oduction

Ve are about to study a simple type of partial differential equations (PDEs): the second order linear PDEs.
tecall that a partial differential equation is any differential equation that contains two or more independent
ariables. Therefore the derivative(s) in the equation are partial derivatives. We will examine the simplest case
f equations with 2 independent variables. A few second order linear PDEs in 2 variables are:

atu, =y, (one-dimensional heat conduction equation)
atu, =u, (one-dimensional wave equation)
Uy+ U, =0 (two-dimensional heat conduction equation)

Classification of Second Order Linear PDEs
sonsider the general form of a second order linear partial differential equation in 2 variables with constant
oefficients:
au_ + buxy +cu,, + du, + eu, + f=g(x, y)
or the equation to be of second order, &, b, and ¢ cannot all be zero. Definen its discriminant to be 62 - 4ac.
he properties and behaviour of its solution are largely dependent of its type, as classified below.
If b2~ 4ac > 0, then the equation is called hyperbolic. The wave equation is one such example,

If b? — 4ac = 0, then the equation is called parabolic. The heat conduction equation is one such
example.

If b2 —4ac < 0, then the equation is called elliptic. The Laplace equation is one such example.

xample:
Consider the one-dimensional damped wave equation 9u,, = u, + 6u,.

olution:
It can be rewritten as: 9u,,—~ U, —6u,= 0. It has coefficients a= 9, b= 0, and ¢ = -1. Its discriminant
Is 9> 0. Therefore, the equation is hyperbolic.

Jndamped One-Dimensional Wave Equation: Vibrations of an Elastic String

onsider a piece of thin flexible string of length L, of negligible weight. Suppose the two ends of the string are
'mly secured (“c!amped"’) at some supports so they will not move. Assume the set-up has no damping. Then,
le vertical displacement of the string, 0 < x < L, and at any time t > 0, is given by the displacement function
(x, ). It satisfies the homogeneous one~dimensional'undamped wave eqguation:
82 uxx = U[l‘
'nere the constant coefficient a2is given by the formula a® = T/p. such that a = horizontal propagation speed
Iso known as phase velocity) of the wave motion, T = force of tension exerted on the string, p = Mass density
nass per unit length). It is subjected to the homogeneous boundary conditions.
u©,8 =0, and UL, 1) =0, t>0

e two boundary conditions reflect that the two ends of the string are clamped in fixed positions. Therefore,
€y are held motionless at all time.



The equation comes with 2 initial conditions, due to the fact that it contains the second partial derivative term
U, The two initial conditions are the u(x, 0), both are arbitrary functions of x alone. (Note that the string is
vibrates, vertically, in place. The resulting wave form, or the wave-like “shape” of the string, is what moves
horizontally.) ’

One-dimensional
Homogeneous undamped wave equation

2 —
au, = Uy
A
1
i
i
1

Displacement
uix, t)

+Y U
Hence, what we have is the following initial-boundary value problem:
(wave equation) au, = U, O<x<L,t>0
(Boundary conditions) u(0, 1) = 0, and u(ll, ty =0,
{Initial conditions) u(x, 0) = f(x), and ufx, 0) = g(x)

Wefirstlet u(x, t) = X(x) T(t) and separate the wave equation into two ordinary differential equations. Substituting
u, = X"Tand u, = XT”into the wave eqguation, it becomes

2X'T=XT"
Dividing both sides by a2 XT:
X T

X aT
: As for the heat conduction equation, it is customary to consider the constant a® as a function of tand group it
— withtherest of +terms.Insert the constant of separation and break apart the equation: -

7—»'

XTI

X &T

X”

= = X"=AX = X' +AX=0
™ _ = T =-a\T =T+ a2AT=0
a°T

The boundary conditions also separate:
uG, ) =0 = XO0)T(t)=0 = X(0)=0 or =0
ull, ) =0 = X(L)T(H)=0 = X(L)=0 or (=0
As usual, in order to obtain nontrivial solutions, we need to choose X(0) = 0 and X(L) = 0 as the new boundary
conditions. The result, after separation of variables, is the following simultaneous system of ordinary differential
equations, with a set of boundary conditions:
X +AX=0, X0)=0 and XL)=0,
T7+a?AT=0
The next step is to solve the eigen value probiem:
X +AX=0, X0)=0 and XL)=0,
The solutions are given by taking A negative

Eigen values: A= =3 n=1,23, ..



