores charges and 
energy for some time. For example if the TV 
is switched off, it is always advisable to not 
touch the back side of the TV panel.

(a) (b)

Figure 1.55  (a) Flash capacitor in camera (b) Heart defibrillator
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C
Q
V

Q
V

Cr r= = =0 0

0
0e e � (1.93)

Since er > 1, we have C > Co. Thus 
insertion of the dielectric  increases the 
capacitance.

Using equation (1.84), 

C
A

d
A
d

r= =
e e e0 � (1.94)

where e = er eo  is the permittivity of the 
dielectric medium.

The energy stored in the capacitor before 
the insertion of a dielectric is given by

U
Q
C0

0
2

0

1
2

= � (1.95)

After the dielectric is inserted, the charge 
Q0  remains constant but the capacitance is 
increased. As a result, the stored energy is 
decreased.

U
Q
C

Q
C

U

r r

= = =
1
2

1
2

0
2

0
2

0

0

e e
� (1.96)

Since er > 1 we get U < Uo. There is 
a decrease in energy because,when the 
dielectric is inserted, the capacitor spends 
some energy in pulling the dielectric inside. 

(ii) �When the battery remains connected 
to the capacitor
Let us now consider what happens when 

the battery of voltage V0 remains connected 
to the capacitor when the dielectric is 
inserted into the capacitor. This is shown in 
Figure1.57.

The potential difference V0 across the 
plates remains constant. But it is found 
experimentally (first shown by Faraday) 
that when dielectric is inserted, the charge 
stored in the capacitor is increased by a 
factor er.

++++++++++

d

E
→

E0
→

– – – – – – – – – –

+ -

+++++

– – – – –

εrd

(a)

(b)

Figure 1.56  (a) Capacitor is charged with 
a battery (b) Dielectric is inserted after 
the battery is disconnected

The introduction of dielectric between 
the plates will decrease the electric field. 
Experimentally it is found that the modified 
electric field is given by

E
E

r

= 0

e
� (1.91)

where Eo is the electric field inside the 
capacitors when there is no dielectric 
and er is the relative permittivity of the 
dielectric or simply known as the dielectric 
constant. Since er > 1, the electric field  
E < Eo. 

As a result, the electrostatic potential 
difference between the plates (V = Ed) is also 
reduced. But at the same time, the charge 
Qo will remain constant once the battery is 
disconnected.

Hence the new potential difference is

V Ed
E

d
V

r r

= = =0 0

e e
� (1.92)

We know that capacitance is inversely 
proportional to the potential difference. 
Therefore as V decreases, C increases.

Thus new capacitance in the presence of 
a dielectric is 
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After the dielectric is inserted, the 
capacitance is increased; hence the stored 
energy is also increased.

U CV C V Ur r= = =
1
2

1
20

2
0 0

2
0e e �  (1.101)

Since er > 1 we have U > Uo. 
It may be noted here that since voltage 

between the capacitor V0  is constant, the 
electric field between the plates also remains 
constant. 

The  energy density is given by

u E=
1
2 0

2e � (1.102)

where e is the permittivity of the given 
dielectric material.

The results of the above discussions are 
summarised in the following Table 1.2

Q = er Qo� (1.97)

Due to this increased charge, the 
capacitance is also increased. The new 
capacitance is

C Q
V

Q
V

Cr r= = =
0

0

0
0e e � (1.98)

However the reason for the increase in 
capacitance in this case when the battery 
remains connected is different from the case 
when the battery is disconnected before 
introducing the dielectric.

Now, C
A

d0
0=

e 	

and    C A
d

=
e � (1.99)

The energy stored in the capacitor before 
the insertion of a dielectric is given by

U C V0 0 0
21

2
= � (1.100)

Note that here we have not used the 

expression U
Q
C0

0
2

0

1
2

= because here, both 

charge and capacitance are changed, whereas 
in equation (1.100), Vo remains constant.

++++++++++

d E0
→

→
E0

– – – – – – – – – –

+ -

+ -
εrd

(a)

(b)

+++++++++ + + + + + + + +++

– – – – – – – – – – – –– – – – – – –

Figure 1.57  (a) Capacitor is charged 
through a battery (b) Dielectric is 
inserted when the battery is connected.

 Computer keyboard keys are 
constructed using capacitors 
with a dielectric as shown in 

the figure.

Key

Movable plate
Insulator 
(dielectric)

Fixed plate

A

When the key is pressed, the separation 
between the plates decreases leading to 
an increase in the capacitance. This in 
turn triggers the electronic circuits in 
the computer to identify which key is 
pressed.
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difference between the plates increases. As 
a result, the capacitance is decreased.

New capacitance is 

C C

r
0

12

12

4 425 10
5

0 885 10 0 885

= =
×

= × =

−

−

e

.

