SET-3

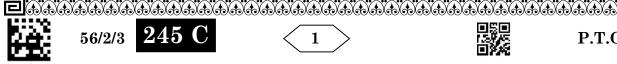
Series HFG1E/2

प्रश्न-पत्र कोड Q.P. Code

Roll No.			

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.


रसायन विज्ञान (सैद्धांतिक)

CHEMISTRY (Theory)

निर्धारित समय: 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 35 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 23 printed pages.
- Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **35** questions.
- Please write down the serial number of the question in the answerbook before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

	Δx	
सामान्य	ानदश	

निम्नलिखित निर्देशों को ध्यान से पढ़ें और उनका सख़्ती से पालन करें:

- (i) इस प्रश्न-पत्र में कुल 35 प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-पत्र **पाँच** खण्डों में विभाजित है खण्ड **क, ख, ग, घ** तथा **ङ**।
- (iii) **खण्ड क** प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के **एक-एक** अंक के प्रश्न हैं।
- (iv) **खण्ड ख** प्रश्न संख्या 19 से 25 तक अति लघु उत्तरीय प्रकार के **दो-दो** अंकों के प्रश्न हैं।
- (v) **खण्ड ग** प्रश्न संख्या **26** से **30** तक लघु उत्तरीय प्रकार के **तीन-तीन** अंकों के प्रश्न हैं।
- (vi) **खण्ड घ** प्रश्न संख्या 31 तथा 32 केस आधारित **चार-चार** अंकों के प्रश्न हैं।
- (vii) **खण्ड ङ** प्रश्न संख्या **33** से **35** तक दीर्घ उत्तरीय प्रकार के **पाँच-पाँच** अंकों के प्रश्न हैं।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड **ख** के 2 प्रश्नों में, खण्ड **ग** के 2 प्रश्नों में, खण्ड **घ** के 2 प्रश्नों में तथा खण्ड **ड** के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- (ix) कैल्कुलेटर का उपयोग वर्जित है।

खण्ड - क

1. प्रकाश की उपस्थिति में वायु द्वारा क्लोरोफॉर्म के स्वतः ऑक्सीकरण से निम्नलिखित में से कौन सी विषैली गैस बनती है ?

(a) अश्रु गैस

(b) मस्टर्ड गैस

(c) फॉस्जीन गैस

- (d) क्लोरीन गैस
- 2. निम्नलिखित लिगन्डों में से कौन उभदंती लिगन्ड है ?

(a) CO

(b) NO_9

(c) NH₃

(d) H₂O

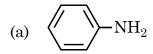
56/2/3

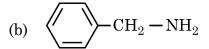
1

General Instructions:

56/2/3

Read the following instructions very carefully and follow them:


- (i) This Question Paper contains 35 questions. All questions are compulsory.
- (ii) Question Paper is divided into **FIVE** sections Section **A, B, C, D** and **E**.
- (iii) In section A question number 1 to 18 are Multiple Choice (MCQ) type questions carrying 1 mark each.
- (iv) In section B question number 19 to 25 are Very Short Answer (VSA) type questions carrying 2 marks each.
- (v) In section C question number 26 to 30 are Short Answer (SA) type questions carrying 3 marks each.
- (vi) In section D question number 31 & 32 are case-based questions carrying 4 marks each.
- (vii) In section E question number 33 to 35 are Long Answer (LA) questions carrying 5 marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section **B**, 2 questions in Section **C**, 2 questions in Section **D** and 2 questions in Section **E**.
- (ix) Use of calculator is NOT allowed.


		SEC	TION – A		
1.	Aut	o oxidation of chloroform in	air and su	nlight produces a poisonous gas	
	kno	wn as			1
	(a)	Tear gas	(b)	Mustard gas	
	(c)	Phosgene gas	(d)	Chlorine gas	
2.	Whi	ich of the following ligands i	s an ambid	lentate ligand ?	1
	(a)	CO	(b)	NO_2	
	(c)	NH_3	(d)	$_{9}O$	

3

P.T.O.

3.		 	$ m p^{K}b$ मान उच्चतम है $?$
3	ानम्नालाखत	मसाकसका	n-rh Hi4 3を144 を /
υ.	11.11.11.	1 31 1 1/31 1/1	p b 111 3 -1/11 6.

$$(d)$$
 O_2N \longrightarrow NH_2

4. प्रथम कोटि की अभिक्रिया के लिए $\log \frac{[R]_o}{[R]}$ एवं समय के मध्य आलेख में ढाल है

(a) $\frac{+ k}{2.303}$

(b) + k

(c) $\frac{-k}{2.303}$

(d) - k

5. जब D-ग्लूकोस, HI के साथ अभिक्रिया करता है तो यह निर्मित करता है

1

1

1

(a) ग्लूकोनिक अम्ल

(b) n-हैक्सेन

(c) सैकैरिक अम्ल

(d) आयडोहैक्सेन

1

- (a) S_N^2 अभिक्रिया में
- (b) $S_N 1$ अभिक्रिया में
- (d) $S_N 1$ और $S_N 2$ दोनों अभिक्रियाओं में

7. निम्नलिखित में से किसकी वृद्धि के साथ गैस की द्रव में विलेयता घटती है ?

1

(a) दाब

(b) ताप

(c) आयतन

(d) विलेय अणुओं की संख्या

3.	Amo	ong the following, which has the l	nighe	st value of p ^K b ?	1
	(a)	\sim NH $_2$	(b)	\sim	
	(c)	$\mathrm{H_{3}C} \hspace{-1mm} -\hspace{-1mm} \mathrm{NH_{2}}$	(d)	$\mathrm{O_{2}N} \hspace{-2pt} - \hspace{-2pt} $	
4.	The	e slope in the plot of $\log \frac{[R]_o}{[R]}$ vs. the	ime fo	or a first order reaction is	1
	(a)	$\frac{+\mathrm{k}}{2.303}$	(b)	+ k	
	(c)	$\frac{-\mathrm{k}}{2.303}$	(d)	- k	
5.	Who	en D-glucose reacts with HI, it for	rms		1
	(a)	Gluconic acid	(b)	n-hexane	
	(c)	Saccharic acid	(d)	Iodohexane	
6.	Inve	ersion of configuration occurs in			1
	(a)	$\mathrm{S_{N}2}$ reaction			
	(b)	$S_N 1$ reaction			
	(c)	Neither S_N^2 nor S_N^1 reaction			
	(d)	$S_N 1$ as well as $S_N 2$ reaction			
7.	Solu	ability of gas in liquid decreases w	vith i	ncrease in	1
	(a)	Pressure	(b)	Temperature	

(d)

5

Number of solute molecules

P.T.O.