Eigen functions: X, = sing?, n=1223 .

Next, substitute the eigen values found above into the second equation to find T(t). After putting eigen values
Ainto it, the equation of Thecomes

n°n?

L2

T+ a° T =0

ltis a second order homogeneous linear equation with constant coefficients. It's characteristic have a pair of

purely imaginary complex conjugate roots:

anm
L

f:i’ I

Thus, the solutions are simple harmonic:

T(0) = Ancos§€?f4-8nsmf%?1, n=123,.

Multiplying each pair of X,and T_together and sum them up, we find the general solution of the one-dimensional
wave equation, with both ends fixed, to be

ulx, t) = Z(Ancos
n=1

anmnt canmt) . nmx
+Bn8|n—L— sSin—=

There are two sets of linfinitely many) arbitrary coefficients. We can solve for them using the two initial conditions.
Set t= 0 and apply the first initial condition, the initial (vertical) displacement of the string u(x, 0) = f(x), we
have

u(x, 0) = 5;(/4,7 cos(0) + B, sin(O))sinﬁ%ﬁ

i

ZAﬁm%?zﬂm

ne=i

Therefore, we see that the initial displacement f(x) needs to be a Fourier sine series. Since f(x) can be an
arbitrary function, this usually means that we need to expand itinto its odd periodic extension (of period 2L).
the coefficients A, are then found by the relation A,= b, where b, arethe corresponding Fourier sine coefficients
of f(x). That is

ok . Nmx
A = b,=>1f(x)sin
= H[fsn

dx

n

Notice that the entire sequence of the coefficients A are determined exactly by the initial displacement. They
are completely independent of the other sequence B,, which are determined solely by the second initial
condition, the initial (vertical) velocity of the string. To find B, we differentiate u(x, t) with respect to tapply the
initial velocity, ufx, 0) = g(x).

g anm . anmt anm anrt\ . nmx
Uix, t) = A, ——sin—=+B =" cog 2 Igin X
t()‘ ) n};i n [_ L n L /_ J L

Set t= 0 and equate it with glx):

e 0) = 3 B, E i X _ oy
n=1 L L

We see that g(x) needs also be a Fourier sine series. Expand itinto its odd periodic extension (period 2L), if
necessary. Once g(x) is written into a sine series, the previous equation becomes



x O) ZB anm sin I’m’c ‘Q(X)=an3iﬂrmx
n=1 L n=1 L

Compare the coefficients of the like sine terms, we see

ann _ 2[‘ . Nex
B, = = bn=z-£g(x)sm———L dx
L o k . Mmx
Therefore, Bﬂ = a—/’n—;bn:;[’]];v(’;Q(X)S‘nT‘idx

As we have seen, half of the particular solution is determined by the initial displacement, the other half by the
initial velocity. The two halves are determined independent of each other. Hence, if the initial displacement f(x)
=0, thenall A_ = 0and u(x, t) contains no sine-terms of ¢. If the initial velocity g(x) = 0, then all B,=0and u(x,
f) contains no cosine-terms of t.

Let us take another look and summarize the result for these 2 easy special cases, when either f(x) or glx)is
7ero.

Special case I: Non-zero initial displacement, zero initial velocity: f(x) = 0, g(x) =
Since g(x) = 0, then B_ =0 for all n.

n

2%,
A, = T [fsn==dr, n=123, .
L_O L.