. .F pF

The stored charge remains same and 
44.25 pC. Hence newly stored energy is

U Q
C

Q
C

Ur
r0

2

0

2

10 10

2 2
5 2 21 10 11 05 10

= = =

= × × = ×− −

e
e

. .J J

The increased energy is

∆U = − × = ×− −
( . . ) .11 05 2 21 10 8 84 10

10 10
J J

When the dielectric is removed, it 
experiences an inward pulling force due 
to the plates. To remove the dielectric, 
an external agency has to do work on the 
dielectric which is stored as additional 
energy. This is the source for the extra 
energy 8.84 × 10–10 J.

1.8.5  Capacitor in series and 
parallel

(i) Capacitor in series
Consider three capacitors of capacitance 

C1, C2 and C3 connected in series with a battery 
of voltage V as shown in the Figure 1.58 (a).

As soon as the battery is connected to the 
capacitors in series, the electrons of charge 

EXAMPLE 1.21

A parallel plate capacitor filled with mica 
having εr = 5 is connected to a 10 V battery. 
The area of each parallel plate is 6 cm2 and 
separation distance is 6 mm. (a) Find the 
capacitance and stored charge. 

(b) After the capacitor is fully charged, the 
battery is disconnected and the dielectric is 
removed carefully. 

Calculate the new values of capacitance, 
stored energy and charge.

Solution

(a)	 The capacitance of the capacitor in 
the presence of dielectric is 

C
A

d
r= =

× × × ×

×

− −

−

e e0
12 4

3

5 8 85 10 6 10
6 10

.

    = × =−44 25 10 4 42513. .F pF

The stored charge is 

Q CV= = × ×

= × =

−

−

44 25 10 10
442 5 10 44 25

13

13

.
. .C pC

The stored energy is 

U CV C= = × × ×

= ×

−

−

1
2

1
2

44 25 10 100

2 21 10

2 13

10

.

. J

(b) After the removal of the dielectric, since 
the battery is already disconnected the total 
charge will not change. But the potential 

Table 1.2  Effect of dielectrics in capacitors

S. No Dielectric 
is inserted

Charge  
Q

Voltage  
V

Electric field 
E 

Capacitance 
C

Energy 
 U

1 When the battery 
is disconnected Constant decreases Decreases Increases Decreases

2 When the battery 
is connected Increases Constant Constant Increases Increases
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The sum of the voltages across the 
capacitor must be equal to the voltage of the 
battery.

V = V1 + V2 + V3� (1.103)

Since, Q = CV, we have  V Q
C

Q
C

Q
C

= + +
1 2 3

    = + +










Q
C C C
1 1 1

1 2 3

� (1.104)

If three capacitors in series are considered 
to form an equivalent single capacitor Cs  

shown in Figure 1.58(b), then we have 

V Q
CS

= . Substituting this expression into 

equation (1.104), we get

Q
C

Q
C C CS

= + +










1 1 1

1 2 3

1 1 1 1

1 2 3C C C CS

= + + � (1.105)

Thus, the inverse of the equivalent 
capacitance CS of three capacitors 
connected in series is equal to the sum 
of the inverses of each capacitance. This 
equivalent capacitance CS is always less 
than the smallest individual capacitance in 
the series. 

(ii) Capacitance in parallel

Consider three capacitors of capacitance 
C1, C2 and C3 connected in parallel with  
a battery of voltage V as shown in  
Figure 1.59 (a).

Since corresponding sides of the 
capacitors are connected to the same 
positive and negative terminals of the 
battery, the voltage across each capacitor 
is equal to the battery’s voltage. Since 
capacitances of the capacitors are different, 

–Q are transferred from negative terminal 
to the right plate of C3 which pushes the 
electrons of same amount –Q from left 
plate of C3 to the right plate of C2 due to 
electrostatic induction. Similarly, the left 
plate of C2 pushes the charges of –Q to the 
right plate of C1 which induces the positive 
charge +Q on the left plate of C1. At the same 
time, electrons of charge –Q are transferred 
from left plate of C1 to positive terminal of 
the battery.

By these processes, each capacitor 
stores the same amount of charge Q. The 
capacitances of the capacitors are in general 
different, so that the voltage across each 
capacitor is also different and are denoted as 
V1, V2 and V3 respectively.

V1
V2 V3

CS

C2C1 C3
+
+
+
+

+

+
+
+
+

+

+
+
+
+

–
–
–
–

–
–
–
–

–

–

–
–
–
–

V

V

(a)

(b)

Figure 1.58  (a) Capacitors connected 
in series  (b) Equivalent capacitors CS
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Thus, the equivalent capacitance of 
capacitors connected in parallel is equal 
to the sum of the individual capacitances. 
The equivalent capacitance CP in a parallel 
connection is always greater than the 
largest individual capacitance. In a parallel 
connection, it is equivalent as area of each 
capacitance adds to give more effective 
area such that total capacitance increases.

EXAMPLE 1.22

Find the equivalent capacitance between P 
and Q for the configuration shown below 
in the figure (a). 

QQ Q QPPP P6µF
6µF

4µF8µF
8µF 8µF

2µF

2µF

4
4µF

4µF

3µF

1µF

(a) (b) (c) (d)

µF

Solution

The capacitors 1 µF and  3 µF are 
connected in parallel and 6 µF and 2 µF 
are also separately connected in parallel. 
So these parallel combinations reduced 
to equivalent single capacitances in their 
respective positions, as shown in the  
figure (b).

