Chapter 5

Continuity and Differentiability

Exercise 5.8

Q. 1 Verify Rolle's theorem for the function $f(x) = x^2 + 2x - 8$, $x \in [-4, 2]$.

Answer:

The given function is $f(x) = x^2 + 2x - 8$ and $x \in [-4, 2]$.

By Rolle's Theorem, for a function $f: [a, b] \rightarrow R$, if

- (a) f is continuous on [a, b]
- (b) f is differentiable on (a, b)
- (c) f(a) = f(b)

Then there exists some c in (a, b) such that f'(c) = 0.

As $f(x) = x^2 + 2x - 8$ is a polynomial function,

- (a) f(x) is continuous in [-4, 2]
- (b) f'(x) = 2x + 2

So, f(x) is differentiable in (-4, 2).

(c)
$$f(a) = f(-4) = (-4)^2 + 2(-4) - 8 = 16 - 8 - 8 = 16 - 16 = 0$$

$$f(b) = f(2) = (2)^2 + 2(2) - 8 = 4 + 4 - 8 = 8 - 8 = 0$$

Hence, f(a) = f(b).

: There is a point $c \in (-4, 2)$ where f'(c) = 0.

$$f(x) = x^2 + 2x - 8$$

$$f'(x) = 2x + 2$$

$$f(c) = 0$$

$$\Rightarrow$$
 f'(c) = 2c + 2 = 0

$$\Rightarrow 2c = -2$$

$$\Rightarrow$$
 c = -2/2

$$\Rightarrow$$
 c = -1 where c = -1 \in (-4, 2)

Hence, Rolle's Theorem is verified.

Q. 2 Examine if Rolle's theorem is applicable to any of the following functions. Can you say something about the converse of Rolle's theorem from these examples?

(i)
$$f(x) = [x]$$
 for $x \in [5, 9]$

(ii)
$$f(x) = [x]$$
 for $x \in [-2, 2]$

(iii)
$$f(x) = x^2 - 1$$
 for $x \in [1, 2]$

Answer:

By Rolle's Theorem, for a function $f: [a, b] \rightarrow R$, if

- (a) f is continuous on [a, b]
- (b) f is differentiable on (a, b)

(c)
$$f(a) = f(b)$$

Then there exists some c in (a, b) such that f'(c) = 0.

If a function does not satisfy any of the above conditions, then Rolle's Theorem is not applicable.

(i)
$$f(x) = [x]$$
 for $x \in [5, 9]$

As the given function is a greatest integer function,

- (a) f(x) is not continuous in [5, 9]
- (b) Let y be an integer such that $y \in (5, 9)$

Left hand limit of f(x) at x = y:
$$\lim_{h \to 0^-} \frac{f(y+h) - f(y)}{h} = \lim_{h \to 0^-} \frac{[y+h] - [y]}{h} = \lim_{h \to 0^-} \frac{y-1-y}{h} = \lim_{h \to 0^-} \frac{-1}{h} = \infty$$

Right hand limit of f(x) at x = y:

$$\lim_{h \to 0^+} \frac{f(y+h) - f(y)}{h} = \lim_{h \to 0^+} \frac{[y+h] - [y]}{h} = \lim_{h \to 0^+} \frac{y - y}{h} = \lim_{h \to 0^+} \frac{0}{h} = 0$$

Since, left and right hand limits of f(x) at x = y is not equal, f(x) is not differentiable at x=y.

So, f(x) is not differentiable in [5, 9]

(c)
$$f(a)=f(5)=[5]=5$$

$$f(b) = f(9) = [9] = 9$$

$$f(a) \neq f(b)$$

Here, f(x) does not satisfy the conditions of Rolle's Theorem.

Rolle's Theorem is not applicable for f(x) = [x] for $x \in [5, 9]$.

(ii)
$$f(x) = [x]$$
 for $x \in [-2, 2]$

As the given function is a greatest integer function,

- (a) f(x) is not continuous in [-2, 2]
- (b) Let y be an integer such that $y \in (-2, 2)$

Left hand limit of f(x) at x = y:

$$\lim_{h \to 0^{-}} \frac{f(y+h) - f(y)}{h} = \lim_{h \to 0^{-}} \frac{[y+h] - [y]}{h} = \lim_{h \to 0^{-}} \frac{y - 1 - y}{h} = \lim_{h \to 0^{-}} \frac{-1}{h} = \infty$$

Right hand limit of f(x) at x = y:

$$\lim_{h \to 0^+} \frac{f(y+h) - f(y)}{h} = \lim_{h \to 0^+} \frac{[y+h] - [y]}{h} = \lim_{h \to 0^+} \frac{y - y}{h} = \lim_{h \to 0^+} \frac{0}{h} = 0$$

Since, left and right hand limits of f(x) at x = y is not equal, f(x) is not differentiable at x = y.