Volume

(c)

8.	निम्न	नलिखित	में	से	कौन	सा	संबंध	गलत	ਡੈ	9
0.	1 1.	11 (11 (3 (1		\ I	-171 1	111	11-1-1	17171	Ç.	•

(a) $R = \frac{1}{k} \left(\frac{l}{a}\right)$

(b) $G = k \left(\frac{a}{l}\right)$

(c) $G = k \left(\frac{l}{a}\right)$

(d) $\wedge_{m} = \frac{k}{c}$

9. ऐसीटोफ़ीनोन और बेन्जोफ़ीनोन में विभेद करने के लिए निम्नलिखित में से कौन सा अभिकारक प्रयुक्त किया जा सकता है ?

- (a) 2, 4-डाईनाइट्रोफ़ेनिल हाइड्रैज़ीन
- (b) जलीय $NaHSO_3$

(c) फेलिंग विलयन

(d) I_2 और NaOH

1

1

1

(a)
$$CH_3CH_2Br + Na^+O^-C(CH_3)_3 \rightarrow CH_3CH_2 - O - C(CH_3)_3$$

(b)
$$(CH_3)_3 C - Cl + Na^+ O^- CH_2 CH_3 \rightarrow CH_3 CH_2 - O - C (CH_3)_3$$

- (c) (a) और (b) दोनों
- (d) न तो (a) और न ही (b)

1

(a) C_6H_5CHO

(b) CH_3CH_2CHO

(c) $(CH_3)_3C - CHO$

(d) H - CHO

$$12.~~$$
 अभिक्रिया $3A o 2B$ के लिए, अभिक्रिया वेग $-\frac{d[A]}{dt}$ बराबर है

1

(a) $\frac{+3}{2} \frac{d[B]}{dt}$

(b) $\frac{+2}{3} \frac{d[B]}{dt}$

(c) $\frac{+1}{3} \frac{d[B]}{dt}$

(d) $\frac{+1}{2} \frac{d[B]}{dt}$

- 8. Which of the following relations is incorrect?
 - (a) $R = \frac{1}{k} \left(\frac{l}{a} \right)$

(b) $G = k \left(\frac{a}{l}\right)$

(c) $G = k \left(\frac{l}{a}\right)$

- (d) $\wedge_{m} = \frac{k}{c}$
- 9. The reagent that can be used to distinguish acetophenone and benzophenone is

1

1

- (a) 2, 4-dinitrophenyl hydrazine
- (b) aqueous NaHSO₃

(c) Fehling solution

- (d) I₂ and NaOH
- 10. Which of the following reactions are feasible?

1

- (a) $CH_3CH_2Br + Na^+O^-C(CH_3)_3 \rightarrow CH_3CH_2-O-C(CH_3)_3$
- (b) $(CH_3)_3 C Cl + Na^+ O^- CH_2 CH_3 \rightarrow CH_3 CH_2 O C(CH_3)_3$
- (c) Both (a) and (b)
- (d) Neither (a) nor (b)
- 11. Which of the following compounds will undergo self-condensation in the presence of dilute NaOH solution?
 - (a) C_6H_5CHO

(b) CH₃CH₂CHO

(c) $(CH_3)_3C - CHO$

- (d) H CHO
- 12. For the reaction $3A \rightarrow 2B$, rate of reaction $-\frac{d[A]}{dt}$ is equal to

1

1

(a) $\frac{+3}{2} \frac{d[B]}{dt}$

(b) $\frac{+2}{3} \frac{d[B]}{dt}$

(c) $\frac{+1}{3} \frac{d[B]}{dt}$

(d) $\frac{+1}{2} \frac{d[B]}{dt}$

56/2/3

P.T.O.

13.	निम्नी	लेखित संक्रमण धातुओं में से कौन +1 और +2	2 ऑक्स	नीकरण अवस्थाएँ प्रदर्शित करती हैं ?	1
	(a)	Mn	(b)	Zn	
	(c)	Sc	(d)	Cu	
1 /	i lich er	ा आयरन (III) हेक्सासाइनिडोफेरेट (II) का सृ	ਰ ਹੈ .		1
14.		_		E E (CM) 1	1
	(a)	$\operatorname{Fe}_{2}\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]_{3}$	(b)	$Fe_4 [Fe(CN)_6]_3$	
	(c)	Fe $[Fe(CN)_6]$	(d)	$\operatorname{Fe}_{3}\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]_{2}$	
		कथन (A) और कारण (R) से अंकित नीचे	दो कथ	न दिए गए हैं। निम्नलिखित विकल्पों में से	
	सर्वारि	धेक उपयुक्त उत्तर का चयन कीजिए :			
	(a)	(A) और (R) दोनों सत्य हैं तथा (R), (A) व	की सही	व्याख्या है ।	
	(b)	(A) और (R) दोनों सत्य हैं, लेकिन (R), (A	() की स	गही व्याख्या नहीं है ।	
	(c)	(A) सत्य है, लेकिन (R) असत्य है।			
	(d)	(A) असत्य है, लेकिन (R) सत्य है।			
15.	अभि	कथन (A) : एक आदर्श विलयन के लिए मिश्र	ण बनान	ने की एन्थैल्पी $\Delta_{\hat{m{H}} ext{ extit{90}}} \; m{H} \; $ शून्य के बराबर होती	
	है।			1	
	कारण	ा (R) : एक आदर्श विलयन के लिए विलेय	-विलेय	। और विलायक-विलायक अणुओं के मध्य	
		अन्योन्यक्रियाओं की तुलना में विलेय-विल	ायक अ	ग्णुओं के मध्य अन्योन्यक्रियाएँ मजबूत होती	
		हैं।			
				0.3	
16.		कथन (A) : सांद्रता में वृद्धि के साथ मोलर चार			1
	कारण	ा (R) : जब सांद्रता शून्य की ओर पहुँचने लग	ाती है	तब मोलर चालकता सीमात मोलर चालकता	
		कहलाती है ।			
17.	अभि	कथन (A) : संक्रमण धातुएँ ऑक्सीजन के स	गथ अ	पनी उच्चतम ऑक्सीकरण अवस्थाएँ प्रदर्शित	
		करती हैं।			1
	कारण	ा (R) : धातुओं के साथ ऑक्सीजन की बहु अ	ाबंध ब	नाने की क्षमता होना ।	
56/2	/3	<u> </u>			