Ceq = 1 + 3 = 4 µF

Ceq = 6 + 2 = 8 µF

From the figure (b), we infer that the two 
4 µF capacitors are connected in series and 
the two 8 µF capacitors are connected in 
series. By using formula for the series, we 
can reduce to their equivalent capacitances 
as shown in  figure (c).

the charge stored in each capacitor is not 
the same. Let the charge stored in the three 
capacitors be Q1, Q2, and Q3 respectively. 
According to the law of conservation of 
total charge, the sum of these three charges 
is equal to the charge Q transferred by the 
battery,

Q = Q1 +Q2 +Q3� (1.106)

Since    Q = CV, we have	

Q = C1V + C2V + C3V� (1.107)

If these three capacitors are considered 
to form a single equivalent capacitance CP  
which stores the total charge Q as shown in 
the Figure 1.59(b), then we can write Q = CPV. 
Substituting this in equation (1.107), we get

CPV = C1V + C2V + C3V

    CP = C1 + C2 + C3� (1.108)

V

Q1

C1 C2 C3

Q2 Q3+
-

V
+
-

Q
CP

(a)

(b)

Figure 1.59  (a) capacitors in parallel 
(b) equivalent capacitance with the same 
total charge
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If a charge Q is introduced into any one of 
the spheres, this charge Q is redistributed into 
both the spheres such that the electrostatic 
potential is same in both the spheres. They 
are now uniformly charged and attain 
electrostatic equilibrium. Let q1 be the charge 
residing on the surface of sphere A and q2 is 
the charge residing on the surface of sphere 
B such that Q = q1 + q2. The charges are 
distributed only on the surface and there is 
no net charge inside the conductor.

The electrostatic potential at the surface 
of the sphere A is given by

V
q
rA =

1
4

1

1πe


� (1.109)

The electrostatic potential at the surface 
of the sphere B is given by

V
q
rB =

1
4

2

2πe


� (1.110)

The surface of the conductor is an 
equipotential. Since the spheres are 
connected by the conducting wire, the 
surfaces of both the spheres together form 
an equipotential surface. This implies that

      VA = VB 

or	 q
r

q
r

1

1

2

2

= � (1.111)

Let the charge density on the surface of 
sphere A be σ1 and that on the surface of 
sphere B be σ2. This implies that q1 = 4πr1

2σ1 
and 

q2 = 4πr2
2σ2. Substituting these values 

into equation (1.112), we get

σ1r1 = σ2r2� (1.112)

from which we conclude that

σr = constant� (1.113)

1 1
4

1
4

1
2

2
C

C
eq

eq= + = ⇒ = µF  

and

1 1
8

1
8

1
4

4
C

C
eq

eq= + = ⇒ = µF

From the figure (c), we infer that 2 µF 
and 4 µF are connected in parallel. So 
the equivalent capacitance is given in the  
figure (d).	

Ceq = 2 + 4 = 6 µF

Thus the combination of capacitances 
in figure (a) can be replaced by a single 
capacitance  6 µF.

1.9
DISTRIBUTION 
OF CHARGES IN A 
CONDUCTOR AND ACTION 
AT POINTS

1.9.1  Distribution of charges 
in a conductor

Consider two conducting spheres A and 
B of radii r1 and r2 respectively connected 
to each other by a thin conducting wire 
as shown in the Figure 1.60. The distance 
between the spheres is much greater than 
the radii of either spheres.

B

q1

q2r1 r2

A

�in conducting wire

Figure 1.60  Two conductors are 
connected through conducting wire
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Q q
r
r

q− =








2

1

2
2

so that  q Q
r

r r2
2

1 2

=
+











Therefore,

q2
9100 10 2

10
20= × ×








=

− nC

and q1 = Q – q2 = 80nC 

The electric charge density on sphere A 

is σ
π1

1

1
24

=
q

r
 

The electric charge density on sphere B 

is σ
π2

2

2
24

=
q

r
Therefore,

σ
π1

9

4
680 10

4 64 10
0 99 10=

×
× ×

= ×
−

−
− −. C m 2

and

σ
π2

9

4
620 10

4 4 10
3 9 10=

×
× ×

= ×
−

−
− −. C m 2

Note that the surface charge density is 
greater on the smaller sphere compared to 
the larger sphere (σ2 ≈ 4σ1) which confirms 

the result σ
σ

1

2

2

1

=
r
r

. 

The potential on both spheres is the 
same. So we can calculate the potential on 
any one of the spheres.

V q
rA = =

× × ×
×

=
−

−

1
4

9 10 80 10
8 10

91

1

9 9

2πe


kV

1.9.2  Action of points or 
Corona discharge

Consider a charged conductor of 
irregular shape as shown in Figure 1.61 (a).

Thus the surface charge density σ is 
inversely proportional to the radius of the 
sphere. For a smaller radius, the charge 
density will be larger and vice versa.