- t
Therefore, u(x, t) = Z A cosﬂsm%
ILLUSTRATIVE EXAMPLES
Exampier
Solve the one-dimensional wave problem.
W, = Uy, O<x<b t>0,
u(0, )y =0, and us, ty =0,
u(x, t) = 4sin(nx)-sin(2nx ) — 3sin(5nx),
ufx,0) = 0.
Solution:

First note that @ = 9 (so, a= 3), and L =
The general solution is, therefore,
U, ) = | A Cos—3~n-~+B sin I i X
g 5 5 5
Since g(x) = 0, it must be that all B,=0. We just need to find A, We also see that u(x, 0) = f(x) is
already in the form of a Fourier sine series. Therefore, we just need to extract the corresponding Fourier
sine coefficients:

As = by =4,
A = by =-1,
Ay = by =3,

A = b,=0, fora!!othern n5,10, or 25,
Hence, the particular solution is
u(x, t) = 4cos(3nt) sin(nx) — cos(6nt) sin(2rnx) — 3cos(15mt) sin(5mx)



Example:
Solve the one-dimensional wave problem.

9Uxx::utt’ O<x<5 >0
u(0,f) =0, and us, t) =0,
U(x,0) =0
Ugx, 0) = 4.

Solution:
As in the previous example, a2 = 9 (so,a=3),and L =5
Therefore, the general solution remains

ulx, ty = DA, cos 3L, B, sin S | gjn X
o~ 5 5 5 ’

Now, f(x) = 0, consequently all A, =0. We just need to find B,. The initial velocity g(x) = 4 is a constant

function. it is not an odd periodic function. Therefore, we need to expand it into its odd periodic extension

(period T= 10), then equate it with ufx, 0). In short:

2 % . mx 2%, . mx
T e Sin——— fe- I
B, amgg(x)l T 3m£4sm = O
80
, n=o0dd
= {3 n?
0, n=even
v - 80 . 3@2n-Nnt (2n —NHmx
Therefore, u(x, t) = n; e R sin=———sin =

8.2.1 Summary of Wave Equation: Vibrating String Problems
The vertical displacement of a vibrating string of length L, securely clamped at both ends, of negligible weight
and without damping, is described by the homogeneous undamped wave equation initial-boundary value
problem:
atu, = u, O<x<L, t>0,
u(0,t) =0, and u(L, t) =0,
u(x, 0) = f(x), and Ufx, 0) = g(x)
The general solution is

ux, 1) = Z(An cos%ﬂ+8n siné%t—tjsinﬂz—f

n=1

The particular solution can be found by the formulas:

L
A, = 2[(x)sin™ g, and
[ L

L
B, = 5—%{ £ g()sin ™ ol

The solution waveform has a constant (Horizontal) propagation speed, in both directions of the x-axis, of a. The
vibrating motion has a (vertical) velocity given by u(x, t) at any location 0 < x < L. along the string.

Exercise:
1. Solve the vibrating string problem of the given initial conditions.
4Uxx2“m O<x<m (>0,
u0,1) =0, um, t)=0,



(8) u(x,0)=12sin(2x) - 16sin(5x) + 24sin(6x) ; ux, 0)= 0.
(b) Ux,00=0 ; U,x0)=6
(© ux,0)=0 ; ufx 0)=12sin(2x) - 16sin(5x) + 24sin(6x)

2.  Solve the vibrating string problem.
100U, = u, O0<x<2 (>0
u0,t) =0, w2 t)=0,
u(x, 0) = 32sin(mx) + €2 sin(3nx) + 258in(6mx),
uy(x, 0) = Bsin(2nx) - 16sin(5nx/2)
3.  Solve the vibrating string problem.
25U, = U, O<x<1 >0,
u(0, ) =0 and w2, t) =0,
u(x,0) = x — x°,
ufx, 0) =
4.  Verify that the D’Alembert solution, u(x, t) = [F(x - at) + F(x + af)}/2, where F(x) is an odd periodic
function of period 2L such that F(x) = f(x) on the interval 0 < x < L, indeed satisfies the initial-boundary
value problem by checking that it satisfies the wave equation, boundary conditions, and initial conditions.