So, f(x) is not differentiable in (-2, 2)

(c)
$$f(a)= f(-2) = [-2] = -2$$

$$f(b) = f(2) = [2] = 2$$

$$f(a) \neq f(b)$$

Here, f(x) does not satisfy the conditions of Rolle's Theorem.

Rolle's Theorem is not applicable for f(x) = [x] for $x \in [-2, 2]$.

(iii)
$$f(x) = x^2 - 1$$
 for $x \in [1, 2]$

As the given function is a polynomial function,

(a) f(x) is continuous in [1, 2]

(b)
$$f'(x) = 2x$$

So, f(x) is differentiable in [1, 2]

(c)
$$f(a) = f(1) = 1^2 - 1 = 1 - 1 = 0$$

$$f(b) = f(2) = 2^2 - 1 = 4 - 1 = 3$$

$$f(a) \neq f(b)$$

Here, f(x) does not satisfy a condition of Rolle's Theorem.

Rolle's Theorem is not applicable for $f(x) = x^2 - 1$ for $x \in [1, 2]$.

Q. 3

If $f: [-5, 5] \to R$ is a differentiable function and if f'(x) does not vanish anywhere, then prove that $f(-5) \neq f(5)$.

Answer:

Given: f: $[-5, 5] \rightarrow R$ is a differentiable function.

Mean Value Theorem states that for a function $f: [a, b] \rightarrow R$, if

(a)f is continuous on [a, b]

(b)f is differentiable on (a, b)

Then there exists some $c \in (a, b)$ such that

We know that a differentiable function is a continuous function.

So,

- (a) f is continuous on [-5, 5]
- (b) f is differentiable on (-5, 5)
- ∴ By Mean Value Theorem, there exists $c \in (-5, 5)$ such that

$$\Rightarrow$$
 f'(c) = $\frac{f(5)-f(-5)}{5-(-5)}$

$$\Rightarrow$$
 10 f(c) = f(5) - f(-5)

It is given that f'(x) does not vanish anywhere.

$$\therefore$$
 f'(c) \neq 0

$$10 \, f(c) \neq 0$$

$$f(5) - f(-5) \neq 0$$

$$f(5) \neq f(-5)$$

Hence proved.

By Mean Value Theorem, it is proved that $f(5) \neq f(-5)$.

Q. 4 Verify Mean Value Theorem, if $f(x) = x^2 - 4x - 3$ in the interval [a, b], where a = 1 and b = 4.

Answer:

Given: $f(x) = x^2 - 4x - 3$ in the interval [1, 4]

Mean Value Theorem states that for a function $f: [a, b] \rightarrow R$, if

- (a)f is continuous on [a, b]
- (b)f is differentiable on (a, b)

Then there exists some $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

As f(x) is a polynomial function,

(a) f(x) is continuous in [1, 4]

(b)
$$f'(x) = 2x - 4$$

So, f(x) is differentiable in (1, 4).

$$\therefore \frac{f(b) - f(a)}{b - a} = \frac{f(4) - f(1)}{4 - 1}$$

$$f(4) = 4^2 - 4(4) - 3 = 16 - 16 - 3 = -3$$

$$f(1) = 1^2 - 4(1) - 3 = 1 - 4 - 3 = -6$$

$$=\frac{f(4)-f(1)}{4-1}=\frac{-3-(-6)}{4-1}=\frac{3}{3}=1$$

 \therefore There is a point $c \in (1, 4)$ such that f(c) = 1

$$\Rightarrow$$
 f'(c) = 1

$$\Rightarrow$$
 2c - 4 = 1

$$\Rightarrow$$
 2c = 1+4 = 5

$$\Rightarrow$$
 c = 5/2 where c \in (1,4)

The Mean Value Theorem is verified for the given f(x).

Q. 5 Verify Mean Value Theorem, if $f(x) = x^3 - 5x^2 - 3x$ in the interval [a, b], where a = 1 and b = 3. Find all $c \in (1, 3)$ for which f'(c) = 0.

Answer:

Given: $f(x) = x^3 - 5x^2 - 3x$ in the interval [1, 3]

Mean Value Theorem states that for a function $f: [a, b] \rightarrow R$, if

(a)f is continuous on [a, b]

(b)f is differentiable on (a, b)

Then there exists some $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

As f(x) is a polynomial function,

(a) f(x) is continuous in [1, 3]

(b)
$$f(x) = 3x^2 - 10x - 3$$

So, f(x) is differentiable in (1, 3).

$$\therefore \frac{f(b) - f(a)}{b - a} = \frac{f(3) - f(1)}{3 - 1}$$

$$f(3) = 3^3 - 5(3)^2 - 3(3) = 27 - 45 - 9 = -27$$

$$f(1) = 1^3 - 5(1)^2 - 3(1) = 1 - 5 - 3 = -7$$

$$\Rightarrow \frac{f(3)-f(1)}{3-1} = \frac{-27-(-7)}{3-1} = \frac{-20}{0} = -10$$