EXAMPLE 1.23

Two conducting spheres of radius  
r1 = 8 cm and r2 = 2 cm are separated by 
a distance much larger than 8 cm and 
are connected by a thin conducting wire 
as shown in the figure. A total charge of  
Q = +100 nC is placed on one of the spheres. 
After a fraction of a second, the charge  
Q is redistributed and both the spheres 
attain electrostatic equilibrium.

Br1 r2

A

�in conducting wire

(a)	� Calculate the charge and surface 
charge density on each sphere.

(b)	� Calculate the potential at the surface 
of each sphere.

Solution

(a)	 The electrostatic potential on the 
surface of the sphere A is V q

rA =
1

4
1

1πe


The electrostatic potential on the surface 

of the sphere B is V q
rB =

1
4

2

2πe


Since VA = VB. We have	

q
r

q
r

q r
r

q1

1

2

2
1

1

2
2= ⇒ =











But from the conservation of total charge,  
Q = q1 + q2, we get q1 = Q – q2. By substituting 
this in the above equation,
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This device consists of a long thick 
copper rod passing from top of the building 
to the ground. The upper end of the rod has 
a sharp spike or a sharp needle as shown in 
Figure 1.62 (a) and (b).

Figure 1.62  (a) Schematic diagram of 
a lightning arrestor. (b) A house with a 
lightning arrestor

The lower end of the rod is connected to 
copper plate which is buried deep into the 
ground. When a negatively charged cloud 
is passing above the building, it induces 
a positive charge on the spike. Since the 
induced charge density on thin sharp spike 
is large, it results in a corona discharge. This 
positive charge ionizes the surrounding air 
which in turn neutralizes the negative charge 
in the cloud. The negative charge pushed to 
the spikes passes through the copper rod and 

Figure 1.61  Action of points or corona 
discharge

We know that smaller the radius of 
curvature, the larger is the charge density. 
The end of the conductor which has larger 
curvature (smaller radius) has a large charge 
accumulation as shown in Figure 1.61 (b). 

As a result, the electric field near this edge 
is very high and it ionizes the surrounding 
air. The positive ions are repelled at the sharp 
edge and negative ions are attracted towards 
the sharper edge. This reduces the total charge 
of the conductor near the sharp edge. This is 
called action of points or corona discharge.

1.9.3  Lightning arrester or 
lightning conductor

This is a device used to protect tall 
buildings from lightning strikes. It works on 
the principle of action at points or corona 
discharge.
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the positive charges are distributed uniformly 
on the outer surface of the hollow sphere. At 
the same time, the negative charges nullify 
the positive charges in the belt due to corona 
discharge before it passes over the pulley. 

When the belt descends, it has almost no 
net charge. At the bottom, it again gains a 
large positive charge. The belt goes up and 
delivers the positive charges to the outer 
surface of the sphere. This process continues 
until the outer surface produces the potential 
difference of the order of 107 which is the 
limiting value. We cannot store charges 
beyond this limit since the extra charge 
starts leaking to the surroundings due to 
ionization of air. The leakage of charges can 

is safely diverted to the Earth. The lightning 
arrester does not stop the lightning; rather 
it diverts the lightning to the ground safely.

1.9.4  Van de Graaff 
Generator

In the year 1929, Robert Van de Graaff 
designed a machine which produces a large 
amount of electrostatic potential difference, 
up to several million volts (107 V). This Van 
de Graff generator works on the principle of 
electrostatic induction and action at points.

A large hollow spherical conductor is 
fixed on the insulating stand as shown in 
Figure 1.63. A pulley B is mounted at the 
centre of the hollow sphere and another 
pulley C is fixed at the bottom. A belt made 
up of insulating materials like silk or rubber 
runs over both pulleys. The pulley C is 
driven continuously by the electric motor. 
Two comb shaped metallic conductors E 
and D are fixed near the pulleys.

The comb D is maintained at a positive 
potential of 104 V by a power supply. The 
upper comb E is connected to the inner side 
of the hollow metal sphere.

Due to the high electric field near comb 
D, air between the belt and comb D gets 
ionized by the action of points. The positive 
charges are pushed towards the belt and 
negative charges are attracted towards the 
comb D. The positive charges stick to the 
belt and move up. When the positive charges 
on the belt reach the point near the comb E, 
the comb E acquires negative charge and 
the sphere acquires positive charge due 
to electrostatic induction. As a result, the 
positive charges are pushed away from the 
comb E and they reach the outer surface of 
the sphere. Since the sphere is a conductor, 
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Figure 1.63  Van de Graaff generator
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E Q
R

=
1

4 2πe


The potential on the surface of the hollow 
metallic sphere is given by 

V Q
R

ER= =
1

4πe


Since	Vmax = EmaxR

Here Emax = ×
−3 106 Vm .1  So the maximum 

potential difference created is given by

Vmax = 3 × 106 × 0.5 
        = 1.5 × 106 V (or) 1.5 million volt

be reduced by enclosing the machine in a gas 
filled steel chamber at very high pressure.

The high voltage produced in this Van de 
Graaff generator is used to accelerate positive 
ions (protons and deuterons) for nuclear 
disintegrations and other applications.

