QUADRATIC EQUATIONS [JEE ADVANCED PREVIOUS YEAR SOLVED PAPER]

JEE ADVANCED

Single Correct Answer Type

- 1. If l, m, n are real $l \neq m$, then the roots of the equation $(l-m) x^2 - 5 (l+m) x - 2(l-m) = 0$ are
 - a. real and equal
- **b.** complex
- c. real and unequal
- d. none of these

(IIT-JEE 1979)

- 2. If x, y, and z are real and different and $u = x^2 + 4y^2 + 9z^2$ -6yz - 3zx - 2xy, then u is always
 - a. non-negative
- **b.** zero
- c. non-positive
- d. none of these

(IIT-JEE 1979)

- 3. If a > 0, b > 0 and c > 0, then the roots of the equation $ax^2 + bx + c = 0$
 - a. are real and negative
 - **b.** have positive real parts
 - c. have negative real parts
 - d. none of these

(IIT-JEE 1979)

- 4. The entire graph of the equation $y = x^2 + kx x + 9$ is strictly above the x-axis if and only if
 - **a.** k < 7
- **b.** -5 < k < 7
- c. k > -5
- **d.** none of these

(IIT-JEE 1979)

- 5. Both the roots of the equation (x b)(x c) + (x a)(x-c) + (x-a)(x-b) = 0 are always
 - a. positive
- b. real
- c. negative
- d. none of these

(IIT-JEE 1980)

- 6. If $(x^2 + px + 1)$ is a factor of $(ax^3 + bx + c)$, then

 - **a.** $a^2 + c^2 = -ab$ **b.** $a^2 c^2 = -ab$

 - $\mathbf{c.} \ a^2 c^2 = ab$ **d.** none of these

(IIT-JEE 1980)

- 7. Two towns A and B are 60 km apart. A school is to be built to serve 150 students in town A and 50 students in town B. If the total distance to be travelled by all 200 students is to be as small as possible, then the school be built at
 - a. town B
- b. 45 km from town A
- c. town A
- d. 45 km from town B

(IIT-JEE 1982)

- 8. The equation $x \frac{2}{x-1} = 1 \frac{2}{x-1}$ has
 - a. no root
- **b.** one root
- c. two equals roots
- d. infinitely many roots

(IIT-JEE 1984)

- 9. If α and β are the roots of $x^2 + px + q = 0$ and α^4 , β^4 are the roots of $x^2 - rx + s = 0$, then the equation $x^2 - 4qx$ $+2q^2-r=0$ has always
 - a. one positive and one negative root
 - **b.** two positive roots
 - c. two negative roots

(IIT-JEE 1989)

- **d.** cannot say anything 10. Let a, b, c be real numbers, $a \ne 0$. If α is a root of $a^2x^2 + bx$ +c=0. β is the root of $a^2x^2-bx-c=0$ and $0<\alpha<\beta$, then the equation $a^2x^2 + 2bx + 2c = 0$ has a root γ that always satisfies
 - **a.** $\gamma = \frac{\alpha + \beta}{2}$ **b.** $\gamma = \alpha + \frac{\beta}{2}$ **c.** $\gamma = \alpha$

(IIT-JEE 1989)

11.	Let α , β be the roots of the equation $(x - a)(x - b) = c$,				
	$c \neq 0$. Then the roots of the equation $(x - \alpha)(x - \beta) + c$				
	= 0 are				
	a. a, c	b. b, c	c. a, b	$\mathbf{d.} a + c, b + c$	
				(IIT-JEE 1992)	
12.	The number of points of intersection of two curves				
	$y = 2 \sin x$ and $y = 5x^2 + 2x + 3$ is				
	a. 0	b. 1	c. 2	d. ∞	
				(IIT-JEE 1994)	
12	16		d are in A D	the roots of aug	

- 13. If p, q, r are positive and are in A.P., the roots of quadratic equation $px^2 + qx + r = 0$ are all real for
 - **a.** $\left| \frac{r}{p} 7 \right| \ge 4\sqrt{3}$ **b.** $\left| \frac{p}{r} 7 \right| \ge 4\sqrt{3}$

c. all p and r

d. no p and r

(IIT-JEE 1994)

- 14. The equation $\sqrt{x+1} \sqrt{x-1} = \sqrt{4x-1}$ has
 - a. no solution
- **b.** one solution
- c. two solutions
- d. more than two solutions

(IIT-JEE 1997)

- 15. If the roots of the equation $x^2 2ax + a^2 + a 3 = 0$ are real and less than 3, then
 - **a.** a < 2
- **b.** $2 \le a \le 3$ **c.** $3 < a \le 4$ **d.** a > 4

(IIT-JEE 1999)

- 16. If α and β ($\alpha < \beta$) are the roots of the equation $x^2 + bx + c$ = 0, where c < 0 < b, then
 - $\mathbf{a} \cdot 0 < \alpha < \beta$
- **b.** $\alpha < 0 < \beta < |\alpha|$
- c. $\alpha < \beta < 0$
- **d.** $\alpha < 0 < |\alpha| < \beta$

(IIT-JEE 2000)

- 17. If b > a, then the equation (x a)(x b) 1 = 0 has
 - **a.** both roots in (a, b)
 - **b.** both roots in $(-\infty, a)$
 - **c.** both roots in $(b, +\infty)$
 - **d.** one root in $(-\infty, a)$ and the other in $(b, +\infty)$

(IIT-JEE 2000)

- 18 For the equation $3x^2 + px + 3 = 0$, p > 0, if one of the roots is square of the other, then p is equal to
 - **a.** 1/3
- **b.** 1
- **c.** 3
- **d.** 2/3

(IIT-JEE 2000)

- **19.** Let $f(x) = (1 + b^2)x^2 + 2bx + 1$ and let m(b) be the minimum value of f(x). As b varies, the range of m(b) is
 - **a.** [0, 1]
- **c.** $\left[\frac{1}{2}, 1\right]$
- **d.** (0, 1]

(IIT-JEE 2001)

- **20.** Let α , β be the roots of $x^2 x + p = 0$ and γ , δ be roots of $x^2 - 4x + q = 0$. If α , β , γ , δ are in G.P., then the integral values of p and q, respectively, are
 - **a.** -2, -32 **b.** -2, 3 **c.** -6, 3
- **d.** -6, -32

(IIT-JEE 2001)

- 21. If $f(x) = x^2 + 2bx + 2c^2$ and $g(x) = -x^2 2cx + b^2$ are such that $\min f(x) > \max g(x)$, then the relation between b and c is
 - a. no relation
- **b.** 0 < c < b/2
- **c.** $|c| < |b|\sqrt{2}$
- **d.** $|c| > |b|\sqrt{2}$ (IIT-JEE 2003)

- 22. Range of the function $f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$, $x \in R$ is
 - **b.** (1, 11/7) **c.** (1, 7/3] (IIT-JEE 2003)
- **23.** For all x, $x^2 + 2ax + 10 3a > 0$, then the interval in which a lies is
 - **a.** a < -5
- **b.** -5 < a < 2
- **c.** a > 5
- **d.** 2 < a < 5 (IIT-JEE 2004)
- 24. If one root is square of the other root of the equation $x^2 + px + q = 0$, then the relation between p and q is
 - **a.** $p^3 q(3p 1) + q^2 = 0$
 - **b.** $p^3 q(3p + 1) + q^2 = 0$
 - $c. p^3 + q(3p-1) + q^2 = 0$
 - **d.** $p^3 + q(3p + 1) + q^2 = 0$ (IIT-JEE 2004)
- 25. Let α , β be the roots of the quadratic equation $ax^2 + bx + c$ = 0 and $\Delta = b^2 - 4ac$. If $\alpha + \beta$, $\alpha^2 + \beta^2$, $\alpha^3 + \beta^3$ are in G.P., then
 - $\mathbf{a} \cdot \Delta = 0$
- **b.** $\Delta \neq 0$
- $\mathbf{c.}\ b\Delta = 0$
- $\mathbf{d} \cdot c\Delta = 0$

(IIT-JEE 2005)