	Whi stat	ch of the following transition mes?	etals	s shows + 1 and + 2 oxidation
	(a)	Mn	(b)	Zn
	(c)	Sc	(d)	Cu
14.	The	formula of the complex Iron (III)	hexa	acyanidoferrate (II) is :
	(a)	$\operatorname{Fe_2}\left[\operatorname{Fe(CN)}_6\right]_3$	(b)	$\operatorname{Fe_4}\left[\operatorname{Fe(CN)}_6\right]_3$
	(c)	Fe $[Fe(CN)_6]$	(d)	$\mathrm{Fe}_3 \left[\mathrm{Fe(CN)}_6 \right]_2$
		en below are two statements labe ect the most appropriate answer fr		
	(a)	Both (A) and (R) are true and (R) is th	ne correct explanation of (A).
	(b)	Both (A) and (R) are true, but (A).	(R) is	s not the correct explanation of
	(c)	(A) is true, but (R) is false.		
	(d)	(A) is false, but (R) is true.		
15.	Ass	ertion (A): The enthalpy of mixi	$\log \Delta_{ m r}$	_{nix} H is equal to zero for an ideal
	solu	tion.		
	Rea	son (R): For an ideal solution solvent molecules is stronger the solute or solvent-solvent molecules.	nan t	
16.	Ass	ertion (A) : Molar conduction concentration.	vity	decreases with increase in
	Rea	son (R): When concentrate conductivity is known as limiting		,
		ertion (A) : Transition metals sh	ow th	neir highest oxidation state with
17.	Ass	oxygen.		
17.		oxygen. ason (R): The ability of oxygen to	form	n multiple bonds to metals.

18. **अभिकथन (A) :** कक्ष ताप पर, नाभिकरागी प्रतिस्थापन अभिक्रियाओं के लिए क्लोरोबेन्जीन प्रतिरोधी होती हैं।

1

कारण (\mathbf{R}) : अनुनाद के कारण $\mathbf{C} - \mathbf{C} l$ आबंध अधिक दुर्बल हो जाता है।

खण्ड – ख

- 19. न्यूक्लीक अम्ल क्या हैं ? क्यों DNA में दो रज्जुक एकसमान नहीं होते हैं, लेकिन एक-दूसरे के पूरक होते $\mathbf{\hat{z}}$?
- 20. निम्नलिखित रूपान्तरण अधिकतम दो चरणों में कीजिए :

 2×1

(a) CH₃COOH से CH₃COCH₃

(b)
$$\sim$$
 — \sim — \sim — СН $_2$ СН $_3$ ң \sim — СООН

21. निम्नलिखित अभिक्रियाओं में सम्मिलित रासायनिक समीकरण लिखिए:

 2×1

- (a) राइमर-टीमन अभिक्रिया
- (b) सैलिसिलिक अम्ल का ऐसीटिलन
- 22. (a) अणु A का B में रूपान्तरण द्वितीय कोटि की बलगतिकी के अनुरूप होता है। यदि A की सांद्रता तीन गुनी कर दी जाए तो B के निर्माण होने के वेग पर क्या प्रभाव पड़ेगा ? $\mathbf{2} \times \mathbf{1}$
 - (b) एक उदाहरण सहित छद्म प्रथम कोटि अभिक्रिया की परिभाषा लिखिए।
- $23. 25 \, ^{\circ}\mathrm{C}$ पर शुद्ध द्रव X और शुद्ध द्रव Y के वाष्प दाब क्रमशः $120 \, \mathrm{mm} \, \mathrm{Hg}$ और $160 \, \mathrm{mm} \, \mathrm{Hg}$ हैं । यदि X और Y के समान मोलों को मिलाकर एक आदर्श विलयन बनाया जाता है, तो विलयन का वाष्प दाब परिकलित कीजिए ।

18. **Assertion (A):** Chlorobenzene is resistant to nucleophilic substitution reaction at room temperature.

1

Reason (R): C–Cl bond gets weaker due to resonance.

SECTION - B

- 19. What are nucleic acids? Why two strands in DNA are not identical but are complementary? 1×2
- 20. Do the following conversions in not more than two steps: 2×1
 - (a) CH₃COOH to CH₃COCH₃
 - (b) \sim CH $_2$ CH $_3$ to \sim COOH
- 21. Write the chemical equation involved in the following reactions: 2×1
 - (a) Reimer-Tiemann reaction
 - (b) Acetylation of Salicylic acid
- 22. (a) The conversion of molecule A to B followed second order kinetics. If concentration of A increased to three times, how will it affect the rate of formation of B?
 2 × 1
 - (b) Define Pseudo first order reaction with an example.
- 23. The vapour pressure of pure liquid X and pure liquid Y at 25 °C are 120 mm Hg and 160 mm Hg respectively. If equal moles of X and Y are mixed to form an ideal solution, calculate the vapour pressure of the solution.

24. (a) कारण दीजिए:

 2×1

- (i) मर्क्यूरी सेल अपने संपूर्ण कार्य अवधि में स्थिर विभव प्रदान करता है।
- (ii) वैद्युत-अपघटनी चालकत्व के प्रायोगिक निर्धारण में दिष्ट धारा (DC) प्रयुक्त नहीं की जाती है।

अथवा

(b) एक उदाहरण सिहत ईंधन सेल को परिभाषित कीजिए। प्राथिमक और संचायक बैटरियों की तुलना में ईंधन सेल के क्या लाभ हैं ?

25. (a) निम्नलिखित के आई यू पी ए सी नाम लिखिए :

 2×1

2

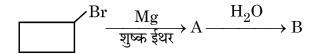
- (i) $[Co(NH_3)_5(ONO)]^{2+}$
- (ii) $K_2[NiCl_4]$

अथवा

- (b) (i) कीलेट संकुल क्या है ? एक उदाहरण दीजिए।
 - (ii) हेटेरोलेप्टिक संकुल क्या हैं ? एक उदाहरण दीजिए ।

 2×1

खण्ड – ग


26. निम्नलिखित में से किन्हीं तीन के उत्तर दीजिए:

 3×1

- (a) C_5H_{10} का कौन सा समावयव उज्ज्वल सूरज की रोशनी में एकल मोनोक्लोरो यौगिक C_5H_9Cl देता है ?
- (b) निम्नलिखित यौगिकों को ${\rm S_N}2$ अभिक्रिया के प्रति बढ़ती हुई अभिक्रियाशीलता के क्रम में व्यवस्थित कीजिए :

2-ब्रोमोपेन्टेन, 1-ब्रोमोपेन्टेन, 2-ब्रोमो-2-मेथिलब्यूटेन

- (c) ऑर्थो- तथा मेटा-समावयवियों की अपेक्षा पैरा-डाइक्लोरोबेन्जीन का गलनांक उच्च क्यों होता है ?
- (d) निम्नलिखित में A और B की पहचान कीजिए:

24. (a) Give reasons:

 2×1

- (i) Mercury cell delivers a constant potential during its life time.
- (ii) In the experimental determination of electrolytic conductance, Direct Current (DC) is not used.