EXAMPLE 1.24

Dielectric strength of air is 3 × 106 V m–1. 
Suppose the radius of a hollow sphere in 
the Van de Graff generator is R = 0.5 m, 
calculate the maximum potential difference 
created by this Van de Graaff generator.

Solution

The electric field on the surface of the 
sphere is given by (by Gauss law)
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Unit 1   Electrostatics68

	� Like charges repel and unlike charges attract.
	� The total charge in the universe is conserved.
	� Charge is quantized. Total charge in an object q = ne where n = 0,1,2,3… and  

e is charge of the electron.

	� Coulomb’s law in vector form: 
�

�

F
q q
r

r=
1

4
1 2

2πe
 ( ris unit vector along joining q1, q2).

	� Electrostatic force obeys the superposition principle.

	� Electric field at a distance r from a point charge: 
�

�

E q
r

r=
1

4 2πe
.

	� Electric field lines starts at a positive charge and end at a negative charge or at infinity.

	� Electric field due to electric dipole at points on the axial line : 
� �

�

E p
rtot =









1
4

2
3πe

.

	� Electric field due to electric dipole at points on the equatorial line:
� �

�

E p
rtot =−









1
4 3πe

.

	� Torque experienced by a dipole in a uniform electric field:  



τ= ×p E .

	� Electrostatic potential at a distance r from the point charge: V q
r

=
1

4πe


.

	� Electrostatic potential due to an electric dipole: V p r
r

=
⋅1

4 2πe�

�
 .

	� The electrostatic potential is the same at all points on an equipotential surface.

	� The relation between electric field and electrostatic potential:

	


E V
x

i V
y

j V
z

k=−
∂
∂

+
∂
∂

+
∂
∂











 

 .

	� Electrostatic potential energy for system of charges is equal to the work done to 
arrange the charges in the given configuration. 

	� Electrostatic potential energy of a dipole system in a uniform electric field: U p E=− ⋅




.

	� The total electric flux through a closed surface : ΦE
Q

=
e


 where Q is the net charge 
enclosed by the surface.

	�  Electric field due to a charged infinite wire : 
�

�

E
r

r=
1

2π
λ

e
.

	� Electric field due to a charged infinite plane : 
�

�

E n=
σ

2e
  (n  is normal to the plane).

	�  Electric field inside a charged spherical shell is zero. For points outside: 
�

�

E Q
r

r=
4 2πe

.

S U M M A R Y
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	� Electric field inside a conductor is zero. The electric field at the surface of the 

conductor is normal to the surface and has magnitude E =
σ
e


.

	� The surface of the conductor has the same potential, at all points on the surface.

	� Conductor can be charged using the process of induction.
	� A dielectric or insulator has no free electrons. When an electric field is applied, the 

dielectric is polarised.

	� Capacitance of a conductor is given by C Q
V

= .

	� Capacitance of a parallel plate capacitor: C A
d

=
e
 .

	� Electrostatic energy stored in a capacitor: U CV=
1
2

2 .

	� The equivalent capacitance for parallel combination is equal to the sum of individual 
capacitance of the capacitors.

	� For a series combination: The inverse of equivalent capacitance is equal to sum of 
inverse of individual capacitance of capacitors.

	� The distribution of charges in the conductors depends on the shape of conductor. 
For sharper edge, the surface charge density is greater. This principle is used in the 
lightning arrestor.

	� Van de Graaff generator is used to produce large potential difference (~107 V). 
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Conductors

ELECTROSTATICS

Point charge Coloumb’s law Dipole

Gauss law

Electric �eld Electric potential

Electric �ux Electric Potential 
energy

Van de Gra� 
Generator

Series Capacitors Parallel

With dielectric Without dielectric

C O N C E P T  M A P
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EVALUATION

I Multiple choice questions

	 1.	 Two identical point charges of 
magnitude –q are fixed as shown in the 
figure below. A third charge +q is placed 
midway between the two charges at 
the point P. Suppose this charge +q is 
displaced a small distance from the 
point P in the directions indicated 
by the arrows, in which direction(s) 
will +q be stable with respect to the 
displacement?

-q -q

+q
A1 A2

B2

B1

P
– –+

(a) A1 and A2	 (b) B1 and B2 
(c) both directions	 (d) No stable

	 2.	 Which charge configuration produces 
a uniform electric field?
(a) point charge
(b) uniformly charged infinite line
(c) uniformly charged infinite plane
(d) uniformly charged spherical shell

	 3.	 What is the ratio of the charges q
q

1

2

 for 

the following electric field line pattern?

q1 q2

(a) 1
5

	 (b) 25
11

(c) 5	 (d) 11
25

	 4.	 An electric dipole is placed at an 
alignment angle of 30o with an electric 
field of 2 × 105 N C–1. It experiences a 
torque equal to 8 N m. The charge on 
the dipole if the dipole length is 1 cm is
(a) 4 mC	 (b) 8 mC
(c) 5 mC	 (d) 7 mC

	 5.	 Four Gaussian surfaces are given below 
with charges inside each Gaussian 
surface. Rank the electric flux through 
each Gaussian surface in increasing 
order.