- **26.** Let a, b, c be the sides of a triangle, where $a \neq b \neq c$ and $\lambda \in R$. If the roots of the equation $x^2 + 2(a + b + c)x + c$ $3\lambda (ab + bc + ca) = 0$ are real. Then
 - a. $\lambda < \frac{4}{3}$
- c. $\lambda \in \left(\frac{1}{3}, \frac{5}{3}\right)$
- d. $\lambda \in \left(\frac{4}{3}, \frac{5}{3}\right)$

(IIT-JEE 2006)

- 27. Let α , β be the roots of the equation $x^2 px + r = 0$ and $\alpha/2,2\beta$ be the roots of the equation $x^2 - qx + r = 0$. Then the value of r is

 - **a.** $\frac{2}{9}(p-q)(2q-p)$ **b.** $\frac{2}{9}(q-p)(2p-q)$
 - c. $\frac{2}{9}(q-2p)(2q-p)$ d. $\frac{2}{9}(2p-q)(2q-p)$

(IIT-JEE 2007)

- **28.** Let p and q be real numbers such that $p \neq 0$, $p^3 \neq q$, and $p^3 \neq -q$. If α and β are nonzero complex numbers satisfying $\alpha + \beta = -p$ and $\alpha^3 + \beta^3 = q$, then a quadratic equation having α/β and β/α as its roots is
 - **a.** $(p^3+q)x^2-(p^3+2q)x+(p^3+q)=0$
 - **b.** $(p^3+q)x^2-(p^3-2q)x+(p^3+q)=0$
 - c. $(p^3-q)x^2-(5p^3-2q)x+(p^3-q)=0$
 - **d.** $(p^3-q)x^2-(5p^3+2q)x+(p^3-q)=0$ (IIT-JEE 2010)
- 29. A value of b for which the equations $x^2 + bx 1 = 0$, $x^2 + x + b = 0$ have one root in common is
 - $\mathbf{a} \cdot -\sqrt{2}$
- **b.** $-i\sqrt{3}$
- c. $\sqrt{2}$
- **d.** $\sqrt{3}$

(IIT-JEE 2011)

- 30. Let α and β be the roots of $x^2 6x 2 = 0$, with $\alpha > \beta$. If $a_n = \alpha^n - \beta^n$ for $n \ge 1$, then the value of $\frac{a_{10} - 2a_8}{2a_9}$ is

 a. 1

 b. 2

 c. 3

 d. 4

 (IIT-JEE 2011)
- 31. The quadratic equation p(x) = 0 with real coefficients has purely imaginary roots. Then the equation p(p(x)) = 0 has
 - a. only purely imaginary roots
 - b. all real roots
 - c. two real and two purely imaginary roots
 - d. neither real nor purely imaginary roots

(JEE Advanced 2014)

Multiple Correct Answers Type

- 1. For real x, the function $\frac{(x-a)(x-b)}{x-c}$ will assume all real values provided
 - **a.** a > b > c

b. a < b < c

 $\mathbf{c} \cdot a > c > b$

d. a < c < b (IIT-JEE 1984)

- 2. Let S be the set of all non-zero real numbers such that the quadratic equation $\alpha x^2 x + \alpha = 0$ has two distinct real roots x_1 and x_2 satisfying the inequality $|x_1 x_2| < 1$. Which of the following intervals is(are) a subset(s) of S?
 - $\mathbf{a.} \left(-\frac{1}{2}, -\frac{1}{\sqrt{5}}\right)$

b. $\left(-\frac{1}{\sqrt{5}}, 0\right)$

 $\mathbf{c.}\left(0,\frac{1}{\sqrt{5}}\right)$

d. $\left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$

(JEE Advanced 2015)

Matching Column Type

 Match the statements/expressions in Column I with the statements/expressions in Column II.

Column I	Column II
(a) The minimum value of $\frac{x^2 + 2x + 4}{x + 2}$	(p) 0
(b) Let A and B be 3×3 matrices of rear numbers, where A is symmetric, It is skew symmetric, and $(A + B)$ is skew symmetric, and $(A + B)$ is $(A - B) = (A - B)(A + B)$. If $(AB)^t = (-1)^k AB$, where $(AB)^t$ is the transpose of the matrix AB , then the possible values of k are	3) = e
(c) Let $a = \log_3 \log_3 2$. An integer k satisfying $1 < 2^{(-k+3^{-a})} < 2$, must be less than	(r) 2
(d) If $\sin \theta = \cos \phi$, then the possible values of $\frac{1}{\pi} \left(\theta \pm \phi - \frac{\pi}{2} \right)$ are	e (s) 3

(IIT-JEE 2008)

Integer Answer Type

- 1. The smallest value of k. for which both the roots of the equation $x^2 8kx + 16(k^2 k + 1) = 0$ are real, distinct and have values at least 4, is (IIT-JEE 2009)
- 2. The number of distinct real roots of $x^4 4x^3 + 12x^2 + x$ -1 = 0 is (IIT-JEE 2011)

Assertion-Reasoning Type

1. Let a, b, c, p, q be real numbers. Suppose α , β are the roots of the equation $x^2 + 2px + q = 0$, α and $1/\beta$ are the roots of the equation $ax^2 + 2bx + c = 0$, where $\beta^2 \notin \{-1, 0, 1\}$.

Statement 1: $(p^2 - q) (b^2 - ac) \ge 0$

Statement 2: $b \neq pa$ or $c \neq qa$

- a. Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1.
- b. Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1.
- c. Statement 1 is true, statement 2 is false.
- d. Statement 1 is false, statement 2 is true.

(IIT-JEE 2008)

Fill in the Blanks Type

- 1. The coefficient of x^{99} in the polynomial $(x-1)(x-2)\cdots$ (x-100) is _____. (IIT-JEE 1982)
- 2. If $2 + i\sqrt{3}$ is a root of the equation $x^2 + px + q = 0$, where p and q are real, then $(p, q) = (\underline{\qquad}, \underline{\qquad})$. (IIT-JEE 1982)
- 3. If x < 0, y < 0, x + y + (x/y) = (1/2) and (x + y)(x/y) = -(1/2), then $x = _____$ and $y = _____.$

(IIT-JEE 1982)

- 4. If the product of the roots of the equation $x^2 3kx + 2e^{2 \ln k} 1 = 0$ is 7, then the roots are real for _____. (IIT-JEE 1984)
- 5. If the quadratic equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ ($a \ne b$) have a common root, then the numerical value of a + b is _____. (IIT-JEE 1986)

True/False Type

1. The equation $2x^2 + 3x + 1 = 0$ has an irrational root.

(IIT-JEE 1983)

2. If a < b < c < d, then the roots of the equation (x - a) (x - c) + 2(x - b)(x - d) = 0 are real and distinct.

(IIT-JEE 1984)

- 3. If $n_1, n_2, ..., n_p$ are p positive integers, whose sum is an even number, then the number of odd integers among them is odd. (IIT-JEE 1985)
- 4. If $P(x) = ax^2 + bx + c$ and $Q(x) = -ax^2 + dx + c$, where $ac \neq 0$, then P(x) Q(x) = 0 has at least two real roots.

(IIT-JEE 1985)

Subjective Type

1. Solve for x: $4^x - 3^{x-1/2} = 3^{x+1/2} - 2^{2x-1}$.

(IIT-JEE 1978)

- 2. Solve for x: $\sqrt{x+1} \sqrt{x-1} = 1$. (IIT-JEE 1978)
- 3. Show that the square of $(\sqrt{26-15\sqrt{3}})/(5\sqrt{2}-\sqrt{38+5\sqrt{3}})$

is a rational number. (IIT-JEE 1978)

- 4. If α , β are the roots of $x^2 + px + q = 0$ and γ , δ are the roots of $x^2 + rx + s = 0$, evaluate $(\alpha \gamma)(\alpha \delta)(\beta \gamma)(\beta \gamma)$ ($\beta \delta$) in terms of p, q, r, and s. Deduce the condition that the equation has a common root. (IIT-JEE 1979)
- 5. Prove that the minimum value of $\frac{(a+x)(b+x)}{(c+x)}$, a,b>c, x>-c is $(\sqrt{a-c}+\sqrt{b-c})^2$. (IIT-JEE 1979)
- 6. If one root of the quadratic equation $ax^2 + bx + c = 0$ is equal to the *n*th power of the other, then show that

$$(ac^n)^{\frac{1}{n+1}} + (a^nc)^{\frac{1}{n+1}} + b = 0$$
 (IIT-JEE 1983)

- 7. Solve for $x: (5+2\sqrt{6})^{x^2-3} + (5-2\sqrt{6})^{x^2-3} = 10$.