a‘u_ = Uy, O<x<l, t>0,
u(0, t) = 0, u(l, 1) =0,
ulx, 0) = flx), ufx, 0) =0,

5. Use the method of separation of variables to solve the following wave equation problem where the string
is rigid, but not fixed in place, at both ends (i.e., it is inflexible at the end points such that the slope of
displacement curve is always zero at both ends, but the two ends of the string are allowed to freely slide
in the vertical direction).

a?u_ = u, O<x<L, t>0,
t (O, f) = O, Ux(ll,., t) = O:
ulx, 0) = f(x), ugx, 0) = glx)

6.  Whatis the steady-state displacement of the string in #5? What is lim u(x, )7 Are they the same?

t—» o0

Angwers:
1. (@) u(x, t)=12cos(4t) sin(2x) — 16cos(10t) sin(bx) + 24cos(121) sin(6x).
(c) ulx, t)=3sin(4t) sin(2x) - 1.6sin(101) sin(bx) + 24sin(121) sin(6x).

5. (a) The general solutionis u(x, 1) = Ay + Byt + 2 (An cosf%t—é + B, sina—n;—tjcosme
n=1

The particular solution can be found by the formulas:

16 2F nmx 176 25 nmx
A=7 £ fle)cx, Ay =7 ‘i[ f(x)cos—L—d.,x, By=7 (j} gl)dx and B, =—— g g(x)cosT dx
6. The steady-state displacement is the constant term of the solution, A,. The limit does not exist unless
u(x, t) = Cis a constant function, which happens when f(x) = C and g(x) =0, in which case the limit is
C. They are not the same otherwise.

8.3 The One-Dimensional heat Conduction Equation
Consider a thin bar of length L, of uniform cross-section and constructed of homogeneous material. Suppose
that the side of the bar is perfectly insulated so no heat transfer could occur through it (heat could possibly still



move into or out of the bar through the two ends of the bar). Thus, the movement of heat inside the bar could
occur only in the x-direction. then, the amount of heat content at any placeinside the bar, 0 <x < L, and at any
time t> 0, is given by the temperature distribution function u(x, t). It satisfies the homogeneous one-dimensional
heat conduction equation:

ag uxx = uf

Where the constant coefficient o2 is the thermo diffusivity of the bar, given by a2 = k/ps. (k = thermal conductivity,
p = density, s = specific heat, of the material of the bar.)

Insulated side
(no heat escaping through the side)

Z/A
% A X
x=0 x =L
Insulated side
(no heat escaping through the side)

Temperature
distribution u(x, t)

Further, let us assume that both ends of the bar are kept constantly at 0 degree temperature.

(Heat conduction equation) a® Uy = Uy, O<x=<L, t>0,
(Boundary conditions) u0,t) =0, and (L, t) =0,
{Initial condition) u(x, 0) = f(x)

8.3.1 Conduction Problem
The general solution of the initial-boundary value problem given by the one-dimensional heat conduction modeling
a bar that has both of its ends at 0 degree. The general solution is
ur, ) = Y C,e oM I i X
n=1 L
Setting t= 0 and applying the initial condition ufx, 0) = f(x), we get
nmx

ux,0) = D, CnSinT- f(x)
n=1

We know that the above equation says that the initial condition needs to be an odd periodic function of period
2L. Since the initial condition could be an arbitrary function, it usually means that we would need to “force the
issue” and expand it into an odd periodic function of period 2L. That is

nmx

f(x) = Z bnSI'rlm
=1 L

Therefore, the particular solution is found by setting all the coefficients C, = b, where b,'s are the Fourier sine
coefficients of (or the odd periodic extension of) the initial condition f(x):

L
C = b= % [f)sin %
0

iLLUSTRATIVE EXAMPLES

Example:
Solve the heat conduction problem.
8u,=u, O<x<5 >0,
u0,t) = 0 and u(5, ) =0,




u(x, 0) = 2sin(stx) - 4sin(2nx ) — sin(bnx)
Solution:
Since the standard form of the heat conduction equation a2 u_ = u, we see that a? =8 ; and we also note
that L = 5. Therefore, the general solution is
i C e~a2n2n2.t/L2 Siﬂm
n

n=1

i

u(x, b

oo

| 2 nx
E 8n nt/25 sin

The initial condition, f(x), is already an odd periodic function (notice that it is a Fourier sine series) of the
correct period T= 2L = 10. '

Therefore, no additional calculation is needed, and all we needto dois to exiract the correct Fourier sine
coefficients from f(x). To wit

05: 5 =
c1o = bm =- 4
Cog = bog = 1,
C,=b,=0, forallother n, n#5,10, or 25.
Hence,
o ) L a2 21,2,
ulx, 1) = 2 8E R UB gin(r ) - 4g 8O =B gin(onx) 4 @8 B gin(5r )
Example: : .