OR

- (b) Define fuel cell with an example. What advantages do the fuel cells have over primary and secondary batteries?
- 25. (a) Write the IUPAC names of the following:

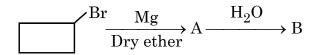
 2×1

2

- (i) $[Co(NH_3)_5(ONO)]^{2+}$
- (ii) $K_2[NiCl_4]$

OR

- (b) (i) What is a chelate complex? Give one example.
 - (ii) What are heteroleptic complexes? Give one example.


 2×1

SECTION - C

26. Answer any **3** of the following:

 3×1

- (a) Which isomer of C_5H_{10} gives a single monochloro compound C_5H_9Cl in bright sunlight ?
- (b) Arrange the following compounds in increasing order of reactivity towards $S_{\rm N}2$ reaction :
 - 2-Bromopentane, 1-Bromopentane, 2-Bromo-2-methylbutane
- (c) Why p-dichlorobenzene has higher melting point than those of orthoand meta-isomers?
- (d) Identify A and B in the following:

56/2/3

P.T.O.

27. (a) (i) निम्नलिखित अभिक्रिया की कार्यविधि लिखिए:

2 + 1

$$2\mathrm{CH_3CH_2OH} \xrightarrow{\quad \mathbf{H^+}\quad } \mathrm{CH_3} - \mathrm{CH_2} - \mathrm{O} - \mathrm{CH_2} - \mathrm{CH_3} + \mathrm{H_2O}$$

(ii) क्यों ऑर्थो-नाइट्रोफ़ीनॉल भाप द्वारा वाष्पित होती है जबिक पैरा-नाइट्रोफ़ीनॉल नहीं ?

अथवा

(b) क्या होता है जब

 3×1

- (i) ऐनिसोल की $\mathrm{CH_3C}$ l निर्जल $\mathrm{AlC}l_3$ के साथ अभिक्रिया की जाती है ?
- (ii) फ़ीनॉल का $\mathrm{Na_2Cr_2O_7/H}^+$ द्वारा ऑक्सीकरण किया जाता है ?
- (iii) $(CH_3)_3 C OH$ को $573 \ K$ पर Cu के साथ गरम किया जाता है ? अपने उत्तर के समर्थन में रासायनिक समीकरण लिखिए।
- 28. (a) $[\mathrm{Co(en)}_2\mathrm{C}l_2]^{2+}$ के ज्यामितीय समावयव खींचिए । $[\mathrm{Co(en)}_2\mathrm{C}l_2]^{2+}$ का कौन सा ज्यामितीय समावयव ध्रांचिए । 2+1
 - (b) $[{
 m CoF}_6]^{3-}$ का संकरण एवं चुम्बकीय व्यवहार लिखिए । $[{
 m दिया}\ {
 m \reft}: {
 m Co}\ {
 m an}\ {
 m tvtn} {
 m uy}\ {
 m \emph{m}}\ {
 m min} = 27]$
- 29. एक प्रथम कोटि की अभिक्रिया को 50% पूर्ण होने में $300~{
 m K}$ पर 30 मिनट लगते हैं और $320~{
 m K}$ पर 10 मिनट लगते हैं । अभिक्रिया के लिए सि्रक्रियण ऊर्जा (${
 m E_a}$) परिकलित कीजिए ।

[R =
$$8.314 \text{ JK}^{-1}\text{mol}^{-1}$$
] [दिया है : $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 4 = 0.6021$]

3

30. $F-CH_2-COOH$ (मोलर द्रव्यमान = $78~g~mol^{-1}$) के 19.5~g को 500~g जल में घोलने पर हिमांक में $1^{\circ}C$ का अवनमन देखा गया । $F-CH_2-COOH$ के लिए वियोजन-मात्रा परिकलित कीजिए ।

[दिया है : जल के लिए $K_{\rm f}$ = $1.86~{\rm K~kg~mol^{-1}}$].

27. (a) (i) Write the mechanism of the following reaction: 2 + 1

$$2\mathrm{CH_3CH_2OH} \xrightarrow{\quad H^+ \quad } \mathrm{CH_3} - \mathrm{CH_2} - \mathrm{O} - \mathrm{CH_2} - \mathrm{CH_3} + \mathrm{H_2O}$$

(ii) Why ortho-nitrophenol is steam volatile while para-nitrophenol is not?

OR

- (b) What happens when
 - (i) Anisole is treated with CH_3Cl /anhydrous $AlCl_3$? 3×1
 - (ii) Phenol is oxidised with Na₂Cr₂O₇/H⁺?
 - (iii) $(CH_3)_3 C OH$ is heated with Cu/573 K?

Write chemical equation in support of your answer.

- 28. (a) Draw the geometrical isomers of $[\text{Co(en)}_2\text{C}l_2]^{2+}$. Which geometrical isomer of $[\text{Co(en)}_2\text{C}l_2]^{2+}$ is not optically active and why? **2+1**
 - (b) Write the hybridisation and magnetic behaviour of $[CoF_6]^{3-}$. [Given : Atomic number of Co = 27]
- 29. A first order reaction is 50% complete in 30 minutes at 300 K and in 10 minutes at 320 K. Calculate activation energy (E_a) for the reaction. $[R=8.314~J~K^{-1}~mol^{-1}]$

[Given: $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 4 = 0.6021$]

30. When 19.5 g of $F - CH_2 - COOH$ (Molar mass = 78 g mol⁻¹), is dissolved in 500 g of water, the depression in freezing point is observed to be 1°C. Calculate the degree of dissociation of $F - CH_2 - COOH$.

[Given : K_f for water = 1.86 K kg mol⁻¹]

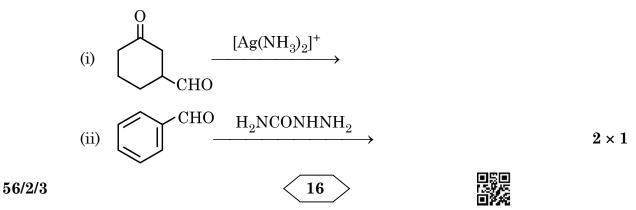
निम्नलिखित प्रश्न, केस आधारित प्रश्न हैं। अनुच्छेद को सावधानीपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए:

31. कार्बन की अपेक्षा ऑक्सीजन की विद्युत-ऋणात्मकता उच्च होने के कारण कार्बन-ऑक्सीजन द्विक आबंध एल्डिहाइडों और कीटोनों में ध्रुवित हो जाता है । अतः वे अनेक नाभिकरागियों जैसे HCN, NaHSO_3 , ऐल्कोहॉलों, अमोनिया व्युत्पन्नों और ग्रीन्यार अभिकर्मकों के साथ नाभिकरागी योगज अभिक्रियाएँ देते हैं । कीटोनों की अपेक्षा ऐल्डिहाइड मृदु ऑक्सीकरण अभिकर्मकों द्वारा आसानी से ऑक्सीकृत हो जाते हैं । कार्बोक्सिलिक अम्ल का कार्बोनिल समूह ऐल्डिहाइडों और कीटोनों की अभिक्रियाएँ नहीं देता है । कार्बोक्सिलिक अम्ल ऐल्कोहॉलों एवं अधिकतर अति सरल फ़ीनॉलों से काफी अधिक अम्लीय होते हैं ।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (a) जब एक एल्डिहाइड शुष्क HCl की उपस्थिति में ऐल्कोहॉल के आधिक्य के साथ अभिक्रिया करता है तो निर्मित उत्पाद का नाम लिखिए ।
- (b) फ़ीनॉल की तुलना में कार्बोक्सिलिक अम्ल अधिक प्रबल अम्ल क्यों होता है ?