 (IIT-JEE 1985)
- 8. For $a \le 0$, determine all real roots of the equation $x^2 2a |x a| 3a^2 = 0$. (IIT-JEE 1985)
- 9. Let a, b, c be real. If $ax^2 + bx + c = 0$ has two real roots α and β , where $\alpha < -1$ and $\beta > 1$, then show that

$$1 + \frac{c}{a} + \left| \frac{b}{a} \right| < 0 \tag{IIT-JEE 1995}$$

- 10. The real numbers x_1 , x_2 , x_3 satisfying the equation $x^3 x^2 + bx + \gamma = 0$ are in A.P. Find the intervals in which β and γ lie. (IIT-JEE 1996)
 - 11. Let S be a square of unit area. Consider any quadrilateral, which has one vertex on each side of S. If a, b, c, and d denote the lengths of the sides of the quadrilateral, prove that $2 \le a^2 + b^2 + c^2 + d^2 \le 4$. (IIT-JEE 1997)
 - 12. Let $f(x) = Ax^2 + Bx + C$, where A, B, C are real numbers. Prove that if f(x) is an integer whenever x is an integer, then the numbers 2A, A + B, and C are all integers. Conversely, prove that if the number 2A, A + B, and C are all integers, then f(x) is an integer whenever x is an integer.

 (IIT-JEE 1998)
 - 13. If α , β are the roots of $ax^2 + bx + c = 0$ ($a \ne 0$) and $\alpha + \delta$, $\beta + \delta$ are the roots of $Ax^2 + Bx + C = 0$ ($A \ne 0$) for some constant δ , then prove that $(b^2 4ac)/a^2 = (B^2 4AC)/A^2$. (IIT-JEE 2000)
 - 14. Let a, b, c be real numbers with $a \ne 0$ and let α , β be the roots of the equation $ax^2 + bx + c = 0$. Express the roots of $a^3x^2 + abcx + c^3 = 0$ in terms of α , β . (IIT-JEE 2001)
 - 15. If $x^2 + (a b)x + (1 a b) = 0$, where $a, b \in R$, then find the values of a for which equation has unequal real roots for all values of b. (IIT-JEE 2003)
 - 16. Let a and b be the roots of the equation $x^2 10cx 11d$ = 0 and those of $x^2 - 10ax - 11b = 0$ are c, d. Then find the value of a + b + c + d, when $a \neq b \neq c \neq d$.

(IIT-JEE 2006)

Answer Key

JEE Advanced

Single Correct Answer Type

- 1. c.
 2. a.
 3. c.
 4. b.
 5. b.

 6. c.
 7. c.
 8. a.
 9. a.
 10. d.

 11. c.
 12. a.
 13. b.
 14. a.
 15. a.

 16. b.
 17. d.
 18. c.
 19. d.
 20. a.
- 21. d. 22. c. 23. b. 24. a. 25. d. 26. a. 27. d. 28. b. 29. b. 30. c.

31. d.

Multiple Correct Answers Type

1. c., d. 2. a., d.

Matching Column Type

1. (a)–(r)

Integer Answer Type

- **1.** (2)
- **2.** (2)

Assertion-Reasoning Type

1. b.

- Fill in the Blanks Type
 - **1.** -5050 **2.** p = -4, q = 7
 - 3. x = -1/4 and y = -1/4 4. 2

5. -1

4. True

True/False Type

1. False 2. True 3. False

Subjective Type

- 1. $\frac{3}{2}$ 2. $\frac{5}{2}$
- 4. $q(r-p)^2 p(r-p)(s-q) + (s-q)^2$; $(q-s)^2 = (r-p)(ps-qr)$
- 7. $\pm 2, \pm \sqrt{2}$
- 8. $\{a a\sqrt{2}, -a + a\sqrt{6}\}$
- **10.** $\beta \in (-\infty, 1/3], \gamma \in [-1/27, \infty)$
- 14. $\alpha^2 \beta$, $\alpha \beta^2$ 15. a > 1 16. 1210

Hints and Solutions

6. c.
$$x^{2} + px + 1$$
 $ax^{3} + bx + c$
 $ax^{3} + apx^{2} + ax$
 $-apx^{2} + (b-a)x + c$
 $-apx^{2} - ap^{2}x - ap$
 $(b-a+ap^{2})x + c + ap$

Now, remainder must be zero.

or
$$(b - a + ap^2)x + c + ap = 0, \forall x \in R$$

Hence, $b - a + ap^2 = 0$ and $c + ap = 0$

$$\Rightarrow p = -\frac{c}{a} \text{ and } p^2 = \frac{a-b}{a}$$
or
$$\left(\frac{-c}{a}\right)^2 = \frac{a-b}{a}$$

$$(a)$$
or $c^2 = a^2 - ab$

or
$$c^2 = a^2 - ab$$

or
$$a^2 - c^2 = ab$$

7. c. Let the distance of the school from A be x. Therefore, the distance of the school from B is 60 - x. The total distance covered by 200 students is

$$[150x + 50 (60 - x)] = [100x + 3000]$$

This is minimum when x = 0. Hence, the school should be at town A.

8. a. Given equation is

$$x-\frac{2}{x-1}=1-\frac{2}{x-1}$$

Clearly, the given equation is defined if $x - 1 \neq 0$. We can cancel the common term -2/(x-1) on both sides to get x=1, but it is not possible. So, given equation has no roots.

9. a. α , β are roots of $x^2 + px + q = 0$. Hence,

$$\alpha + \beta = -p$$
 and $\alpha\beta = q$
 α^4 , β^4 are roots of $x^2 - rx + s = 0$. Hence,
 $\alpha^4 + \beta^4 = r$, $\alpha^4\beta^4 = q$

Now for equation $x^2 - 4qx + 2q^2 - r = 0$, the product of roots is $2q^2 - r = 2(\alpha\beta)^2 - (\alpha^4 + \beta^4)$ $=-(\alpha^2-\beta^2)^2$

Therefore, the product of roots is negative. So, the roots must be real and of opposite signs.

10. d. We know that if $f(\alpha)$ and $f(\beta)$ are of opposite signs, then there must be a value γ between α and β such that $f(\gamma) = 0$. Here, a, b, c are real numbers and $a \ne 0$. As α is a root of $a^2 x^2 + bx + c$ =0, so

$$a^2\alpha^2 + b\alpha + c = 0 \tag{1}$$

Also,
$$\beta$$
 is a root of $a^2x^2 - bx - c = 0$, so $a^2 \beta^2 - b\beta - c = 0$ (2)

Now, let
$$f(x) = a^2 x^2 + 2bx + 2c$$
. Then,

$$f(\alpha) = a^{2}\alpha^{2} + 2b \alpha + 2c$$

$$= a^{2}\alpha^{2} + 2(b \alpha + c)$$

$$= a^{2}\alpha^{2} + 2(-a^{2}\alpha^{2})$$
 [Using (1)]
$$= -a^{2}\alpha^{2} < 0$$

and

$$f(\beta) = a^2 \beta^2 + 2b \beta + 2c$$

JEE Advanced

Single Correct Answer Type

1. c. l, m, n are real and $l \neq m$. Given equation is $(l-m)x^2-5(l+m)x-2(l-m)=0$ $D = 25 (l + m)^2 + 8 (l - m)^2 > 0, \forall l, m \in R$

Therefore, the roots are real and unequal.

2. a. $u = x^2 + 4y^2 + 9z^2 - 6yz - 3zx - 2xy$ $= \frac{1}{2} \left[2x^2 + 8y^2 + 18z^2 - 12yz - 6zx - 4xy \right]$ $= \frac{1}{2} \left[(x^2 - 4xy + 4y^2) + (4y^2 + 9z^2 - 12yz) \right]$ $+(x^2+9z^2-6zx)$

$$= \frac{1}{2} \left[(x - 2y)^2 + (2y - 3z)^2 + (3z - x)^2 \right] \ge 0$$

Hence, u is always non-negative.

