Magnetostatic Field

Biot-Savart's Law

The Biot-Savart's law states that the differential magnetic field intensity dH produced at a point P, by the differential current element IdI is proportional to the product IdI and the sine of the angle θ between the element and the

line joining P to the element and is inversely proportional to the square of the distance R between P and the element.

$$dH \propto \frac{IdI \sin \alpha}{R^2} A/m$$

$$dH = \frac{IdI \times a_r}{4\pi R^2} = \frac{IdI \times \vec{R}}{4\pi |\vec{R}|^3}$$

$$H = \oint \frac{IdI \times a_r}{4\pi R^2} A/m$$

where,

a_r = unit vector pointing from the different element of current to the point of interest.

Magnetic Field Intensity for Distributed Current Source

(i) Line current

$$\vec{H} = \int_{L} \frac{IdI \times a_{r}}{4\pi R^{2}}$$

(ii) Surface current

$$\vec{H} = \int_{S} \frac{K \cdot dS \times a_{r}}{4\pi R^{2}}$$

where, K = surface current density

(ii) Volume current

$$\vec{H} = \int_{V} \frac{J_0 \, dV \times a_r}{4\pi R^2}$$

where, J = volume current density

Magnetic field intensity due to straight current carrying filamentary conductor

(i) Finite length AB

$$\vec{H} = \frac{I}{4\pi\rho}(\cos\alpha_2 - \cos\alpha_1)a_{\phi}$$

(ii) Semi-infinite length

$$\vec{H} = \frac{I}{4\pi\rho} a_{\phi}$$

(iii) Infinite length

where, a_I is unit vector along the line current and a_p is unit vector along the perpendicular line from the line current to the field point.

Ampere's Circuit Law

The closed line integral of static magnetic field intensity \vec{H} , integrated over any closed curve 'C' is always equal to total current enclosed within the closed curve 'C'.

$$\oint \vec{H} \cdot \vec{dI} = I_{enc}$$
 A

∳H·dī = ∬J·dS

.... Ampere's circuit law in the integral form

 The Curl of static magnetic field intensity H at any point in the electromagnetic region is equal to volume current density J present at that point.

 $\nabla \times \vec{H} = J$ Ampere's circuit law in point form of differential form

re:

- $\nabla \times \vec{H} = J$ is the also known as Maxwell's third equation.
- Ampere's circuit law is applicable irrespective of shape of the closed curve'C'.
- The magnetostatic field is not conservative as $\nabla \times H = J \neq 0$.

Magnetic Field Intensity Due to Infinite Line Current

$$\vec{H} = \frac{1}{2\pi\rho} a_{\phi}$$

Magnetic Field Intensity Due to Infinite Sheet of Current

where, $a_n = Unit normal$ K = uniform current density

$$H = \begin{cases} \frac{1}{2} K_y a_x; & z > 0 \\ -\frac{1}{2} K_y a_x; & z < 0 \end{cases}$$

Magnetic Flux Density

$$\vec{\mathbf{B}} = \mu_0 \vec{\mathbf{H}}$$
 Wb/m²

where, μ_0 = permeability of free space.

Magnetic flux through a surface S

Remember:

• An isolated magnetic charge does not exist. Thus the total flux through a closed surface in a magnetic field must be zero.

Maxwell's fourth equation: $\nabla \cdot \vec{B} = 0$

Magnetic Energy Density (W_m)

The magnetic energy density represents magnetic energy stored at a point in the electro magnetic region and gives total magnetic energy per unit volume of the given configuration.

$$W_{m} = \frac{1}{2}\mu \vec{H}^{2} = \frac{1}{2}\vec{B}\vec{H}$$

Magnetic Energy

$$W_{m} = \iiint_{V} W_{m} dV = \frac{1}{2} L I^{2}$$
 Joule

Remember:

The magnetic energy density depends upon

- (i) Magnetic field due to given current distribution in the configuration.
- (ii) Permeability of the magnetic medium.

Magnetic Scalar and Vector Potentials

The magnetic potential could be scalar V_m or vector \vec{A}

Magnetic scalar potential (V_m)

The magnetic scalar potential is only defined in a region where J=0.

$$H = -\nabla V_{m}$$

Vector Magnetic Potential A

For line current

$$A = \int_{-4\pi R}^{\mu_0 I dI} \text{Wb/m}$$

For surface current

$$A = \int_{0}^{\infty} \frac{\mu_0 K dS}{4\pi H}$$

For volume current

$$A = \int \frac{\mu_0 J dV}{4\pi R}$$

Remember:

Important identities which must always hold for any scalar field \vec{A}

$$\nabla \times (\nabla \mathbf{V}) = 0$$
 and $\nabla \cdot (\nabla \times \vec{\mathbf{A}}) = 0$

Forces Due to Magnetic Field

Force on a Charged Particle

(i) Magnetic force

$$\vec{F}_m = Q(\vec{u} \times \vec{B})$$
 Newton

where,

u = Velocity of moving charge Q

B = Magnetic field

(ii) Electric force

$$\vec{F}_e = Q\vec{E}$$

where, Q = electric charge ; E = electric field intensity

Lorentz force equation

For a moving charge Q in the presence of both electric and magnetic fields

$$\vec{F} = \vec{F}_e + \vec{F}_m = O(\vec{E} + \vec{u} \times \vec{B})$$

Force on a Current Element

Force on a current carrying conductor

The magnetic field is defined as the force per unit current element.

$$\vec{\mathsf{F}} = \oint I d\vec{i} \times \vec{\mathsf{B}}$$

where $Id\vec{l} = Current$ element of current carrying conductor

Magnetic Torque and Magnetic Moment

Magnetic Torque

$$T = \mathsf{BISsin}\,\alpha$$

where, S =area of the loop

$$\vec{T} = \vec{m} \times \vec{B}$$

Magnetic Dipole Moment

$$\vec{m} = I S i_0$$

Magnetic Boundary Conditions

Tangential component relation

$$\vec{H}_{11} = \vec{H}_{21}$$
 or $\vec{B}_{11} = \vec{B}_{21}$

Normal component relation

$$\vec{B}_{1n} = \vec{B}_{2n}$$
 or $\mu_1 \vec{H}_{1n} = \mu_2 \vec{H}_{2n}$

Remember:

- The tangential component of H is continuous while that of B is discontinuous at boundary.
- The normal component of B is continuous while that of H is discontinuous at boundary.

$$\frac{\tan \theta_1}{\tan \theta_2} = \frac{\mu_1}{\mu_2}$$