1


(c) (i) निम्नलिखित यौगिकों को ${
m CH_3MgBr}$ के प्रति उनकी अभिक्रियाशीलता के बढ़ते क्रम में ${
m cau}$ वस्थित कीजिए :

$$\begin{array}{c} \mathrm{CH_3CHO,\,(CH_3)_3C-C-CH_3,\,CH_3-C-CH_3} \\ \mathrm{O} \end{array}$$

(ii) प्रोपेनैल और प्रोपेनोन में विभेद करने के लिए रासायनिक परीक्षण लिखिए। 2 imes 1

अथवा

(c) निम्नलिखित में मुख्य उत्पाद लिखिए :

SECTION - D

The following questions are case based questions. Read the passage carefully and answer the questions that follow:

31. The carbon – oxygen double bond is polarised in aldehydes and ketones due to higher electronegativity of oxygen relative to carbon. Therefore they undergo nucleophilic addition reactions with a number of nucleophiles such as HCN, NaHSO₃, alcohols, ammonia derivatives and Grignard reagents. Aldehydes are easily oxidised by mild oxidising agents as compared to ketones. The carbonyl group of carboxylic acid does not give reactions of aldehydes and ketones. Carboxylic acids are considerably more acidic than alcohols and most of simple phenols.

Answer the following:

- (a) Write the name of the product when an aldehyde reacts with excess alcohol in presence of dry HCl.
- (b) Why carboxylic acid is a stronger acid than phenol?

1

(c) (i) Arrange the following compounds in increasing order of their reactivity towards CH₃MgBr:

$$\begin{array}{c} CH_{3}CHO,\,(CH_{3})_{3}C-C-CH_{3},\,CH_{3}-C-CH_{3}\\ O & O \end{array}$$

(ii) Write a chemical test to distinguish between propanal and propanone. 2×1

OR

(c) Write the main product in the following:

(i)
$$(Ag(NH_3)_2)^+$$
 $(Bg(NH_3)_2)^+$

(ii)
$$H_2$$
NCONHNH₂ 2×1

56/2/3 P.T.O.

32. कार्बोहाइड्रेट, ध्रुवण घूर्णक ऐल्डिहाइड और कीटोन होते हैं । उन्हें सैकैराइड भी कहते हैं । उन सभी कार्बोहाइड्रेटों को जो फेलिंग विलयन तथा टॉलेन अभिकर्मक को अपचित कर देते हैं, अपचायी शर्करा कहते हैं । ग्लूकोस, जो कि स्तनधारियों के लिए ऊर्जा का प्रमुख स्रोत हैं, स्टार्च के जलअपघटन से प्राप्त होता है । विटामिन आहार में आवश्यक सहायक भोज्यकारक हैं । प्रोटीन α-ऐमीनो अम्लों के बहुलक हैं और जीवधारियों में विभिन्न संरचनात्मक एवं गतिज क्रियाओं को संपादित करते हैं । विटामिनों की कमी से अनेकों रोग हो जाते हैं ।

निम्नलिखित के उत्तर दीजिए:

- (a) ग्लूकोस का पेन्टाऐसीटेट, हाइड्राक्सिलऐमीन के साथ अभिक्रिया नहीं करता है। यह क्या इंगित करता है?
- (b) विटामिन C को हमारे शरीर में संचित क्यों नहीं किया जा सकता है ?
- (c) प्रोटीनों से संबंधित निम्नलिखित की परिभाषा लिखिए:
 - (i) पेप्टाइड बंध
 - (ii) विकृतीकरण

 2×1

1

अथवा

- (c) कार्बोहाइड्रेटों से संबंधित निम्नलिखित की परिभाषा लिखिए:
 - (i) ऐनोमर
 - (ii) ग्लाइकोसिडिक बंध

 2×1

खण्ड – ङ

33. (a) (I) कारण दीजिए:

3 + 2

- (i) यद्यपि ऐमीनो समूह इलेक्ट्रॉनरागी प्रतिस्थापन अभिक्रियाओं में आर्थो एवं पैरा निर्देशक होता है फिर भी ऐनिलीन नाइट्रीकरण द्वारा यथेष्ट मात्रा में मेटानाइट्रोऐनिलीन देती है।
- (ii) जलीय विलयन में $(CH_3)_3N$ की अपेक्षा $(CH_3)_2$ NH अधिक क्षारकीय होती है ।
- (iii) ऐल्किल हैलाइडों का अमीनो-अपघटन शुद्ध प्राथमिक ऐमीनो के विरचन के लिए अच्छी विधि नहीं है।

32. Carbohydrates are optically active polyhydroxy aldehydes and ketones. They are also called saccharides. All those carbohydrates which reduce Fehling's solution and Tollen's reagent are referred to as reducing sugars. Glucose, the most important source of energy for mammals, is obtained by the hydrolysis of starch. Vitamins are accessory food factors required in the diet. Proteins are the polymers of α -amino acids and perform various structural and dynamic functions in the organisms. Deficiency of vitamins leads to many diseases.

Answer the following:

(a) The penta-acetate of glucose does not react with Hydroxylamine. What does it indicate?

(b) Why cannot vitamin C be stored in our body?

- (c) Define the following as related to proteins:
 - (i) Peptide linkage
 - (ii) Denaturation 2×1

OR

- (c) Define the following as related to carbohydrates:
 - (i) Anomers
 - (ii) Glycosidic linkage

 2×1

1

SECTION - E

33. (a) (I) Give reasons:

3 + 2

- (i) Aniline on nitration gives good amount of m-nitroaniline, though - NH₂ group is o/p directing in electrophilic substitution reactions.
- (ii) $(CH_3)_2$ NH is more basic than $(CH_3)_3$ N in an aqueous solution.
- (iii) Ammonolysis of alkyl halides is not a good method to prepare pure primary amines.