3. c. As a, b, c > 0, so a, b, c should be real (note that other relation is not defined in the set of complex numbers). Therefore, the roots of equation are either real or complex conjugate.

Let α , β be the roots of $ax^2 + bx + c = 0$. Then,

$$\alpha + \beta = -\frac{b}{a} = -\text{ve and } \alpha\beta = \frac{c}{a} = +\text{ve}$$

Hence, either both α , β are –ve (if roots are real) or both α , β have -ve real part (if roots are complex conjugate).

4. b. Given equation is $y = x^2 + (k-1)x + 9$.

Since coefficient of x^2 is positive, graph is concave upward. If graph strictly lies above the x-axis, then we can say that equation $x^2 + (k-1)x + 9 = 0$ has imaginary roots.

..
$$D = (k-1)^2 - 36 < 0$$

or $-6 < k-1 < 6$
or $-5 < k < 7$

5. b. The given equation is

$$(x-b)(x-c) + (x-a)(x-c) + (x-a)(x-b) = 0$$

$$3x^2 - 2(a+b+c)x + (ab+bc+ca) = 0$$

$$D = 4(a+b+c)^2 - 12(ab+bc+ca)$$

$$= 4[a^2 + b^2 + c^2 - ab - bc - ca]$$

$$= 2[(a-b)^2 + (b-c)^2 + (c-a)^2] \ge 0, \forall a, b, c$$

Therefore, the roots of the given equation are always real.

$$= a^{2}\beta^{2} + 2(b \beta + c)$$

$$= a^{2}\beta^{2} + 2(a^{2}\beta^{2})$$

$$= 3a^{2}\beta^{2} > 0$$
[Using (2)]

Since $f(\alpha)$ and $f(\beta)$ are of opposite signs and γ is a root of equation f(x) = 0, γ must lie between α and β . Thus, $\alpha < \gamma < \beta$.

- 11. c. α , β are roots of the equation (x-a)(x-b)=c, $c \neq 0$.
 - $\therefore (x-a)(x-b)-c=(x-\alpha)(x-\beta)$

or
$$(x - \alpha)(x - \beta) + c = (x - a)(x - b)$$

Hence, the roots of $(x - \alpha)(x - \beta) + c = 0$ are a and b.

12. a. Minimum value of $5x^2 + 2x + 3$ is

$$-\frac{D}{4a} = -\frac{(2)^2 - 4(5)(3)}{4(5)} > 2$$

where maximum value of $2 \sin x$ is 2. Hence, graph of $y = 5x^2 + 2x + 3$ lies above the graph of $y = 2 \sin x$ without touching or intersecting. Therefore, the two curves do not meet at all.

13. b. For real roots,

$$q^2 - 4pr \ge 0$$

$$\Rightarrow \left(\frac{p+r}{2}\right)^2 - 4pr \ge 0 \qquad (\because p, q, r \text{ are in A.P.})$$

or
$$p^2 + r^2 - 14pr \ge 0$$

or
$$\frac{p^2}{r^2} - 14 \frac{p}{r} + 1 \ge 0$$

or
$$\left(\frac{p}{r}-7\right)^2-48 \ge 0$$

or
$$\left|\frac{p}{r} - 7\right| \ge 4\sqrt{3}$$

14. a. The given equation i

$$\sqrt{x+1} - \sqrt{x-1} = \sqrt{4x-1}$$

Squaring both sides, we get

$$x + 1 + x - 1 - 2\sqrt{x^2 - 1} = 4x - 1$$

$$\Rightarrow -2\sqrt{x^2-1} = 2x-1$$

Again squaring both sides, we get

$$4(x^2 - 1) = 4x^2 - 4x + 1$$

or
$$-4x = -5$$

or
$$x = 5/4$$

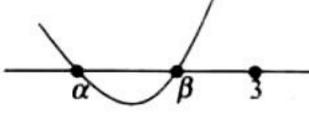
Substituting this value of x in given equation, we get

$$\sqrt{\frac{5}{4} + 1} - \sqrt{\frac{5}{4} - 1} = \sqrt{4 \times \frac{5}{4} - 1}$$

$$\Rightarrow \frac{3}{2} - \frac{1}{2} = 2 \text{ (not satisfied)}$$

Therefore, 5/4 is not a solution of given equation. Hence, the given equation has no solution.

15. a. If both the roots of a quadratic equation $Ax^2 + Bx + C = 0$ are less than k, then Af(k) > 0, -B/2A < k and $D \ge 0$. Now,



$$f(x) = x^2 - 2ax + a^2 + a - 3$$

$$\Rightarrow$$
 $f(3) > 0, a < 3, -4a + 12 \ge 0$

$$\Rightarrow a^2 - 5a + 6 > 0, a < 3, -4a + 12 \ge 0$$

$$\Rightarrow$$
 $a < 2 \text{ or } a > 3, a < 3, a \le 3$

$$\Rightarrow a < 2$$

16. b. Here $D = b^2 - 4c > 0$ because c < 0 < b. So, roots are real and unequal. Now,

$$\alpha + \beta = -b < 0$$
 and $\alpha\beta = c < 0$

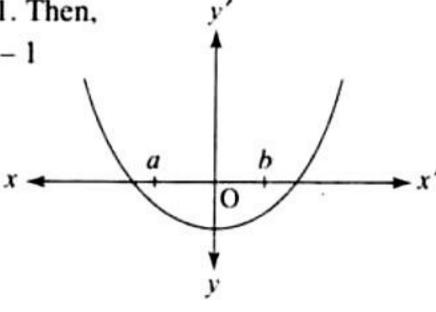
Therefore, one root is positive and the other root is negative, the negative root being numerically bigger. As $\alpha < \beta$, so α is the negative root while β is the positive root. So, $|\alpha| > \beta$ and $\alpha < 0 < \beta < |\alpha|$.

17. d. Given equation is

$$(x-a)(x-b)-1=0$$

Let
$$f(x) = (x - a)(x - b) - 1$$
. Then,
 $f(a) = -1$ and $f(b) = -1$

Also, graph of f(x) is concave upward; hence, a and b lie between the roots. Also, if b > a, then one root lies in $(-\infty, a)$ and the other root lies in $(b, +\infty)$.



18. c. Let α , α^2 be the roots of $3x^2 + px + 3 = 0$. Now,

$$S = \alpha + \alpha^2 = -p/3, p = \alpha^3 = 1$$

$$\Rightarrow \alpha = 1, \omega, \omega^2 \qquad \left(\text{where } \omega = \frac{-1 + \sqrt{3}i}{2} \right)$$

$$\alpha + \alpha^2 = -p/3 \Rightarrow \omega + \omega^2 = -p/3$$

$$\Rightarrow$$
 $-1 = -p/3 \Rightarrow p = 3$

19. d. Minimum value of $f(x) = (1 + b^2)^{-2} + 2bx + 1$ is

$$m(b) = -\frac{(2b)^2 - 4(1+b^2)}{4(1+b^2)} = \frac{1}{1+b^2}$$

Clearly, m(b) has range (0, 1].

20. a. Clearly, $\alpha + \beta = 1$, $\alpha\beta = p$, $\gamma + \delta = 4$, $\gamma\delta = q$ $(p, q \in I)$.