 \therefore There is a point $c \in (1, 4)$ such that f'(c) = -10

$$\Rightarrow$$
 f(c) = -10

$$\Rightarrow 3c^2 - 10c - 3 = -10$$

$$\Rightarrow 3c^2 - 10c + 7 = 0$$

$$\Rightarrow 3c^2 - 3c - 7c + 7 = 0$$

$$\Rightarrow$$
 3c (c-1) - 7(c-1) = 0

$$\Rightarrow$$
 (c-1) (3c-7) = 0

$$\Rightarrow$$
 c = 1, 7/3 where c = 7/3 \in (1, 3)

The Mean Value Theorem is verified for the given f(x) and $c = 7/3 \in (1, 3)$ is the only point for which f'(c) = 0.

Q. 6 Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2.

Answer:

Mean Value Theorem states that for a function $f: [a, b] \rightarrow R$, if

- (a) f is continuous on [a, b]
- (b) f is differentiable on (a, b)

Then there exists some $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

If a function does not satisfy any of the above conditions, then Mean Value Theorem is not applicable.

(i)
$$f(x) = [x]$$
 for $x \in [5, 9]$

As the given function is a greatest integer function,

- (a) f(x) is not continuous in [5, 9]
- (b) Let y be an integer such that $y \in (5, 9)$

Left hand limit of f(x) at x = y:

$$\lim_{h \to 0^{-}} \frac{f(y+h) - f(y)}{h} = \lim_{h \to 0^{-}} \frac{[y+h] - [y]}{h} = \lim_{h \to 0^{-}} \frac{y - 1 - y}{h} = \lim_{h \to 0^{-}} \frac{-1}{h} = \infty$$

Right hand limit of f(x) at x = y:

$$\lim_{h \to 0^+} \frac{f(y+h) - f(y)}{h} = \lim_{h \to 0^+} \frac{[y+h] - [y]}{h} = \lim_{h \to 0^+} \frac{y - y}{h} = \lim_{h \to 0^+} \frac{0}{h} = 0$$

Since, left and right hand limits of f(x) at x=y is not equal, f(x) is not differentiable at x=y.

So, f(x) is not differentiable in [5, 9].

Here, f(x) does not satisfy the conditions of Mean Value Theorem.

Mean Value Theorem is not applicable for f(x) = [x] for $x \in [5, 9]$.

(ii)
$$f(x) = [x]$$
 for $x \in [-2, 2]$

As the given function is a greatest integer function,

(a) f(x) is not continuous in [-2, 2]

(b) Let y be an integer such that $y \in (-2, 2)$

Left hand limit of f(x) at x = y:

$$\lim_{h \to 0^{-}} \frac{f(y+h) - f(y)}{h} = \lim_{h \to 0^{-}} \frac{[y+h] - [y]}{h} = \lim_{h \to 0^{-}} \frac{y - 1 - y}{h} = \lim_{h \to 0^{-}} \frac{-1}{h} = \infty$$

Right hand limit of f(x) at x = y:

$$\lim_{h \to 0^+} \frac{f(y+h) - f(y)}{h} = \lim_{h \to 0^+} \frac{[y+h] - [y]}{h} = \lim_{h \to 0^+} \frac{y - y}{h} = \lim_{h \to 0^+} \frac{0}{h} = 0$$

Since, left and right hand limits of f(x) at x=y is not equal, f(x) is not differentiable at x=y.

So, f(x) is not differentiable in (-2, 2)

Here, f(x) does not satisfy the conditions of Mean Value Theorem.

Mean Value Theorem is not applicable for f(x) = [x] for $x \in [-2, 2]$.

(iii)
$$f(x) = x^2 - 1$$
 for $x \in [1, 2]$

As the given function is a polynomial function,

(a) f(x) is continuous in [1, 2]

(b)
$$f'(x) = 2x$$

So, f(x) is differentiable in [1, 2].

Here, f(x) satisfies the conditions of Mean Value Theorem.

So, Mean Value Theorem is applicable for f(x).

$$\therefore \frac{f(b) - f(a)}{b - a} = \frac{f(2) - f(1)}{2 - 1}$$

$$f(2) = 2^2 - 1 = 4 - 1 = 3$$

$$f(1) = 1^2 - 1 = 1 - 1 = 0$$

$$\Rightarrow \frac{f(2)-f(1)}{2-1} = \frac{3-0}{2-1} = \frac{3}{1} = 3$$

 \therefore There is a point $c \in (1, 2)$ such that f'(c) = 3

$$\Rightarrow$$
 f'(c) = 3

$$\Rightarrow 2c = 3$$

$$\Rightarrow$$
 c = 3/2 where c \in (1, 2)

Mean Value Theorem is applicable for $f(x) = x^2 - 1$ for $x \in [1, 2]$.