MIND MAP: LEARNING MADE SIMPLE CHAPTER - 5

Let x = f(t), y = g(t) be two functions of parameter 't'.

Then,
$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$
 or $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \left(\frac{dx}{dt} \neq 0 \right)$

Jhus,
$$\frac{dy}{dx} = \frac{g'(t)}{f'(t)} \left[\text{provided } f'(t) \neq 0 \right]$$

For eg: if $x = a \cos \theta$, $y = a \sin \theta$ then $\frac{dx}{d\theta} = -a \sin \theta$ and

$$\frac{dy}{d\theta} = a\cos\theta$$
, and so $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = -\frac{a\cos\theta}{a\sin\theta} = -\cot\theta$.

Let y = f(x) then $\frac{dy}{dx} = f'(x)$, if f'(x) is

differentiable, then $\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dx} f'(x) i.e.,$

 $\frac{d^2y}{dx^2} = f''(x)$ is the second order derivative of y w.r.t.x.

For
$$eg$$
: if $y = 3x^2 + 2$, then $y' = 6x$ and $y'' = 6$.

if $f: [a,b] \rightarrow R$ is continuous on [a,b] and differentiable on (a, b). Such that f(a) = f(b), then \exists some c in (a, b) s.t. f'(c)=0.

if $f : [a,b] \rightarrow R$ continuous on [a,b] and differentiable on (a, b).

Then \exists some c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

e.g. Let $f(x) = x^2$ defined in the interval [2, 4]. Since $f(x) = x^2$ is continuous in [2, 4] and differentiable in (2, 4) as f'(x)=2xdefined in (2, 4). So,

$$f'(c) = \frac{f(b) - f(a)}{b - a} = \frac{16 - 4}{4 - 2} = 6, c \in (2, 4).$$

Suppose f is a real function on a subset of the real numbers and let 'c' be a point in the domain of f.

Then f is continuous at c if $\lim_{x \to a} f(x) = f(c)$

A real function f is said to be continuous if it is continuous at every

Chain Rule

point in the domain of f. For eg: The function $f(x) = \frac{1}{x}$, $x \ne 0$ is continuous Let C' be any non-zero real number, then $\lim_{x \to c} f(x) \lim_{x \to c} f(x) = \frac{1}{c}$. For c = 0, $f(c) = \frac{1}{c}$ So $\lim_{x \to c} f(x) = f(c)$ and hence f is continuous at every point in the domain of f.

> Suppose *f* and *g* are two real functions continuous at a $x = c(g(c) \neq 0)$

real number c, then, f+g, f-g, f.g and $\frac{f}{2}$ are continuous at

Differentiability Suppose *f* is a real function and *c* is a point in its domain. The derivative of f at c is $f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$

Every differentiable function is continuous. but the converse is not true.

if f = vou, t = u(x) and if both $\frac{dt}{dx}$, $\frac{dv}{dt}$ exists, then $\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx}$.

Continuity and

Dillerentiability

(i) $\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$ (ii) $\frac{d}{dx}\left(\cos^{-1}x\right) = -\frac{1}{\sqrt{1-x^2}}$ (iii) $\frac{d}{dx}\left(\tan^{-1}x\right) = \frac{1}{2}$ (iv) $\frac{d}{dx}\left(\cot^{-1}x\right) = -\frac{1}{2}$ For e.g.: Let $y = a^x$ Then $\log y = x \log x$ (iii) $\frac{d}{dx} \left(\tan^{-1} x \right) = \frac{1}{1 + x^2}$ (iv) $\frac{d}{dx} \left(\cot^{-1} x \right) = -\frac{1}{1 + x^2}$

(vii)
$$\frac{d}{dx}(e^x) = e^x$$
 (viii) $\frac{d}{dx}(\log x) = \frac{1}{x}$

Rolle's theorem

 $\frac{1}{u} = v(x) \frac{1}{u(x)} u'(x) + v'(x) \log \left[u(x) \right]$

For *e.g.*: Let $y = a^x$ Then $\log y = x \log a$

$$\frac{dy}{dx} = y \log a = a^x \log a.$$

Let $y = f(x) = \left[u(x) \right]^{v(x)}$

 $\log y = v(x)\log[u(x)]$