Since α , β , γ , δ are in G.P. (with common ratio r), so

$$\alpha + \alpha r = 1$$
, $\alpha(r^2 + r^3) = 4$

$$\Rightarrow \alpha(1+r)=1, \alpha r^2(1+r)=4$$

$$\Rightarrow$$
 $r^2 \times 1 = 4 \Rightarrow r^2 = 4 \Rightarrow r = 2, -2$

If
$$r=2$$
,

$$\alpha + 2\alpha = 1 \Rightarrow \alpha = \frac{1}{3}$$

If
$$r = -2$$
,

$$\alpha - 2\alpha = 1 \Rightarrow \alpha = -1$$

But
$$p = \alpha \beta \in I$$

$$\therefore$$
 $r = -2$ and $\alpha = -1$

$$\Rightarrow p = -2$$

$$q = \alpha^2 r^5 = 1 (-2)^5 = -32$$

21. d.
$$f(x) = x^2 + 2bx + 2c^2$$

$$=(x+b)^2+2c^2-b^2$$

$$g(x) = -x^2 - 2cx + b^2$$

$$=-(x+c)^2+b^2+c^2$$

Given that

$$\min f(x) > \max g(x)$$

$$2c^2 - b^2 > b^2 + c^2$$

or
$$c^2 > 2b^2$$

$$\Rightarrow$$
 $|c| > |b| \sqrt{2}$

22. c. We have
$$y = \frac{x^2 + x + 2}{x^2 + x + 1}$$

or
$$yx^2 + yx + y = x^2 + x + 2$$

 $(y-1)x^2 + (y-1)x + y - 2 = 0$

Clearly $y \neq 1$

Since x is real,

$$D \ge 0$$

$$\Rightarrow (y-1)^2 - 4(y-1)(y-2) \ge 0$$

$$\Rightarrow$$
 (y-1)[y-1-4y+8] ≥ 0

$$\Rightarrow$$
 $(y-1)(3y-7) \le 0$

$$y \in (1, 7/3]$$

23. b. $x^2 + 2ax + 10 - 3a > 0, \forall x \in R$

$$\Rightarrow D < 0$$

$$\Rightarrow 4a^2 - 4(10 - 3a) < 0$$

or
$$a^2 + 3a - 10 < 0$$

or
$$(a+5)(a-2)<0$$

or
$$a \in (-5, 2)$$

24. a. α and α^2 are the roots of the equation $x^2 + px + q = 0$. Hence,

$$\alpha + \alpha^2 = -p \tag{1}$$

and

$$\alpha \alpha^2 = q \text{ or } \alpha^3 = q \tag{2}$$

Cubing (1),

$$\alpha^3 + \alpha^6 + 3\alpha \alpha^2(\alpha + \alpha^2) = -p^3$$

or
$$q + q^2 + 3q(-p) = -p^3$$

or
$$p^3 + q^2 - q(3p - 1) = 0$$

25. d. $\alpha + \beta$, $\alpha^2 + \beta^2$, $\alpha^3 + \beta^3$ are in G.P. Hence,

$$(\alpha^2 + \beta^2)^2 = (\alpha + \beta)(\alpha^3 + \beta^3)$$

$$\Rightarrow \alpha \beta (\alpha - \beta)^2 = 0$$

$$\Rightarrow$$
 $c\Delta = 0$

26. a. a, b, c are sides of a triangle and $a \neq b \neq c$.

$$|a - b| < |c| \Rightarrow c^2 + b^2 - 2ab < c^2$$

Similarly, we have

$$b^2 + c^2 - 2bc < a^2$$

and

$$c^2 + a^2 - 2ca < b^2$$

On adding, we get

$$a^2 + b^2 + c^2 < 2(ab + bc + ca)$$

or
$$\frac{a^2 + b^2 + c^2}{ab + bc + ca} < 2$$
 (1)

Since the roots of the given equation are real, therefore $D \ge 0$

$$(a+b+c)^2 - 3\lambda(ab+bc+ca) \ge 0$$

$$\Rightarrow \frac{a^2 + b^2 + c^2}{ab + bc + ca} > 3\lambda - 2 \tag{2}$$

From (1) and (2), we get

$$3\lambda - 2 < 2 \text{ or } \lambda < \frac{4}{3}$$

27. d. α , β are the roots of $x^2 - px + r = 0$. Hence,

$$\alpha + \beta = p$$

and

$$\alpha\beta = r$$

Also, $\alpha/2$, 2β are the roots of $x^2 - qx + r = 0$. Hence,

$$\frac{\alpha}{2} + 2\beta = q \tag{3}$$

or

$$\alpha + 4\beta = 2q$$

Solving (1) and (3) for α and β , we get

$$\beta = \frac{1}{3}(2q - p) \text{ and } \alpha = \frac{2}{3}(2p - q)$$

Substituting values of α and β , in Eq. (2), we get

$$\frac{2}{9}(2p-q)(2q-p)=r$$

28. b. $\alpha^3 + \beta^3 = q$

$$\Rightarrow (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = q$$

$$\Rightarrow (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = q$$

$$\Rightarrow -p^3 + 3p\alpha\beta = q \Rightarrow \alpha\beta = \frac{q + p^3}{3p}$$

Required equation is

$$x^{2} - \left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)x + \frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha} = 0$$

$$x^2 - \frac{(\alpha^2 + \beta^2)}{\alpha\beta}x + 1 = 0$$

$$\Rightarrow x^2 - \left(\frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}\right)x + 1 = 0$$

$$\Rightarrow x^2 - \frac{p^2 - 2\left(\frac{p^3 + q}{3p}\right)}{\frac{p^3 + q}{3p}}x + 1 = 0$$

$$\Rightarrow (p^3+q)x^2 - (3p^3 - 2p^3 - 2q)x + (p^3+q) = 0$$

$$\Rightarrow (p^3 + q)x^2 - (p^3 - 2q)x + (p^3 + q) = 0.$$

29. b.
$$x^2 + bx - 1 = 0$$
 (1)

$$x^2 + x + b = 0 (2)$$

Common root is (b-1)x-1-b=0

$$\Rightarrow x = \frac{b+1}{b-1}$$

This value of x satisfies equation (2)

$$\Rightarrow \frac{(b+1)^2}{(b-1)^2} + \frac{b+1}{b-1} + b = 0$$

$$\Rightarrow$$
 $b = \sqrt{3}i, -\sqrt{3}i, 0$

30. c. $a_n = \alpha^n - \beta^n$

Also $\alpha^2 - 6\alpha - 2 = 0$

Multiply with α^8 on both sides

$$\Rightarrow \quad \alpha^{10} - 6\alpha^9 - 2\alpha^8 = 0 \tag{1}$$

similarly
$$\beta^{10} - 6\beta^9 - 2\beta^8 = 0$$
 (2)

similarly $\beta^{10} - 6\beta^9 - 2\beta^8 = 0$

Subtracting (2) from (1) we have

$$a_{-} - 6a_{-} = 2a_{-} \Rightarrow \frac{a_{10} - 2a_{8}}{a_{10} - 2a_{8}} = 3$$

 $\alpha^{10} - \beta^{10} - 6(\alpha^9 - \beta^9) = 2(\alpha^8 - \beta^8)$

$$\Rightarrow a_{10} - 6a_9 = 2a_8 \Rightarrow \frac{a_{10} - 2a_8}{2a_9} = 3.$$

31. d. Since p(x) = 0 has purely imaginary roots,

 $p(x) = ax^2 + c$, where a and c have same sign.

Also, p(p(x)) = 0

p(x) is purely imaginary

 $ax^2 + c$ is purely imaginary

Hence, x cannot be either purely real or purely imaginary.

Multiple Correct Answers Type

1. c., d. Let

(1)

(2)

$$y = \frac{(x-a)(x-b)}{(x-c)}$$

or
$$(x-c) \ y = x^2 - (a+b)x + ab$$

or $x^2 - (a+b+y)x + ab + cy = 0$
Since x is real, so
$$D \ge 0$$

$$\Rightarrow (a+b+y)^2 - 4(ab+cy) \ge 0, \ \forall \ y \in R$$
or $y^2 + 2y \ (a+b-2c) + (a-b)^2 \ge 0, \ \forall \ y \in R$
or $4(a+b-2c)^2 - 4(a-b)^2 < 0$
or $(a+b-2c+a-b) \ (a+b-2c-a+b) < 0$
or $4(a-c) \ (b-c) < 0$

$$\Rightarrow a-c < 0 \ \text{and} \ b-c > 0 \ \text{or} \ a-c > 0 \ \text{and} \ b-c < 0$$

$$\Rightarrow a < c < b \ \text{or} \ a < c < b \ \text{or} \ a < c < b$$
2. a., d. $\ln x_1 - x_2 \le 1$

$$\Rightarrow \frac{1}{\alpha^2} - 4 < 1$$

$$\Rightarrow 5 - \frac{1}{\alpha^2} > 0$$

$$\Rightarrow \alpha \in \left(-\infty, -\frac{1}{\sqrt{5}}\right) \cup \left(\frac{1}{\sqrt{5}}, \infty\right)$$
Also $D > 0$

$$\therefore 1 - 4\alpha^2 > 0$$

$$\therefore \alpha \in \left(-\frac{1}{2}, \frac{1}{2}\right)$$
From (1) and (2)
$$\alpha \in \left(-\frac{1}{2}, -\frac{1}{\sqrt{5}}\right) \cup \left(\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{2}}\right)$$

Matching Column Type

1. (a) - (r)
We have
$$y = \frac{x^2 + 2x + 4}{x + 2}$$

 $\Rightarrow x^2 + (2 - y)x + 4 - 2y = 0$
Since x is real,
 $D \ge 0$
 $\Rightarrow y^2 + 4y - 12 \ge 0$
 $\Rightarrow y \le -6 \text{ or } y \ge 2$

 \Rightarrow $y \le -6$ or $y \ge 2$

minimum value is 2

Note: Solutions of the remaining parts are given in their respective chapters.