What will the particular solution be if the initial condition is u(x, 0) = x instead? That is, solve the following
heat conduction problem: '
8u,=Uu, O<x<b >0,
u(0,t) =0 and w5, t)=0,

x,0) = x

Solution:
The general solution is still

ux, 1) 2 0,787 w12 gin 11X

n=1
The initial condition is an odd function, but it is not a periodic function. Therefore, it needs to be expanded
into its odd periodic extension of period 10(T = 2L.). Its coefficients are, for n=1, 2, 3, ...

ol
b = —L—gf( sm———dx—-f sin/ X d

4 L
= _2_ ﬂCO BZC.J.C. _:E_jcos_fn.I_xdx
5/ nn Sl nmy S
o -5x mmx. 25 _ musf
— COS—— + sin
= 5l m 5  rPr 5 lo

= g[(:-zéoos(nn)—o) (0- O)}J-Qcos(nn)
bit me

nm



10

e T g
-10 nm
—=, n=even
nt

The resulting sine series is (representing the function fx)=x, -6<x<5 fx+ 10) = f(x)):
10 & 0"
= - sin—=

5

The particular solution can then be found by setting each coefficient, C, tobethe corresponding Fourier

fx)

n n=1

o . __1 n+1 . )
sine coefficient of the series above, Cr=b,= Lﬂ)?n?(l@" Therefore, the particular solution is

ulx, t) = 1_9 i (”1),7”6—8:72712{/25 Sil’]@—f—
TN
The Steady-State Solution
The steady-state solution, v(x), of a heat conduction problem is the part of the temperature distribution function
that is independent of time ¢. It represents the equilibrium temperature distribution. To find it, we note the fact
that it is a function of x alone, yet it has to satisfy the heat conduction equation. Since v, = v7and v,=0,
substituting them into the heat conduction equation, we get,

a®v_ =0
Divide both side’ by a2 and integrate twice with respect to x, we find that v(x) must be in the form of a degree
1 polynomial:
Vix) = Ax + B

Then, rewrite the boundary conditions in terms of v- u(0, t) = v(0) = Iyand u(L, t) = VL) = T,. Apply those 2
conditions to find that:

V(O)=T1=A(O)+B=B = B:T1
UL =T,= AL+ B=AL+T, = A=(T,~TyL
- T-T
Therefore, V(x) = 2L Ly +T,

. Further examples of steady-state solutions of the heat conduction equation:

ILLUSTRATIVE EXAMPLES

Example:
Find v(x), given each set of boundary conditions below:
1. u(0, t) = 50, u(6,t)=0
2. U0, t)~4u(0,1)=0, u(10,t)=25
Solution:
1. We are looking for a function of the form v(x) = Ax + Bthat satisfies the given boundary conditions. Its
derivative is then v/(x) = A. The two boundary conditions can be rewritten to be u(0, t) = v(0) = 50, and
u (6, t) = v'(6) = 0. Hence,
v(0)=50=A0)+B=B = PB=50
V(0)=0=A = A=0
Therefore, v(x) = Ox + 50 = 50

2. The two boundary conditions can be rewritten be v(0) - 4v'(0) = 0, and V'(10) = 25,
Hence, v(0) - 4v'(0) = 0 = (A(0) + B)-4A=-4A + B



4v'(10) =25 = A = A=25
Substitute A = 25 into the first equation: 0 = -4A + B = -100 + B
= B = 100
Therefore, v{x) = 2bx + 100.