- (II) निम्नलिखित में सम्मिलित अभिक्रिया लिखिए:
 - (i) कार्बिल ऐमीन परीक्षण
 - (ii) गैब्रिएल थैलिमाइड संश्लेषण

अथवा

(b) (I) निम्नलिखित अभिक्रियाओं में A, B और C की संरचनाएँ लिखिए : 3+1+1

(i)
$$\langle D_2 \rangle - N_2^+ C l^- \xrightarrow{CuCN} A \xrightarrow{H_2O/H^+} B \xrightarrow{NH_3} C$$

(ii) Fe/HC
$$l$$
 A NaNO₂+HC l B C_2 H₅OH C

- (II) ऐनिलीन फ्रीडेल-क्राफ्ट्स अभिक्रिया क्यों नहीं देती है ?
- (III) निम्नलिखित को उनके क्वथनांकों के बढ़ते क्रम में व्यवस्थित कीजिए:

$$C_2H_5OH, C_2H_5NH_2, (C_2H_5)_3N$$

- 34. (a) $2\times 10^{-3}\,\mathrm{M}$ मेथेनॉइक अम्ल की चालकता $8\times 10^{-5}\,\mathrm{S}\,\mathrm{cm}^{-1}$ है । यदि मेथेनॉइक अम्ल के लिए $\wedge_{\mathrm{m}}^{\mathrm{o}}$ का मान $404\,\mathrm{S}\,\mathrm{cm}^{2}\mathrm{mol}^{-1}$ है तो इसकी मोलर चालकता एवं वियोजन मात्रा परिकलित कीजिए । 3+2
 - (b) $298~{
 m K}$ पर दी हुई अभिक्रिया के लिए $\Delta_{
 m r} {
 m G}^\circ$ और $\log~{
 m K}_{
 m c}$ परिकलित कीजिए :

$$Ni_{(s)} + 2Ag^+_{(aq)} \longrightarrow Ni^{2+}_{(aq)} + 2Ag_{(s)}$$

दिया है :
$$\mathrm{E^{\circ}_{N_{i}}}^{2+}_{/N_{i}}$$
 = $-0.25~\mathrm{V},~\mathrm{E^{\,o}_{Ag}}_{/Ag}$ = $+0.80~\mathrm{V}$

 $1F = 96500 \text{ C mol}^{-1}$.

- (II) Write the reaction involved in the following:
 - (i) Carbyl amine test
 - (ii) Gabriel phthalimide synthesis

OR

(b) (I) Write the structures of A, B and C in the following reactions :3 + 1 + 1

$$\text{(i)} \quad \underbrace{\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle} \text{-N}_2^+ \text{C} l^- \xrightarrow{\quad \text{CuCN} \quad } \text{A} \xrightarrow{\quad \text{H}_2\text{O/H}^+ \quad } \text{B} \xrightarrow{\quad \text{NH}_3 \quad } \text{C}$$

- (II) Why aniline does not undergo Friedal-Crafts reaction?
- (III) Arrange the following in increasing order of their boiling point :

$$C_2H_5OH, C_2H_5NH_2, (C_2H_5)_3N$$

- 34. (a) Conductivity of 2×10^{-3} M methanoic acid is 8×10^{-5} S cm⁻¹. Calculate its molar conductivity and degree of dissociation if \wedge_m^o for methanoic acid is 404 S cm²mol⁻¹.
 - (b) Calculate the $\Delta_r G^\circ$ and log K_c for the given reaction at 298 K :

$$Ni_{(s)} + 2Ag^{+}_{(aq)} \longrightarrow Ni^{2+}_{(aq)} + 2Ag_{(s)}$$

Given :
$$E^{\circ}_{N_i}^{2+}/N_i = -0.25 \text{ V}, E^{\circ}_{Ag}/Ag} = +0.80 \text{ V}$$

 $1F = 96500 \text{ C mol}^{-1}$.

35. (a) (I) निम्नलिखित के कारण दीजिए:

3 + 2

- (i) Mn^{3+}/Mn^{2+} युग्म के लिए E^{o} का मान Cr^{3+}/Cr^{2+} के मान से बहुत अधिक धनात्मक होता है।
- (ii) जलीय विलयन में Sc^{3+} रंगहीन है जबिक Ti^{3+} रंगीन है ।
- (iii) ऐक्टिनॉयड ऑक्सीकरण अवस्थाओं का विस्तृत परास प्रदर्शित करते हैं।
- (II) MnO_2 से KMnO_4 के विरचन के लिए रासायनिक समीकरण लिखिए।

अथवा

(b) (I) निम्नलिखित के कारण लिखिए:

2 + 2 + 1

- (i) संक्रमण धातुएँ मिश्रातुएँ बनाती हैं।
- (ii) Ce^{4+} एक प्रबल ऑक्सीकारक है ।
- (II) लैन्थेनॉयडों और ऐक्टिनॉयडों के रसायन में एक समानता और एक अंतर लिखिए।
- (III) निम्नलिखित आयनिक समीकरण को पूर्ण कीजिए :

$$\mathrm{Cr_2O_7^{2-}} + 2\mathrm{OH^-} {\longrightarrow}$$

35. (a) (I) Account for the following:

3 + 2

- (i) E^o value for Mn^{3+} / Mn^{2+} couple is much more positive than that for Cr^{3+} / Cr^{2+} .
- (ii) Sc³⁺ is colourless whereas Ti³⁺ is coloured in an aqueous solution
- (iii) Actinoids show wide range of oxidation states.
- (II) Write the chemical equations for the preparation of ${\rm KMnO_4}$ from ${\rm MnO_2}.$

OR

(b) (I) Account for the following:

2 + 2 + 1

- (i) Transition metals form alloys.
- (ii) Ce⁴⁺ is a strong oxidising agent.
- (II) Write one similarity and one difference between chemistry of Lanthanoids and Actinoids.
- (III) Complete the following ionic equation:

$$Cr_2O_7^{2-} + 2OH^- \longrightarrow$$

Marking Scheme Strictly Confidential

(For Internal and Restricted use only) Senior Secondary School Examination, 2023 SUBJECT: CHEMISTRY (043)(56/2/3)

	50BJECT: CHEWISTRY (043)(30/2/3)
Gen	eral Instructions: -
1	You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-XII, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
4	The Marking scheme carries only suggested value points for the answers These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
6	Evaluators will mark($$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand

margin and encircled. This may also be followed strictly.

9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks 70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
13	 Ensure that you do not make the following common types of errors committed by the Examiner in the past:- Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME

Senior Secondary School Examination, 2023 CHEMISTRY (Subject Code-043)

[Paper Code: 56/2/3]

Q. No.	EXPECTED ANSWER / VALUE POINTS	Mark
		S
	SECTION A	
1.	(c)	1
2.	(b)	1
3.	(d)	1
4.	(a)	1
5.	(b)	1
6.	(a)	1
7.	(b)	1
8.	(c)	1
9.	(d)	1
10.	(a)	1
11.	(b)	1
12.	(a)	1
13.	(d)	1
14.	(b)	1
15.	(c)	1
16.	(b)	1
17.	(a)	1
18.	(c)	1
_	SECTION-B	
19.	Nucleic acids are polymers of Nucleotides. Because the H-bonds are formed between specific pairs of bases / pairing between A & T and between C & G.	