Integer Answer Type

1. (2) $x^2 - 8kx + 16(k^2 - k + 1) = 0$ Since roots are real and distinct,

$$D > 0$$

$$\Rightarrow 64k^2 - 64(k^2 - k + 1) > 0$$

$$\Rightarrow k > 1$$

k > 1

Also, from the figure, we have

Further

$$f(4) \ge 0$$

⇒ $16 - 32k + 16(k^2 - k + 1) \ge 0$

$$\Rightarrow k^2 - 3k + 2 \ge 0$$

$$\Rightarrow k \le 1 \text{ or } k \ge 2$$
From (1), (2) and (3)
$$k_{min} = 2.$$
(3)

2. b. Let
$$f(x) = x^4 - 4x^3 + 12x^2 + x - 1 = 0$$

 $f'(x) = 4x^3 - 12x^2 + 24x + 1$
 $f''(x) = 12x^2 - 24x + 24 = 12(x^2 - 2x + 2) > 0$

f''(x) = 0 has imaginary roots

f'(x) = 0 has only one real root

f(x) = 0 has maximum 2 distinct real roots.

Assertion-Reasoning Type

1. b. Suppose the roots are imaginary. Then

$$\beta = \bar{\alpha}$$
 and $\frac{1}{\beta} = \bar{\alpha} \Rightarrow \beta = \frac{1}{\beta}$

which is not possible. The roots are real, so

$$(p^2 - q)(b^2 - ac) \ge 0$$

Hence, statement 1 is correct.

Also, $-2b/a = \alpha + \beta$ and $\alpha/\beta = c/a$, $\alpha + \beta = -2p$, $\alpha\beta = q$.

If $\beta = 1$, then

 $\alpha = q \Rightarrow c = qa$ (which is not possible)

Also,

$$s+1=\frac{-2b}{a} \Rightarrow -2p=\frac{-2b}{a} \Rightarrow b=ap$$

(which is not possible)

Hence, statement 2 is correct, but it is not correct explanation of statement 1.

Fill in the Blanks Type

1. Given polynomial is

$$(x-1)(x-2)(x-3)\cdots(x-100)$$

= $x^{100} - (1+2+3+\cdots+100)x^{99} + (\cdots)x^{98}\cdots$

Hence, coefficient of x^{99} is

$$-(1+2+3+\cdots+100) = \frac{-100\times101}{2}$$

$$=-5050$$

2. As p and q are real and one root is $2 + i\sqrt{3}$, so the other root must be $2 - i\sqrt{3}$. Then,

$$p = -(\text{sum of roots}) = -4$$

 $q = \text{product of roots} = (2 + i\sqrt{3})(2 - i\sqrt{3}) = 4 + 3 = 7$

3. Given x < 0, y < 0.

$$x + y + \frac{x}{y} = \frac{1}{2}$$
 and $(x + y)\frac{x}{y} = -\frac{1}{2}$

Let

(1)

$$x + y = a$$
 and $\frac{x}{y} = b$ (1)

Therefore, we get

$$a+b=\frac{1}{2}$$
, $ab=-\frac{1}{2}$

Solving these two, we get

$$a + \left(-\frac{1}{2a}\right) = \frac{1}{2}$$

$$\Rightarrow 2a^2 - a - 1 = 0$$

$$\Rightarrow a = 1, -1/2$$

$$\Rightarrow$$
 $b = -1/2, 1$

:. from (1)
$$x + y = 1$$
 and $\frac{x}{y} = -\frac{1}{2}$

or

$$x + y = -\frac{1}{2}$$
 and $\frac{x}{y} = 1$

But x, y < 0

$$\therefore x + y < 0 \Rightarrow x + y = \frac{-1}{2} \text{ and } \frac{x}{y} = 1$$

On solving, we get x = -1/4 and y = -1/4.

4. Given equation is

$$x^2 - 3kx + 2e^{2\ln k} - 1 = 0$$

$$\Rightarrow x^2 - 3kx + (2k^2 - 1) = 0$$

Here, product of roots is $2k^2 - 1$.

$$2k^2 - 1 = 7 \text{ or } k^2 = 4 \text{ or } k = 2, -2$$

Now for real roots, we must have

$$D \ge 0$$

$$\Rightarrow$$
 $9k^2 - 4(2k^2 - 1) \ge 0$

$$\Rightarrow$$
 $k^2 + 4 \ge 0$

which is true for all k. Thus, k = 2, -2. But for k = -2, $\ln k$ is not defined. Therefore, rejecting k = -2, we get k = 2.

5. By observation, one root is x = 1,

$$\Rightarrow a+b=-1$$

True/False Type

False.

$$2x^2 + 3x + 1 = 0$$

$$\Rightarrow (2x+1)(x+1)=0$$

$$\Rightarrow$$
 $x = -1, -1/2$, both are rational

2. True. Given equation is

$$(x-a)(x-c) + 2(x-b)(x-d) = 0$$

Let

$$f(x) = (x - a)(x - c) + 2(x - b)(x - d)$$

$$f(b) = (b-a)(b-c) < 0$$

$$f(d) = (d-a)(d-c) > 0$$

Thus,

Therefore, one root lies between b and d; hence, the roots are real.

3. False. Consider $N = n_1 + n_2 + n_3 + \cdots + n_p$, where N is an even number. Let k numbers among these p numbers be odd, then p - k are even numbers.

Now, sum of p - k even numbers is even and for N to be an even number, sum of k odd numbers must be even, which is possible only when k is even.

4. True. We have $P(x) = ax^2 + bx + c$, for which

$$D_1 = b^2 - 4ac \tag{1}$$

and $Q(x) = -ax^2 + dx + c$, for which

$$D_2 = d^2 + 4ac \tag{2}$$

Given that $ac \neq 0$. Following two cases are possible.

If ac > 0, then from Eq. (2), D_2 is +ve $\Rightarrow Q(x)$ has real roots.

If ac < 0, then from Eq. (1), D_1 is +ve $\Rightarrow P(x)$ has real roots.

Thus, P(x) Q(x) = 0 has at least two real roots.

Subjective Type

1.
$$4^x - 3^{x - \frac{1}{2}} = 3^{x + \frac{1}{2}} - 2^{2x - 1}$$

or
$$4^x - \frac{3^x}{\sqrt{3}} = 3^x \sqrt{3} - \frac{4^x}{2}$$

or
$$\frac{3}{2}4^x = 3^x \left(\sqrt{3} + \frac{1}{\sqrt{3}}\right)$$

or
$$\frac{3}{2} 4^x = 3^x \frac{4}{\sqrt{3}}$$

or
$$\frac{4^{x-1}}{4^{1/2}} = \frac{3^{x-1}}{\sqrt{3}}$$

or
$$4^{x-3/2} = 3^{x-3/2}$$

or
$$\left(\frac{4}{3}\right)^{x-3/2} = 1$$

or
$$x - \frac{3}{2} = 0$$

or
$$x = 3/2$$

2. We have,

$$\sqrt{x+1} = 1 + \sqrt{x-1}$$

Squaring both sides, we get

$$x+1=1+x-1+2\sqrt{x-1}$$

$$1 = 2\sqrt{x-1}$$

or
$$1 = 4(x - 1)$$

or
$$x = 5/4$$

3. Let

$$x = \frac{\sqrt{26 - 15\sqrt{3}}}{5\sqrt{2} - \sqrt{38 + 5\sqrt{3}}}$$

or
$$x^{2} = \frac{26 - 15\sqrt{3}}{50 + 38 + 5\sqrt{3} - 10\sqrt{76 + 10\sqrt{3}}}$$
$$= \frac{26 - 15\sqrt{3}}{88 + 5\sqrt{3} - 10\sqrt{75 + 1 + 10\sqrt{3}}}$$