+
+2q A

B

C
D

+

+q

–q
–

(a) D < C < B < A
(b) A < B = C < D
(c) C < A = B < D
(d) D > C > B > A

	 6.	 The total electric flux for the following 
closed surface which is kept inside 
water 
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++++++++++

+++++++++++–––––––

+qq

+2qqqq–––qqq
Water

(a) 80q
e


	 (b) q
40e



(c) q
80e



	 (d) q
160e



	 7.	 Two identical conducting balls having 
positive charges q1 and q2 are separated 
by a centre to centre distance r. If they 
are made to touch each other and then 
separated to the same distance, the 
force between them will be		
(NSEP 04-05)
(a) less than before
(b) same as before
(c) more than before
(d) zero

	 8.	 Rank the electrostatic potential 
energies for the given system of charges 
in increasing order. 

Q Q-Q -Q-Q -Q -2Q -2Qrr

(a) (b) (d)(c)

2r– – – –r –+ –+

(a) 1 = 4 < 2 < 3	 (b) 2 = 4 < 3 < 1
(c) 2 = 3 < 1 < 4	 (d) 3 < 1 < 2 < 4

	 9.	 An electric field 


E xi=10  exists in 
a certain region of space. Then the 

potential difference V = Vo – VA, where 
Vo is the potential at the origin and VA 
is the potential at x = 2 m is:
(a) 10 V	 (b) –20 V
(c) +20 V	 (d) –10 V

	10.	 A thin conducting spherical shell 
of radius R has a charge Q which is 
uniformly distributed on its surface. 
The correct plot for electrostatic 
potential due to this spherical shell is

VV V V

O O O O
R R R Rr r r r

(b) (c) (d)(a)

VV V V

O O O O
R R R Rr r r r

(b) (c) (d)(a)

	11.	 Two points A and B are maintained at 
a potential of 7 V and -4 V respectively. 
The work done in moving 50 electrons 
from A to B is
(a) 8.80 × 10–17 J
(b) -8.80 × 10–17 J
(c) 4.40 × 10–17 J
(d) 5.80 × 10–17 J 

	12. 	 If voltage applied on a capacitor is 
increased from V to 2V, choose the 
correct conclusion.
(a) Q remains the same, C is doubled 
(b) Q is doubled, C doubled 
(c) C remains same, Q doubled 
(d) Both Q and C remain same
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	13.	 A parallel plate capacitor stores a 
charge Q at a voltage V. Suppose the 
area of the parallel plate capacitor and 
the distance between the plates are each 
doubled then which is the quantity that 
will change?
(a) Capacitance
(b) Charge
(c) Voltage
(d) Energy density

	14.	 Three capacitors are connected in 
triangle as shown in the figure. The 
equivalent capacitance between the 
points A and C is

2µF

2µF

1µF

A B

C

(a) 1µF 	 (b) 2 µF

(c) 3 µF 	 (d) 1
4

µF  

	15.	 Two metallic spheres of radii 1 cm and 
3 cm are given charges of –1 × 10–2 C 

and 5 × 10–2 C respectively. If these 
are connected by a conducting wire, 
the final charge on the bigger sphere is   
(AIIPMT -2012)
(a) 3 × 10–2 C
(b) 4 × 10–2 C 

(c)  1 × 10–2 C
(d) 2 × 10–2 C 

Answers

	 1) b	 2) c	 3) d	 4) b	 5) a
	 6) b	 7) c	 8) a	 9) c	 10) b
	11) a	 12) c	 13) d	 14) b	 15) a

II Short Answer Questions

	 1.	 What is meant by quantisation of 
charges?

	 2.	 Write down Coulomb’s law in vector 
form and mention what each term 
represents.

	 3.	 What are the differences between 
Coulomb force and gravitational  
force?

	 4.	 Write a short note on superposition 
principle.

	 5.	 Define ‘electric field’.
	 6.	 What is mean by ‘electric field lines’?
	 7.	 The electric field lines never intersect.

Justify.
	 8.	 Define ‘electric dipole’. Give the 

expression for the magnitiude of 
its electric dipole moment and the 
direction.

	 9.	 Write the general definition of electric 
dipole moment for a collection of point 
charge.

	10.	 Define ‘electrostatic potential”.
	11.	 What is an equipotential surface?
	12.	 What are the properties of an 

equipotential surface?
	13.	 Give the relation between electric field 

and electric potential.
	14.	 Define ‘electrostatic potential energy’.
	15.	 Define ‘electric flux’.
	16.	 What is meant by electrostatic energy 

density?
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	17.	 Write a short note on ‘electrostatic 
shielding’.

	18.	 What is polarisation?
	19.	 What is dielectric strength?

	20.	 Define ‘capacitance’. Give its unit.

	21.	 What is corona discharge?

III Long Answer questions

	 1.	 Discuss the basic properties of electric 
charges.

	 2.	 Explain in detail Coulomb’s law and its 
various aspects.

	 3.	 Define ‘electric field’ and discuss its 
various aspects.

	 4.	 Calculate the electric field due to a 
dipole on its axial line and equatorial 
plane.

	 5.	 Derive an expression for the torque 
experienced by a dipole due to a 
uniform electric field.

	 6.	 Derive an expression for electrostatic 
potential due to a point charge.

	 7.	 Derive an expression for electrostatic 
potential due to an electric dipole.

	 8.	 Obtain an expression for potential 
energy due to a collection of three 
point charges which are separated by 
finite distances.