20.	(a) SOC12 CH COCL $(CH_3)_2Cd$ CH C	
	$CH_3OOH \xrightarrow{SOC1_2} CH_3COCl \xrightarrow{(CH_3)_2Cd} CH_{3} \xrightarrow{C} - CH_3$	
	$\begin{array}{c c} \text{(b)} & & \\ \hline \end{array} \\ \text{CH}_2\text{CH}_3 \xrightarrow{\text{KMnO}_4, \text{KOH}} \\ \hline \end{array} \\ \begin{array}{c c} \hline \end{array} \\ \text{COOR} \\ \end{array} \\ \begin{array}{c c} \hline \end{array} \\ \text{COOH} \\ \end{array}$	1 x 2
21.	(a)	
	$ \begin{array}{c} OH \\ CHCl_3 + aq NaOH \end{array} $ $ \begin{array}{c} \overline{O} \text{ Na}^+ \\ CHCl_2 \end{array} $ $ \begin{array}{c} NaOH \end{array} $ $ \begin{array}{c} \overline{O} \text{ Na}^+ \\ CHO \end{array} $ $ \begin{array}{c} H^+ \\ CHO \end{array} $ $ \begin{array}{c} CHO \end{array} $	1
	OH (i) CHCl ₃ + aq NaOH (ii) H ⁺ CHO	
	(b) COOH COOH $OH \longrightarrow OCOCH_3$ $+ (CH_3CO)_2O \xrightarrow{H^+} OCOCH_3$	1
22.	(a) 9 times	1
	(b) A reaction that appears to be of higher order but follows first-order kinetics.	1/ 1/
23.	Example: Hydrolysis of an ester (or any other correct example). $p_{Total} = p_{X}^{\circ} \chi_{X} + p_{Y}^{\circ} \chi_{B}$	1/2, 1/2
	$\chi_{X} = \chi_{B} = 0.5$, 2
	$p_{\text{Total}} = (120 \times 0.5) + (160 \times 0.5)$	4
	= 140 mm Hg	1 1/2
24.	(a)	/ 2
	(i) Because the overall reaction does not involve any ion in the solution whose	1
	concentration can change. (ii) Pageusa DC changes the composition of the electrolytic solution	1
	(ii) Because DC changes the composition of the electrolytic solution. OR	1
	(b)	
	A Galvanic cell used to convert the energy of combustion of fuel directly into	
	electrical energy. For example, H ₂ -O ₂ fuel cell (or any other correct example).	½ x 4
	• Advantages: High efficiency, and pollution free (or any other correct advantage)	
25.	(a) (i) Pentaamminenitrito-O-cobalt (III) ion (ii) Potassium tetrachloridonickelate (II)	1 x 2
	OR	
	I .	

	(b) (i) A complex formed by a didentate on a polydentate ligand	
	• A complex formed by a didentate or a polydentate ligand.	1/2, 1/2
	• $[Co(ox)_3]^{3-}$ (or any other suitable example)	, 2, , 2
	(ii)	
	Complexes in which a metal is bound to more than one kind of donor groups	
	or ligands.	
	• $[\text{Co (NH}_3)_4\text{C}\ell_2]^+$ (or any other suitable example)	1/2, 1/2
	SECTION -C	
26.	(a) Cyclopentane /	
	(b) 2-Bromo-2-methylbutane < 2-Bromopentane < 1-Bromopentane	
	(c) Because para isomer fits well into the crystal lattice due to symmetry.	
	(d)	
	MgBr	1 x 3
	A = B =	
27.	(a) (i)	
	Н	1/2
	$CH_3-CH_2-O-H + H^+ \longrightarrow CH_3-CH_2-O-H$	
	$CH_{3}-CH_{2}-\ddot{O}-H + H^{+} \longrightarrow CH_{3}-CH_{2}-\ddot{O}-H$ $CH_{3}CH_{2}-\ddot{O}: + CH_{3}-CH_{2}-\ddot{O} \stackrel{+}{C}H \longrightarrow CH_{3}CH_{2}-\ddot{O}-CH_{2}CH_{3} + H_{2}O$	
	$CH_3CH_2-\ddot{O}$: + $CH_3-\dot{C}H_2-\dot{O}$ CH ₂ CH ₂ - O - CH_2CH_3 + H_2O	1
	H H	
	* *** *** *** *** *** *** *** *** ***	
	$CH_3CH_2 \xrightarrow{\stackrel{\leftarrow}{}} CH_2CH_3 \longrightarrow CH_3CH_2-O-CH_2CH_3 + H^{\stackrel{\leftarrow}{}}$	1/2
	H	
	(ii) Due to intramolecular H-bonding in o-nitrophenol while p-nitrophenol has	1
	intermolecular H-bonding.	1
	OR	
	(b) (i)	
	OCH ₃	
	人 CH [1]	
	+CH ₃ Cl Anhyd. AlCl ₃ +	
	CH ₃	
	(ii)	
	OH O	
	$ \begin{array}{c} $	
	H+ '	
	Ö	
	(iii)	
	CH ₃	
	Cu / 573 K CH ₂	
	$CH_3 - C - OH \xrightarrow{Cu / 573 \text{ K}} CH_3 - C - CH_3$	
	CH ₃	1 x 3
		1 1 1 2

28.	(a)	
20.	$\begin{array}{c c} (a) & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	1
	Cis Trans The trans isomer is not optically active because its mirror image is superimposable.	1
	(If the student writes charge $(+2/+1)$ over the isomers, award full marks)	
	(b) sp ³ d ² ,paramagnetic	1/2 , 1/2
29.	$k = \frac{0.693}{t_{1/2}}$ $k_1 = \frac{0.693}{20.000} \text{ min}^{-1}$	1/2
	$k_2 = \frac{0.693}{10} \text{ min}^{-1}$	
	$\log \frac{k_2}{k_1} = \frac{Ea}{2.303 \text{ R}} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	1/2
	$\log 3 = \frac{\text{Ea}}{2.303 \times 8.314} \left[\frac{1}{300} - \frac{1}{320} \right]$	1
	$\mathbf{Ea} = \frac{0.4771 \times 19.147 \times 300 \times 320}{20}$	
	Ea = 43848 J mol^{-1} or $43.848 \text{ KJ mol}^{-1}$ or $43.85 \text{ k J mol}^{-1}$ (Deduct $\frac{1}{2}$ mark for incorrect or no unit).	1
30.	$\Delta T_f = i K_f m$ $= i K_f \frac{W_B}{M_B} \times \frac{1000}{W_A}$	1/2
	$1 = i \times 1.86 \times \frac{19.5}{78} \times \frac{1000}{500}$ $i = 1.075$	1
		1/2
	$\alpha = \frac{i-1}{n-1}$ $= \frac{1.075 - 1}{2 - 1} = 0.075$	1/2
		1/2
31.	SECTION- D (a) Acetal	1
31.	(b) Because the carboxylate ion is more resonance stabilized than the phenoxide ion. (c) (i)	1