$$= \frac{26 - 15\sqrt{3}}{88 + 5\sqrt{3} - 10\sqrt{(5\sqrt{3})^2 + (1)^2 + 2 \times 5\sqrt{3} \times 1}}$$

$$= \frac{26 - 15\sqrt{3}}{88 + 5\sqrt{3} - 10\sqrt{(5\sqrt{3} + 1)^2}}$$
$$= \frac{26 - 15\sqrt{3}}{88 + 5\sqrt{3} - 10(5\sqrt{3} + 1)}$$

$$= \frac{88 + 5\sqrt{3} - 10(5\sqrt{3} + 1)}{26 - 15\sqrt{3}}$$
$$= \frac{26 - 15\sqrt{3}}{78 - 45\sqrt{3}}$$

$$=\frac{26-15\sqrt{3}}{3(26-15\sqrt{3})}=\frac{1}{3}$$

which is a rational number

4. α , β are the roots of $x^2 + px + q = 0$.

$$\therefore \quad \alpha + \beta = -p, \ \alpha\beta = q$$

$$\gamma$$
, δ are the roots of $x^2 + rx + s = 0$.

$$\therefore \quad \gamma + \delta = -r, \ \gamma \delta = s$$

Now,

$$E = (\alpha - \gamma) (\alpha - \delta) (\beta - \gamma) (\beta - \delta)$$

$$= [\alpha^2 - (\gamma + \delta) \alpha + \gamma \delta] [\beta^2 - (\gamma + \delta) \beta + \gamma \delta]$$

$$= [\alpha^2 + r\alpha + s] [\beta^2 + r\beta + s]$$

Also
$$\alpha^2 + p\alpha + q = 0$$
 and $\beta^2 + p\beta + q = 0$

$$\Rightarrow E = [(r-p)\alpha + (s-q)][(r-p)\beta + (s-q)]$$

$$= (r-p)^2 \alpha\beta + (r-p)(s-q)(\alpha + \beta) + (s-q)^2$$

$$= q(r-p)^2 - p(r-p)(s-q) + (s-q)^2$$

Now if the equations $x^2 + px + q = 0$ and $x^2 + rx + s = 0$ have a common root say α , then

$$\alpha^2 + p\alpha + q = 0$$

and

$$\alpha^2 + r\alpha + s = 0$$

$$\Rightarrow (q-s)^2 = (r-p)(ps-qr),$$

which is the required condition.

5.
$$y = \frac{(a+x)(b+x)}{(c+x)}$$

Let x + c = t

$$\Rightarrow y = \frac{(a-c+t)(b-c+t)}{t}$$

$$= \frac{t^2 + [(a-c) + (b-c)]t + (a-c)(b-c)}{t}$$

$$= t + \frac{(a-c)(b-c)}{t} + (a-c) + (b-c)$$

$$= \left(t - \sqrt{\frac{(a-c)(b-c)}{t}}\right)^2 + (\sqrt{(a-c)} + \sqrt{(b-c)})^2$$

Hence maximum value of y is $(\sqrt{a-c} + \sqrt{b-c})^2$

when
$$t = \sqrt{\frac{(a-c)(b-c)}{t}}$$
.

6. Let α , β be the roots of equation $ax^2 + bx + c = 0$. Given that $\beta = \alpha'$. Also, $\alpha + \beta = -b/a$, $\alpha\beta = c/a$. Now,

$$\alpha\beta = \frac{c}{a} \Rightarrow \alpha \ \alpha^n = \frac{c}{a} \Rightarrow \alpha = \left(\frac{c}{a}\right)^{\frac{1}{n+1}}$$
$$\alpha + \beta = -b/a \Rightarrow \alpha + \alpha^n = \frac{-b}{a}$$

or

$$\left(\frac{c}{a}\right)^{\frac{1}{n+1}} + \left(\frac{c}{a}\right)^{\frac{n}{n+1}} = \frac{-b}{a}$$

or
$$a\left(\frac{c}{a}\right)^{\frac{1}{n+1}} + a\left(\frac{c}{a}\right)^{\frac{n}{n+1}} + b = 0$$

or
$$a^{\frac{n}{n+1}}c^{\frac{1}{n+1}} + a^{\frac{1}{n+1}}c^{\frac{n}{n+1}} + b = 0$$

or
$$(a^n c)^{\frac{1}{n+1}} + (a c^n)^{\frac{1}{n+1}} + b = 0$$

7. $(5+2\sqrt{6})(5-2\sqrt{6})=25-24=1$

$$\Rightarrow 5 - 2\sqrt{6} = \frac{1}{5 + 2\sqrt{6}}$$

Hence, the given equation is

$$(5+2\sqrt{6})^{x^2-3} + \frac{1}{(5+2\sqrt{6})^{x^2-3}} = 10$$

$$\Rightarrow$$
 $y + \frac{1}{y} = 10$, where $y = (5 + 2\sqrt{6})^{x^2 - 3}$

$$\Rightarrow y^2 - 10y + 1 = 0$$

or
$$y = \frac{10 \pm \sqrt{100 - 4}}{2}$$

or
$$y = 5 \pm 2\sqrt{6}$$

$$\Rightarrow$$
 $(5 + 2\sqrt{6})^{x^2 - 3} = 5 \pm 2\sqrt{6}$

$$\Rightarrow$$
 $(5+2\sqrt{6})^{x^2-3}=(5+2\sqrt{6})$

or

$$(5+2\sqrt{6})^{x^2-3} = \frac{1}{5+2\sqrt{6}}$$

$$\Rightarrow$$
 $(5+2\sqrt{6})^{x^2-3} = (5+2\sqrt{6})^1 \text{ or } (5+2\sqrt{6})^{x^2-3} = (5+2\sqrt{6})^{-1}$

$$\Rightarrow$$
 $x^2 - 3 = 1$ or $x^2 - 3 = -1$

$$\Rightarrow$$
 $x^2 = 4$ or $x^2 = 2$

$$\Rightarrow$$
 $x = \pm 2 \text{ or } \pm \sqrt{2}$

8. The given equation is

$$x^2 - 2a|x - a| - 3a^2 = 0$$

Case I: If $x - a \ge 0$, then |x - a| = x - a. Hence, the equation becomes

$$x^2 - 2a(x - a) - 3a^2 = 0$$

or
$$x^2 - 2ax - a^2 = 0$$

or
$$x = \frac{2a \pm \sqrt{4a^2 + 4a^2}}{2} \Rightarrow a - a\sqrt{2}$$
 $(\because x \ge a)$

Case II: If x - a < 0, then |x - a| = -(x - a). Hence, the equation becomes

$$x^2 + 2a(x-a) - 3a^2 = 0$$

or
$$x^2 + 2ax - 5a^2 = 0$$

or
$$x = \frac{-2a \pm \sqrt{4a^2 + 20a^2}}{2}$$

or
$$= \frac{-2a \pm 2a \sqrt{6}}{2}$$

 $(\because x < a)$

Thus, the solution set is $\{a - a\sqrt{2}, -a + a\sqrt{6}\}$.

9. Let $f(x) = x^2 + (b/a)x + (c/a)$. According to the question, we have the following graph.

From graph, f(-1) < 0 and f(1) < 0. So,

$$1 + \frac{c}{a} - \frac{b}{a} < 0 \text{ and } 1 + \frac{c}{a} + \frac{b}{a} < 0$$

β -1 1

$$\Rightarrow 1 + \frac{c}{a} + \left| \frac{b}{a} \right| < 0$$

10. Since x_1, x_2, x_3 are in A.P.

Let
$$x_1 = a - d$$
, $x_2 = a$ and $x_3 = a + d$

Also, x_1 , x_2 , x_3 are the roots of $x^3 - x^2 + \beta x + \gamma = 0$.

