Factorisation

• **Factorization** is the decomposition of an algebraic expression into product of factors. Factors of an algebraic term can be numbers or algebraic variables or algebraic expressions.

For example, the factors of $2a^2b$ are 2, a, a, b, since $2a^2b = 2 \times a \times a \times b$ The factors, 2, a, a, b, are said to be irreducible factors of $2a^2b$ since they cannot be expressed further as a product of factors.

Also,
$$2a^2b = 1 \times 2 \times a \times a \times b$$

Therefore, 1 is also a factor of $2a^2b$. In fact, 1 is a factor of every term. However, we do not represent 1 as a separate factor of any term unless it is specially required. For example, the expression, $2x^2(x + 1)$, can be factorized as $2 \times x \times x \times (x + 1)$.

Here, the algebraic expression (x + 1) is a factor of $2x^2(x + 1)$.

Factorization of expressions by the method of common factors

This method involves the following steps.

Step 1: Write each term of the expression as a product of irreducible factors.

Step 2: Observe the factors, which are common to the terms and separate them.

Step 3: Combine the remaining factors of each term by making use of distributive law.

Example: Factorize $12p^2q + 8pq^2 + 18pq$.

Solution: We have, $12p^2q = 2 \times 2 \times 3 \times p \times p \times q$ $8pq^2 = 2 \times 2 \times 2 \times p \times q \times q$ $18pq = 2 \times 3 \times 3 \times p \times q$ The common factors are 2, p, and q. $\therefore 12p^2q + 8pq^2 + 18pq$ $= 2 \times p \times q [(2 \times 3 \times p) + (2 \times 2 \times q) + (3 \times 3)]$ = 2pq (6p + 4q + 9)

Factorization by regrouping terms

Sometimes, all terms in a given expression do not have a common factor. However, the terms can be grouped by trial and error method in such a way that all the terms in each group have a common factor. Then, there happens to occur a common factor amongst each group, which leads to the required factorization.

Example: Factorize $2a^2 - b + 2a - ab$.

Solution:
$$2a^2 - b + 2a - ab = 2a^2 + 2a - b - ab$$

The terms, $2a^2$ and 2a, have common factors, 2 and a.

The terms, -b and -ab have common factors, -1 and b.

Therefore.

$$2a^2 - b + 2a - ab = 2a^2 + 2a - b - ab$$

$$= 2a (a + 1) - b (1 + a)$$

$$= (a + 1) (2a - b)$$
 (As the factor, $(1 + a)$, is common to both the terms)

Thus, the factors of the given expression are (a + 1) and (2a - b).

Some of the expressions can also be factorized by making use of the following identities.

- 1. $a^2 + 2ab + b^2 = (a + b)^2$
- 2. $a^2 2ab + b^2 = (a b)^2$
- 3. $a^2 b^2 = (a + b)(a b)$

For example, the expression $4x^2 + 12xy + 9y^2 - 4$ can be factorized as follows:

$$4x^2 + 12xy + 9y^2 - 4$$

$$= (2x^2) + 2(2x)(3y) + (3y)^2 - 4$$

$$= (2x + 3y)^2 - 4$$
 [Using the identity, $a^2 + 2ab + b^2 = (a + b)^2$]

$$=(2x+3y)^2-(2)^2$$

$$= (2x + 3y + 2)(2x + 3y - 2)$$
 [Using the identity, $a^2 - b^2 = (a + b)(a - b)$]

• Factorization by using the identity, $x^2 + (a + b)x + ab = (x + a)(x + b)$.

To apply this identity in an expression of the type $x^2 + px + q$, we observe the coefficient of x and the constant term.

Two numbers, a and b, are chosen such that their product is q and their sum is p.

i.e.,
$$a + b = p$$
 and $ab = q$

Then, the expression, $x^2 + px + q$, becomes (x + a)(x + b).

Example: Factorize a^2 – 2a– 8.

Solution: Observe that, $-8 = (-4) \times 2$ and (-4) + 2 = -2

Therefore, $a^2 - 2a - 8 = a^2 - 4a + 2a - 8$

$$= a(a-4) + 2(a-4)$$

$$= (a - 4) (a + 2)$$

• Division of any polynomial by a monomial is carried out either by dividing each term of the polynomial by the monomial or by the common factor method.

For example, $(8x^3 + 4x^2y + 6xy^2)$ can be divided by 2x as follows:

$$(8x^{3} + 4x^{2}y + 6xy^{2}) \div 2x = \frac{8x^{3} + 4x^{2}y + 6xy^{2}}{2x}$$
$$= \frac{8x^{3}}{2x} + \frac{4x^{2}y}{2x} + \frac{6xy^{2}}{2x}$$
$$= 4x^{2} + 2xy + 3y^{2}$$

$$(8x^3 + 4x^2y = 6xy^2) \div 2x = \frac{2 \times x (4x^2 + 2xy + 3y^2)}{2 \times x} = 4x^2 + 2xy$$