	H₃C C H₃C C CH₃ < CH₃COCH₃ < CH₃CHO	1
	H₃Ċ	
	(ii) (1) Add Iodine (I ₂), NaOH, and heat both the test tubes containing the given	
	organic compounds. Propanone gives yellow precipitate (CHI3) while propanal will not	
	give yellow precipitate.	1
	(or any other suitable chemical test)	
	OR	
	(c) (i)	
		1 x 2
		1 X Z
	coo-	
	(ii)	
	, н	
	$C = NNHCONH_2$	
32.	(a) Absence of free – CHO group.	1
	(b) Because being water soluble it is excreted through urine.(c) (i) -CONH- linkage between two amino acids.	1
	(i) Loss of biological activity when protein is subjected to change in temperature,	1 x 2
	pH, etc.	1 11 2
	OR	
	(c) (i) The isomers (some show due too) having a shange in configuration at C 1 (for ald sees) on	
	(i) The isomers (carbohydrates) having a change in configuration at C-1(for aldoses) or C-2 (for ketoses).	
	(ii) A linkage joining two monosaccharides through oxygen atom.	1 x 2
	SECTION-E	
33.		
	(i) Aniline gets protonated and is deactivated / Aniline on protonation forms anilinium	1
	ion which is meta-directing. (ii) Recause of high solvation effect / high hydrotion energy	1
	(ii) Because of high solvation effect / high hydration energy.(iii) Because it forms a mixture of amines that is difficult to separate.	1
	(II) Because it forms a mixture of animes that is difficult to separate.	1
		1
	(i) $R - NH_2 + CHCl_3 + NaOH \longrightarrow RNC + 3NaCl + H_2O$	1
	(ii)	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		1
	O O NaOH(ag)	
	•	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Ö	

	OR	
	(i) $\mathbf{B} = \mathbf{C} \mathbf{B} = \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C}$	½ x 3
	NH ₂ $A = \begin{bmatrix} N_2 & C_1 \\ B & C_2 \end{bmatrix}$ (II) Because of the formation of salt with Lewis acid anhydrous AlCl ₃ . (III) $(C_2H_5)_3N < C_2H_5NH_2 < C_2H_5OH$	¹ / ₂ x 3 1 1
34.	(a) $\wedge_{\rm m} = \frac{k}{c} \times 1000 \mathrm{S cm^2 mol}^{-1}$	1/2
	$= \frac{8 \times 10^{-5}}{2 \times 10^{-3}} \times 1000 \text{ S cm}^2 \text{ mol}^{-1}$	1/2
	$= 40 \text{ S cm}^2 \text{ mol}^{-1}$	1
	$\alpha = \frac{\wedge_{\text{m}}}{\wedge_{\text{m}^{\circ}}}$ $= \frac{40}{404}$ $= 0.099$	1/2
	(b) $\Delta_{\mathbf{r}}G^{\circ} = -nFE_{\text{cell}}^{\circ}$	1/2
	$= -2 \times 96500 \text{ C mol}^{-1} \times (0.80 + 0.25) \text{ V}$ $= -2 \times 96500 \times 1.05 \text{ Jmol}^{-1}$	
	$= -202,650 \text{ J mol}^{-1} \text{ or } -202.65 \text{ kJ mol}^{-1}$	1/2
	$\log K_{c} = \frac{nE_{cell}^{\circ}}{0.059}$	1/2
	$= \frac{2 \times 1.05}{0.059} = 35.6$	1/2

35.	(a) (I)	
	(i) Cr^{2+} changes from d^4 to stable half-filled t_{2g}^3 configuration while Mn^{3+} changes to stable half-filled d^5 configuration.	1
	(ii) Because of no unpaired electron in the d-orbital of Sc ³⁺ whereas there is one	1
	unpaired electron in Ti ³⁺ / Ti ³⁺ shows d-d transition.	
	(iii) Because of comparable energies of 5f, 6d and 7s orbitals.	1
	(II) $2MnO_2 + 4KOH + O_2 \longrightarrow 2 K_2MnO_4 + 2 H_2O$	1
	$3\operatorname{MnO}_{4}^{2-} + 4\operatorname{H}^{+} \longrightarrow 2\operatorname{MnO}_{4}^{-} + \operatorname{MnO}_{2} + 2\operatorname{H}_{2}\operatorname{O}$	1
	(or any other suitable chemical equations of preparation) OR	
	(b) (I)	
	(b) (I) (i) Because of almost identical atomic radii.	1
		1 1
	 (i) Because of almost identical atomic radii. (ii) Because Ce⁴⁺ changes to the common + 3 oxidation state. (II) 	1 1
	 (i) Because of almost identical atomic radii. (ii) Because Ce⁴⁺ changes to the common + 3 oxidation state. 	1 1
	 (i) Because of almost identical atomic radii. (ii) Because Ce⁴⁺ changes to the common + 3 oxidation state. (II) Similarity: Both Lanthanoids and Actinoids show contraction/ stable in + 3 oxidation state. Difference: Lanthanoids are mainly non-radioactive whereas Actinoids are 	1
	 (i) Because of almost identical atomic radii. (ii) Because Ce⁴⁺ changes to the common + 3 oxidation state. (II) Similarity: Both Lanthanoids and Actinoids show contraction/ stable in + 3 oxidation state. Difference: Lanthanoids are mainly non-radioactive whereas Actinoids are radioactive. 	1
	 (i) Because of almost identical atomic radii. (ii) Because Ce⁴⁺ changes to the common + 3 oxidation state. (II) Similarity: Both Lanthanoids and Actinoids show contraction/ stable in + 3 oxidation state. Difference: Lanthanoids are mainly non-radioactive whereas Actinoids are radioactive. (or any other suitable similarity and difference) 	1
	 (i) Because of almost identical atomic radii. (ii) Because Ce⁴⁺ changes to the common + 3 oxidation state. (II) Similarity: Both Lanthanoids and Actinoids show contraction/ stable in + 3 oxidation state. Difference: Lanthanoids are mainly non-radioactive whereas Actinoids are radioactive. 	1

* * *