We have

Sum of roots =
$$\Sigma \alpha = a - d + a + a + d = 1$$
 (1)

Sum of product of roots taken two at a time = $\sum \alpha \beta$

$$\Rightarrow (a-d) a + a (a+d) + (a-d) (a+d) = \beta$$
 (2)

Product of roots = $\alpha\beta\gamma$

$$\Rightarrow (a-d) a (a+d) = -\gamma \tag{3}$$

From (1), we get, $3a = 1 \Rightarrow a = 1/3$

From (2), we get,
$$3a^2 - d^2 = \beta$$

$$\Rightarrow$$
 3 $(1/3)^2 - d^2 = \beta \Rightarrow 1/3 - \beta = d^2$

$$\Rightarrow \frac{1}{3} - \beta \ge 0 \qquad (\because d^2 \ge 0)$$

$$\Rightarrow \beta \le \frac{1}{3}$$

$$\Rightarrow \beta \in (-\infty, 1/3]$$
From (3), $a(a^2 - d^2) = -\gamma$

$$\Rightarrow \frac{1}{3} \left(\frac{1}{9} - d^2 \right) = -\gamma$$

$$\Rightarrow \frac{1}{27} - \frac{1}{3} d^2 = -\gamma$$

$$\Rightarrow \gamma + \frac{1}{27} = \frac{1}{3} d^2$$

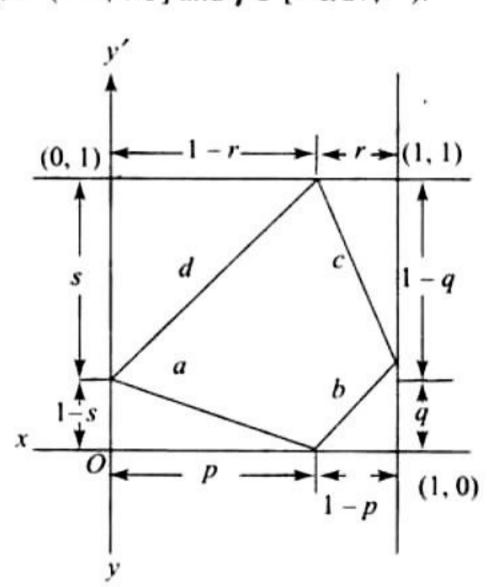
$$\Rightarrow \qquad \gamma + \frac{1}{27} \ge 0$$

$$\Rightarrow \qquad \gamma \ge -\frac{1}{27}$$

$$\Rightarrow \qquad \gamma \in \left[-\frac{1}{27}, \infty \right)$$

Hence, $\beta \in (-\infty, 1/3]$ and $\gamma \in [-1/27, \infty)$.

11.



$$a^{2} = p^{2} + (1 - s)^{2}$$

$$b^{2} = (1 - p)^{2} + q^{2}$$

$$c^{2} = (1 - q)^{2} + r^{2}$$

$$d^{2} = (1 - r)^{2} + s^{2}$$

$$a^{2} + b^{2} + c^{2} + d^{2} = [p^{2} + (1 - p)^{2}] + [q^{2} + (1 - q)^{2}]$$

$$+ [r^{2} + (1 - r)^{2}] + [s^{2} + (1 - s)^{2}], \text{ where } p, q, r, s \in [0, 1]$$

Now consider the function

$$y = x^2 + (1 - x)^2, 0 \le x \le 1$$

$$\Rightarrow y = 2x^2 - 2x + 1$$

which has vertex (1/2, 1/2).

Hence, minimum value is 1/2 when x = 1/2 and maximum value is at x = 1, which is 1. Therefore, minimum value of $a^2 + b^2 + c^2 + d^2$ is 1/2 + 1/2 + 1/2 + 1/2 = 2 and maximum value is 1 + 1 + 1 + 1 = 4.

12. Let us consider the integral values of x as 0, 1, -1. Then f(0), f(1) and f(-1) are all integers. Therefore, C, A + B + C and A - B + C are all integers.

Therefore, C is integer and hence, A + B is an integer and also A - B is an integer,

$$2A = (A+B) + (A-B)$$

Therefore, 2A, A + B and C are all integers. Conversely, let $n \in I$. Then,

$$f(n) = An^2 + Bn + C = 2A \left[\frac{n(n-1)}{2} \right] + (A+B)n + C$$

Now, A, A + B, and C are all integers and

$$\frac{n(n-1)}{2} = \frac{\text{Even number}}{2} = \text{Integer}$$

Therefore, f(n) is also an integer.

13. We know that

$$(\alpha - \beta)^2 = [(\alpha + \delta) - (\beta + \delta)]^2$$

$$\Rightarrow (\alpha + \beta)^2 - 4\alpha\beta = (\alpha + \delta + \beta + \delta)^2 - 4(\alpha + \delta)(\beta + \delta)(1)$$

Now

$$\alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}$$

and

$$(\alpha + \delta) + (\beta + \delta) = -\frac{B}{A}, (\alpha + \delta)(\beta + \delta) = \frac{C}{A}$$

$$\Rightarrow \frac{b^2 - 4ac}{a^2} = \frac{B^2 - 4AC}{A^2}$$
[From (1)]

14. $\alpha + \beta = \frac{-b}{a}, \alpha\beta = \frac{c}{a}$

Roots of the equation $a^3 x^2 + abcx + c^3 = 0$ are

$$x = \frac{-abc \pm \sqrt{(abc)^2 - 4a^3c^2}}{2a^3}$$

$$= \frac{1}{2} \left(-\frac{b}{a} \right) \left(\frac{c}{a} \right) \pm \frac{\sqrt{\left(\frac{b}{a} \right)^2 \left(\frac{c}{a} \right)^2 - 4 \left(\frac{c}{a} \right)^3}}{2}$$

$$= \frac{(\alpha + \beta)(\alpha\beta) \pm \sqrt{(\alpha + \beta)^2 (\alpha\beta)^2 - 4 (\alpha\beta)^3}}{2}$$

$$= (\alpha\beta) \frac{[(\alpha + \beta) \pm \sqrt{(\alpha - \beta)^2}]}{2}$$

$$= \alpha\beta \frac{[(\alpha + \beta) \pm (\alpha - \beta)]}{2}$$

$$= \alpha^2 \beta, \alpha\beta^2$$

15. The given equation is

$$x^{2} + (a - b)x + (1 - a - b) = 0, a, b \in R$$

For this equation to have unequal real roots $\forall b$,

$$D > 0$$

$$\Rightarrow (a - b)^{2} - 4(1 - a - b) > 0$$

$$\Rightarrow a^{2} + b^{2} - 2ab - 4 + 4a + 4b > 0$$

$$\Rightarrow b^{2} + b(4 - 2a) + a^{2} + 4a - 4 > 0$$
(1)

which is a quadratic expression in b, and it will be true $\forall b \in R$. Then its discriminant will be less than 0. Hence,

$$(4-2a)^2 - 4(a^2 + 4a - 4) < 0$$
or
$$(2-a)^2 - (a^2 + 4a - 4) < 0$$
or
$$4-4a+a^2-a^2-4a+4<0$$
or
$$-8a+8<0$$
or
$$a>1$$

16. Roots of $x^2 - 10cx - 11d = 0$ are a and b. Hence,

$$a + b = 10c$$
 and $ab = -11d$

c and d are the roots of $x^2 - 10ax - 11b = 0$. Hence,

$$c + d = 10a$$
 and $cd = -11b$

$$\Rightarrow$$
 $a+b+c+d=10$ $(a+c)$ and $abcd=121$ bd

$$\Rightarrow$$
 $b+d=9(a+c)$ and $ac=121$

Also, we have

$$a^2 - 10ac - 11d = 0$$
 and $c^2 - 10ac - 11b = 0$

$$\Rightarrow$$
 $a^2 + c^2 - 20ac - 11(b+d) = 0$

$$\Rightarrow (a+c)^2 - 22 \times 121 - 99 (a+c) = 0$$

$$\Rightarrow$$
 $a+c=121 \text{ or } -22$

For a + c = -22, we get a = c. Rejecting these values, we have a + c = 121. Therefore,

$$a + b + c + d = 10 (a + c) = 1210$$