MATHEMATICS

Course Structure

Units	Topics	Marks
I	Relations and Functions	10
II	Algebra	13
III	Calculus	44
IV	Vectors and 3-D Geometry	17
V	Linear Programming	6
VI	Probability	10
Total		100

Course Syllabus

Unit I: Relations and Functions

Chapter 1: Relations and Functions

- > Types of relations:
 - Reflexive
 - Symmetric
 - transitive and equivalence relations
 - One to one and onto functions
 - composite functions
 - inverse of a function
 - Binary operations

Chapter 2: Inverse Trigonometric Functions

- > Definition, range, domain, principal value branch
- > Graphs of inverse trigonometric functions

Elementary properties of inverse trigonometric functions

Unit II: Algebra

Chapter 1: Matrices

- Concept, notation, order, equality, types of matrices, zero and identity matrix, transpose of a matrix, symmetric and skew symmetric matrices.
- Operation on matrices: Addition and multiplication and multiplication with a scalar
- > Simple properties of addition, multiplication and scalar multiplication
- Noncommutativity of multiplication of matrices and existence of non-zero matrices whose product is the zero matrix (restrict to square matrices of order
 2)
- Concept of elementary row and column operations
- > Invertible matrices and proof of the uniqueness of inverse, if it exists; (Here all matrices will have real entries).

Chapter 2: Determinants

- ➤ Determinant of a square matrix (up to 3 x 3 matrices), properties of determinants, minors, co-factors and applications of determinants in finding the area of a triangle
- > Ad joint and inverse of a square matrix
- Consistency, inconsistency and number of solutions of system of linear equations by examples, solving system of linear equations in two or three variables (having unique solution) using inverse of a matrix

Unit III: Calculus

Chapter 1: Continuity and Differentiability

- Continuity and differentiability, derivative of composite functions, chain rule, derivatives of inverse trigonometric functions, derivative of implicit functions
- Concept of exponential and logarithmic functions.
- Derivatives of logarithmic and exponential functions
- Logarithmic differentiation, derivative of functions expressed in parametric forms. Second order derivatives
- Rolle's and Lagrange's Mean Value Theorems (without proof) and their geometric interpretation

Chapter 2: Applications of Derivatives

- Applications of derivatives: rate of change of bodies, increasing/decreasing functions, tangents and normal, use of derivatives in approximation, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool)
- Simple problems (that illustrate basic principles and understanding of the subject as well as real-life situations)

Chapter 3: Integrals

- Integration as inverse process of differentiation
- Integration of a variety of functions by substitution, by partial fractions and by parts
- > Evaluation of simple integrals of the following types and problems based on them

$$\int \frac{dx}{x^{2} \pm a^{2}}, \int \frac{dx}{\sqrt{x^{2} \pm a^{2}}}, \int \frac{dx}{\sqrt{a^{2} - x^{2}}}, \int \frac{dx}{ax^{2} + bx + c} \int \frac{dx}{\sqrt{ax^{2} + bx + c}}$$

$$\int \frac{px + q}{ax^{2} + bx + c} dx, \int \frac{px + q}{\sqrt{ax^{2} + bx + c}} dx, \int \sqrt{a^{2} \pm x^{2}} dx, \int \sqrt{x^{2} - a^{2}} dx$$

$$\int \sqrt{ax^2 + bx + c} \, dx, \int (px + q) \sqrt{ax^2 + bx + c} \, dx$$

- Definite integrals as a limit of a sum, Fundamental Theorem of Calculus (without proof)
- > Basic properties of definite integrals and evaluation of definite integrals

Chapter 4: Applications of the Integrals

- Applications in finding the area under simple curves, especially lines, circles/parabolas/ellipses (in standard form only)
- Area between any of the two above said curves (the region should be clearly identifiable)

Chapter 5: Differential Equations

- Definition, order and degree, general and particular solutions of a differential equation
- Formation of differential equation whose general solution is given
- > Solution of differential equations by method of separation of variables solutions of homogeneous differential equations of first order and first degree
- Solutions of linear differential equation of the type:
 - dy/dx + py = q, where p and q are functions of x or constants
 - dx/dy + px = q, where p and q are functions of y or constants

Unit IV: Vectors and Three-Dimensional Geometry

Chapter 1: Vectors

Vectors and scalars, magnitude and direction of a vector

- Direction cosines and direction ratios of a vector
- > Types of vectors (equal, unit, zero, parallel and collinear vectors), position vector of a point, negative of a vector, components of a vector, addition of vectors, multiplication of a vector by a scalar, position vector of a point dividing a line segment in a given ratio
- Definition, Geometrical Interpretation, properties and application of scalar (dot) product of vectors, vector (cross) product of vectors, scalar triple product of vectors

Chapter 2: Three - dimensional Geometry

- > Direction cosines and direction ratios of a line joining two points
- Cartesian equation and vector equation of a line, coplanar and skew lines, shortest distance between two lines
- Cartesian and vector equation of a plane
- Angle between:
 - Two lines
 - Two planes
 - A line and a plane
- > Distance of a point from a plane

Unit V: Linear Programming

Chapter 1: Linear Programming

- > Introduction
- Related terminology such as:
 - Constraints
 - Objective function
 - Optimization
 - Different types of linear programming (L.P.) Problems
 - Mathematical formulation of L.P. Problems
 - Graphical method of solution for problems in two variables

- Feasible and infeasible regions (bounded and unbounded)
- Feasible and infeasible solutions
- Optimal feasible solutions (up to three non-trivial constraints)

Unit VI: Probability

Chapter 1: Probability

- > Conditional probability
- > Multiplication theorem on probability
- > Independent events, total probability
- > Baye's theorem
- > Random variable and its probability distribution
- > Mean and variance of random variable
- > Repeated independent (Bernoulli) trials and Binomial distribution