
Galvanometers

D' Arsonval Galvanometer

Deflecting torque

$$T_{\sigma} = BiNA = Gi$$

where,

B = Flux density in air gap; Wb/m²

i = Current through moving coil; A

N = Number of turns in coil

 $A = Id = Area of coil; m^2$

I, d = Length of vertical and horizontal side (width) of coil respectively; m

G = Displacement constant of galvanometer

☐ Controlling torque

$$T_c = K \theta_f$$

where,

K = Spring constant of suspension; Nm/rad

 $\theta_{\text{f}} = \text{Final steady deflection of moving coil; rad}$

☐ Final steady deflection

$$\theta_{f} = \left(\frac{NBA}{K}\right)i = \left(\frac{G}{K}\right)i$$

Dynamic behaviour of Galvonometers

Torques in Galvonometers

Inertia torque

$$T_{i} = J \frac{d^{2}\theta}{dt^{2}}$$

where, J = mornent of inertia of moving system about the axis of rotation; kg-m²,

 θ = deflection at any time t; rad.

Damping torque

$$T_{D} = D \frac{d\theta}{dt}$$

where, D = damping constant

□ Controlling torque

$$T_C = K \theta$$

where, K = control constant

Deflecting Torque

$$T_d = Gi$$

Equation of motion

$$T_i + T_0 + T_c = T_d$$

$$\int \frac{d^2\theta}{dt^2} + \frac{Dd\theta}{dt} + K\theta = Gi$$

Note:

- If D² < 4 kJ, galvanometer is underdamped.
- If D² = 4 kJ, galvanometer is critically damped.
- If D² > 4 kJ, galvanometer is overdamped.

Total resistance of galvanometer circuit for critical damping

$$R = \frac{G^2}{2\sqrt{KJ}}$$

☐ External series resistance required for critical damping

$$R_e = R - R_g = \frac{G^2}{2\sqrt{KJ}} - R_g$$

where, $R_a = Resistance$ of galvanometer

Sensitivity

Current sensitivity

$$S_i = \frac{\theta_i}{i} = \frac{G}{K}$$
 rad/A

$$S_i = \frac{d}{1 \times 10^6}$$

scale divisions/µA

$$\mathbf{S}_i = \frac{2000 \,\mathrm{G}}{\mathrm{K} \times 10^6}$$

Voltage sensitivity

$$S_v = \frac{d}{iR_g \times 10^6}$$
 scale division/ μV

Megohm sensitivity

$$S_0 = \frac{d}{i \times 10^{-6}}$$

MΩ/scale division

Remember:

Sensitive galvanometer is one which produces a large deflection for a small current.