	 9.	 Derive an expression for electrostatic 
potential energy of the dipole in a 
uniform electric field.

	10.	 Obtain Gauss law from Coulomb’s law.

	11.	 Obtain the expression for electric field 
due to an infinitely long charged wire.

	12.	 Obtain the expression for electric field 
due to an charged infinite plane sheet.

	13.	 Obtain the expression for electric field 
due to an uniformly charged spherical 
shell.

	14.	 Discuss the various properties of 
conductors in electrostatic equilibrium.

	15.	 Explain the process of electrostatic 
induction.

	16.	 Explain dielectrics in detail and how an 
electric field is induced inside a dielectric.

	17.	 Obtain the expression for capacitance 
for a parallel plate capacitor.

	18.	 Obtain the expression for energy stored 
in the parallel plate capacitor.

	19.	 Explain in detail the effect of a dielectric 
placed in a parallel plate capacitor.

	20.	 Derive the expression for resultant 
capacitance, when capacitors are 
connected in series and in parallel.

	21.	 Explain in detail how charges are 
distributed in a conductor, and 
the principle behind the lightning 
conductor.

	22.	 Explain in detail the construction and 
working of a Van de Graaff generator.

Exercises

	 1.	 When two objects are rubbed with 
each other, approximately a charge of 
50 nC can be produced in each object. 
Calculate the number of electrons that 
must be transferred to produce this 
charge.

� Ans: 31.25 × 1010 electrons
	 2.	 The total number of electrons in the 

human body is typically in the order of 
1028.   Suppose, due to some reason, you 
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and your friend lost 1% of this number 
of electrons. Calculate the electrostatic 
force between you and your friend 
separated at a distance of 1m. Compare 
this with your weight. Assume mass 
of each person is 60 kg and use point 
charge approximation.

� Ans: Fe = 23 × 1023 N, W = 588 N, 

 � F
W
e = ×3 9 10

21
.

	 3.	 Five identical charges Q are placed 
equidistant on a semicircle as shown 
in the figure. Another point charge q is 
kept at the centre of the circle of radius 
R. Calculate the electrostatic force 
experienced by the charge q.

Q

Q

Q
Q

Q

q x

y

R

� Ans: 
�

�

F qQ
R

i= +( )1
4

1 22πe
N  

	 4.	 Suppose a charge +q on Earth’s surface 
and another +q charge is placed on 
the surface of the Moon. (a) Calculate 
the value of q required to balance the 
gravitational attraction between Earth 
and Moon (b) Suppose the distance 
between the Moon and Earth is halved, 
would the charge q change?

(Take mE = 5.9 × 1024 kg, mM = 7.9 × 1022 kg)
	 Ans: (a) q ≈ +5.87 × 1013 C,  
� (b) no change

	 5.	 Draw the free body diagram for the 
following charges as shown in the 
figure (a), (b) and (c).

--
--

------- -- ----------
+
+
+
+
+
+
++ +
+
+
+

+++++++++++

v0-q+q

E
→

→

x = 0

k m,Q

(b) (c)(a)

-+

� Ans:

-kx

N

QE

mg mg mg

(a) (b) (c)

T

qE

qE

-kx

N

QE

mg mg mg

(a) (b) (c)

T

qE

qE

	 6.	 Consider an electron travelling with a 
speed vo and entering into a uniform 
electric field 



E  which is perpendicular 
to ��v  as shown in the Figure. 
Ignoring gravity, obtain the electron’s 
acceleration, velocity and position as 
functions of time.

v0 E

+ + + + + + + + + + +

→

P

x

y

→

____________

–
e

� Ans : 
� � �

� �a eE
m

j i eE
m

tj r t i eE
m

t j=− = − = −    , ,v v v 1
2

2
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	 7.	 A closed triangular box is kept 
in an electric field of magnitude 
E = 2 × 103 N C–1 as shown in the figure. 

5cm

15cm

E
→

60°

	 Calculate the electric flux through 
the (a) vertical rectangular surface  
(b) slanted surface and (c) entire surface.

Ans: (a) –15 Nm2 C–1 (b) 15 Nm2 C–1 (c) zero
	 8.	 The electrostatic potential is given as 

a function of x in figure (i) and (ii).  
(a) Calculate the corresponding electric 
fields in regions A, B, C and D for the 
Figure (i). (b) Plot the electric field as a 
function of x for the figure (ii).