8.4 Laplace Equation for a Rectangular Region
Consider a rectangular of length a and width b. Suppose the top, bottom, and left sides border free-space;
while beyond the right side there lies a source of heat/gravity/magnetic flux, whose strength is given by f(y).
The potential function at any point (x, y) within this rectangular region, u(x, y), is then described by the
boundary value problem:
(2-dim. Laplace equation)  u,, + u, = 0, O<x<a O<y<b,
(Boundary conditions) u{x,0) = 0, and u(x, b) = Q,

u(0,y) =0, and u(a, b) = f(y).

The separation of variables proceeds similarly. A slight difference here is that Y(y) is used in the place of T(1).
Let u(x, y) = X(x) Y(y) and substituting u__ = XY”into the wave equation, it becomes

XY+ XY =0,
XY = -XY”
Dividing both sides by XY:
Xy
)8 \/

A

Now that the independent variables are separated to the two sides, we can insert the constant of separation.
Unlike the previous ipstances, it is more convenient to denote the constant as positive A instead.

X _ Y
X Y
Xﬂ'
~ = = X'=AX = X'-AX=0
Yﬂ
__Y_:x = Y'=AY = Y'+AY=0
The boundary conditions also separate:
ux,0) =0 = Xx)Y(0)=0 = Xx)=0 o Y(0)=0
ux, by =0 = Xx)Y(b)=0 = Xx)=0 or Y(b)=0
uo, Yy =0 = XO)Y(y)=0 = X0)=0 o Y(y)=0
ula, y) = y) = Xa)Y(y)=1fy) = [cannotbe simpilified further]
X' =AX = 0, X(0) =0,
Y’ -AY =0, Y(0)=0and Y(b)=0

Plus the fourth boundary condition, u(a, y) = f(y)

The next step is to solve the eigen value problem. Notice that there is another slight difference. Namely that

this time It is the equation of Ythat gives rise to the two-point boundary value problem which we need to solve.
Y'+AY =0, Y(0)=0, Y(b)=0

However, except for the fact that the variables is y and the function is ¥, rather than x and X, respectively, we

have already seen this problem before (more than once, as a matter of fact ; here the constant L = b). The

eigen values of this problem are

2 2
n°n
}\/=G2:‘: 5 I’):':1,2,3,
Their corresponding eigen function are
. nm
Yn = sm%, n=1,23, ..



Once we have found the eigen values, substitute I into the equation of x. We have the equation, together with
one boundary condition:

-0 x =0,  X0)=0.
b

. . nPr? ' nm
Its characteristic equation, r* — =0, hasreal roots r=+-—.
: p? b

Hence, the general solution for the equation of x is

[—m—x ﬂx
X = C1eb +Cge b
The single boundary condition gives
XO0)=0=C+C, = C,=C,

mo o
X = Cn(eb ~-e b J

Therefore, forn=1, 2, 3, ...

n

Because of the identity for the hyperbolic sine function

e’ -
2 )
the previous expression is often rewritten in terms of hyperbolic sine:

Sinhe =

X, =K, smhﬂ’éf£ n=1223, ..

- ¢
The coefficients satisfy the relation: K, = 2C .

Combining the solutions of the two equations, we get the set of solutions that satisfies the two-dimensional

Laplace equation, given the specified boundary conditions:

Up(x, ) = X (x)Ya(y) =K, smlgﬁs.n”’;y Cn=1,23, ..

mX o MY
EK sinh X% 0

This solution, of course, is specific to the set of boundary conditions
u(x, 0) = 0, and u(x, b) = 0,
u(0, y) = 0, and u(a, y) = f(y)
To find the particular solution, we will use the fourth boundary condition, namely, u(a, y) = {y).