0

2

4

6

0.2 0.4 0.6 x(m)

x(cm)

V V
30
20

10

  0

-10

-20

-30

1 2
3

4
5

A

B

C

D

(i) (ii)

Ans: (a) EX = 15 Vm–1 (region A), EX = -10 
Vm–1 (region C)

	 EX = 0 (region B), EX = 30 Vm–1  
(region D)

	 (b)

x(cm)

30

20

10

  0

-10

-20

-30

2 3 4 51

E

	 9.	 A spark plug in a bike or a car is used 
to ignite the air-fuel mixture in the 
engine. It consists of two electrodes 
separated by a gap of around 0.6 mm 
gap as shown in the figure.

 To create the spark, an electric field of 
magnitude 3 × 106 Vm–1 is required. 
(a) What potential difference must be 
applied to produce the spark? (b) If 
the gap is increased, does the potential 
difference increase, decrease or 
remains the same? (c) find the potential 
difference if the gap is 1 mm.

� Ans: (a) 1800 V, (b) increases (c) 3000 V

	10.	 A point charge of +10 µC is placed 
at a distance of 20 cm from another 
identical point charge of +10 µC. A 
point charge of -2 µC is moved from 
point a to b as shown in the figure. 
Calculate the change in potential 
energy of the system? Interpret your 
result.

10µC

–2µC

10µC5 cm

5 cm

15 cm
a

b

++ –

–
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Ans: ∆U = +1.12 J, positive sign implies that 
to move the charge –2µC external work is 
required. 
	11.	 Calculate the resultant capacitances for 

each of the following combinations of 
capacitors.

C0

C0

C0

C0

C0

C0

C0 C0

C0

C0

C0

C0

C0

C1

C3
C4

C2

C0
R S P Q

(a) (b) (c) (d) (e)

P

Q

C0

C0

C0

C0

C0

C0

C0 C0

C0

C0

C0

C0

C0

C1

C3
C4

C2

C0
R S P Q

(a) (b) (c) (d) (e)

P

Q

� Ans: (a) 2
3

C


   (b) C


  (c) 3C


(d) across PQ: 

C C C C C C C C C C C C
C C C C

1 2 3 2 3 4 1 2 4 1 3 4

1 3 2 4

+ + +
+( ) +( )

	 across RS: 

C C C C C C C C C C C C
C C C C

1 2 3 2 3 4 1 2 4 1 3 4

1 2 3 4

+ + +
+( ) +( )

  

(e) across PQ: 2 Co 

	12.	 An electron and a proton are allowed 
to fall through the separation between 
the plates of a parallel plate capacitor  
of voltage 5 V and separation distance 
h = 1 mm as shown in the figure.

+ +++++++++

+ +++++++++

Electron Neutron Protony

x

+-

– – – – – – – – – –

– – – – – – – – – –

(a)	 Calculate the time of flight for both 
electron and proton (b) Suppose if  a 
neutron is allowed to fall, what is the 
time of flight? (c) Among the three, 
which one will reach the bottom first? 
(Take mp = 1.6 × 10–27 kg, me = 9.1 × 10–31  
kg and g = 10 m s–2)

Ans: 

(a) t hm
eEe

e= ≈
2

1 5. ns  (ignoring the gravity),

t
hm
eEp

p= ≈
2

63ns  (ignoring the gravity)

(b)  t h
gn = ≈

2 14 1. ms

(c) electron will reach first
	13.	 During a thunder storm, the movement 

of water molecules within the clouds 
creates friction, partially causing the 
bottom part of the clouds to become 
negatively charged. This implies 
that the bottom of the cloud and the 
ground act as a parallel plate capacitor. 
If the electric field between the cloud 
and ground exceeds the dielectric 
breakdown of the air (3 × 106 Vm–1 ), 
lightning will occur. 

+  +  +  +  +  +  +  +  +  +  +  
+  +  +  +  +  +  +  +  +  +  +  

+  

– –– –– –– –– –– –– –– –– –

–

Positive charge

Negative charge
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(a)	 If the bottom part of the cloud is 1000 
m above the ground, determine the 
electric potential difference that exists 
between the cloud and ground.

(b)	 In a typical lightning phenomenon, 
around 25 C of electrons are transferred 
from cloud to ground. How much 
electrostatic potential energy is 
transferred to the ground?

� Ans: (a) V = 3 × 109 V, (b) U = 75 × 109 J 
	14.	 For the given capacitor configuration 

(a) Find the charges on each capacitor  
(b) potential difference across them  
(c) energy stored in each capacitor

8µF 8µF2µF

6µF

9V
+ -

b

d

a

c

  Ans: 
	 Qa = 24 µC,	 Qb = 18 µC,
	 Qc = 6  µC,	 Qd = 24 µC 
	 Va = 3V,	 Vb = 3V, 
	 Vc = 3V,	 Vd = 3V, 
	 Ua = 36 µJ,	 Ub = 27 µJ, 
	 Uc = 9 µJ,	 Ud = 36 µJ
	15.	 Capacitors P and Q have identical cross 

sectional areas A and separation d. The 
space between the capacitors is filled 
with a dielectric of dielectric constant 
er as shown in the figure. Calculate the 
capacitance of capacitors P and Q.

PP Q

  Ans : C A
d

C A
dP r Q

r

r

= +( ) =
+











e
e

e e

e
 

2
1 2

1
,  
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