ZK smhi@sm”’;y f(y)

We have seen this story before. There is nothing really new here. the summation above is a sine series whose
Fourier sine coefficients are b, = K, sin (ann/b). Therefore, the above relation says that the last boundary
condition, f(y), must either be an odd periodic function (period = 2b), or it needs to be expanded into one.
Once we have f(y) as a Fourier sine series, the coefficients K., of the particular solution can then be computed:

. .anm
KnSlnhwb = ff Sm__._.
Therefore K = b = 2 Tf(y)sm——ldy
' n . anm anm b

sinh—  bsinh —= 0
b S



Q.1 The solution of the partial differential equanon (@) sin (3x-y) (b) 3x2 + y2
du _ du (c) sin (3x - 3y) (d) (By?~x?)
ot~ %5z Isofthe form [ESE Prelims-2017]
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[CE, GATE-2016 : 1 Mark] [CE, GATE-2018 : 2 Marks]
Q.3 Consider the following partial differential equation Q-9 Consider a function uwhich depends on position
ulx, y) with the constant ¢ > 1: ou
x and time t. The partial differential equation EYS
ou + cﬂ =0
oy ox 2,
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(@) ulx, y) = flx + cy) (b) ulx, y) = f(x - cy) . .
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' [ME GA%E-?.OW . 1 Mark] (¢) Laplace’s equation (d) Elasticity equation
S ' [ME, GATE-2018 : 1 Mark]
Q.4 Consider a function fx, y, z) given by
fx, y, 2) = (2 + 2 - 222) 02 + 2) Q10 Letr=x?+ y-zand ZBexy+yz+ =1,
The partial derivative of this function with Assume that x and y are independent variables.
respect o x at the point, x = 2, y = 1 and At (x, ¥, z) = (2, -1, 1), the value (correct to two
z2=31 ' decimal pl e)fﬂ'
[EE, GATE-2017 . 1 Mark] maplacesj ot oS
Q.5  Consider the following partial differential equation: [EC, GATE-2018 : 2 Marks]
agq) agq) ag Q.11 The general integral of the partial differential
2 Baxay + 3”—~ +4¢ =0 equation y2p - xyq = x(z - 2y) is’
* @) 0(x? + 2, - yz) = 0
For this equation to be classified as parabolic, (b) O(x2— 12 V2 4 yz) = O
the value of B2 must be (©) dlxy, y2)=0
[CE, GATE- 2017 1 Mark] (d)ox+y, Inx-2)=0
Q.6 The solution of the following partial differential - [EE, ESE-2018]
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(b)

ou 0%u .
ThePDEé? = Oﬂ'é.;é“ )
Solution of (i} is

ulx, ) = (Acospx+Bsinpx)Ce‘p2°”
Put —pla=k
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Putting value of pin eq. (

ulx, f) = (Acos\[:xﬁhbsmhf ]Cek’
e\g"+e‘\/§“ \F \/i

Cel| A

i

oo {%—B}wﬁ*{%ﬂ

- Cekt

(c)

Comparing the given equation with the general

form of second order partial differential equation,

wehave A=1,B=3,C=1=8-4AC=5>0
PDE is Hyperbola.

(b)
u=fx - cy)
ou .
Pl f'(x = ey)(1)
ou
ay = f'(x - cy)-c)
Ju
=—c-flx - ¢y) = ~C-—-
8_q+ CQH =0
ay dx
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UXBTE4) Second Order Linear Partial Differential Equ:

6.

(a 7.

Sol.
fx, y, 2) = (% + y? = 22%) (* + 2)
-gg = (x2 + V2 — 222)(0) + ()2 + 22)(2x
+ (V2 + 22)(2x)
o, =(149) x 2 x(2) = 40
ax
Z= 3
Sol.

Given that the partial differential equation is
parabolic.
-4AC =0
B2 — 4(3)(3) = 0
B?-36=0
B = 36

Here A= 3
C=3

(a)
u=sin(Bx-Vy)
U, = 3cos(3x~y)
u, =-9sin(3x-y)
u, = -cos(3x - y)

u ’ = ~[-8in{3x ~ y) x ~1]

Wy
= —8in(3x — y)

(a)
fx) = 2x — x2 + my? is harmonic
o+ fyy =0
f =202
fy: 2my

f~2m
r. +f =0
~2+?m 0

2m= 2

m=1

(d)
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