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5.3 DIFFRACTION OF LIGHT

5.97 The radius of the periphery of the N Fresnel zone is
ry = VNbA
Then by conservation of energy

La(VNbA)Y = [2xrdri(r)
0

Here r is the distance from the point P.

2 L -]
Thus Ip = Nbl-{ rdri(r).
5.98 By definition
abA
r%-ka+b

for the periphery of the k™ zone. Then
ari+brl = kaba

So b ar ar’

T kah-r2  kah-r
on putting the values. (It is given that » = r,) for k = 3).

= 2 metre .

5.99 Suppose maximum intensity is obtained when the aperture contains k zones. Then 2 minimum
will be obtained for k + 1 zones. Another maximum will be obtained for k + 2 zones. Hence

ab
r%-kx“b

ab

3= (k+2)A——

Thua A= ;::(é-rf)-o-sgspm

On putting the values.

5.100 (a) When the aperture is equal to the first Fresnel Zone :-

The amplitude i8 A; and should be compared with the amplitude % when the aperture is

very wide. If I, is the intensity in the second case the intensity in the first case will be
41,

When the aperture is equal to the internal half of the first zone :- Suppose A, and A,
are the amplitudes due to the two halves of the first Fresnel zone. Clearly A, and A,
differ in phase by 12:- because only half the Fresnel zone in involved. Also in magnitude
|Ain | = [Au |- Then
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Af
2
Hence following the argument of the first case. I, = 2/,

A} = 21A4,F so |Anf =

The aperture was made equal to the first Fresnel zone and then half of it was closed
along a diameter. In this case the amplitude of vibration is %1- Thus
I=1,.

Suppose the disc does not obstruct light at all. Then

A+ Avencinier = 5 A
(because the disc covers the first Fresnel zone oaly).
SO remeinte = = 3 Adi
Hence the amplitude when half of the disc is removed along a diameter

1 1 1
- EAﬁw"'Amm'de - 'Z-A‘,;”—EAM ~0
Hence I = (.
In this case
A= %AM"'AM
1 1

= 5Aatemd =3

We write Ay = A, +iA“

where A,, (A, ) stands for A, i ( Acganat )- The factor i takes account of the % phase

difference between two halves of the first Fresnel zone. Thus

1 1
A=A, ad =24
On the other hand Iy = -}(A?,,+A§,,) - %A?,.
1
80 I = Ero.

5.102

When the screen is fully transparent, the amplitude of vibrations is -;-Al (with intensity

1
I = ZA% ).

(a) (1)In this case A = é—(lAi) so squaring [ = %Ia

412
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(2) In this case % of the plane is blacked out so

A= l(!’AI) and I = %'Io

2{2
(3) In this case A = (4, /2) and [ = 1—16-10.
. 1/(1 . 1 {
(4) In this case A = E(EAI) again and J = Z-Ia s0o I; = >
2
In general'we get I(o@) = Io(l—(%n

where @ is the total angle blocked out by the screen.

®) (5) Here A = %[%Al)q-%Al

A, being the contribution of the first Fresnel zone.
5 25
Thus A= EAI and [ = EIO

2{2 2

In 5 to 8 the first term in the expression for the amplitude is the contribution of the plane

part and the second term gives the expression for the Fresnel zone part. In general in (5) o
2

@®) I = 10(1 +(%)) when @ is the angle covered by the screen.

(B}A-l(lA1]+lA1- A, andl-%lo(lg-lﬁ)

5.103 We would require the contribution to the amplitude of a
wave at a point from balf a Fresnel zone. For this we P
proceed directly from the Fresnel Huyghens principle. The
complex amplitude is written as

E=[K(p)2e*ds b

Here K () is a factor which depends on the angle ¢
between a normal 7'to the arca d S and the direction from

dS 1o the point P and r is the distance from the element
ds toP.

We see that for the first Fresnal zone
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2
(using r - b+-2P—5 (for V ;324-.62 ))
Vb

a : L, 2
E.f— fe*'“’*""”“zupdp (K(p)=~1)

0

For the first Fresnel zone 7 = b+A/2 so r* « b*+bA and p° = bA.
b

2
Ay _ix _ik=
Thus E--b—e'bZthe‘bdx
0
ao ...ikb e—lkm_l

"Bt T Tiwb

a . .
= D2mieT*b(-2) = -%’Eiaoe““’ - A

For the next half zone
b

e
N
|

-

o _; -1
E = 2eikbo g fe ikxb v x

b
b_l
2
a - VTR
B0, iemike iR kvz)
k
a . A (1+:
-—kg2nie"“(+1+i)--—-————l(2 )

If we calculate the contribution of the full 2% Fresnel zone we will get ~ A,. If we take
account of the factors K (¢) and %which decrease monotonically we expect the contribution

to change to ~ A, Thus we write for the contribution of the half zones in the 2™ Fresnel
zone as
A (1 +1i A (1-1i
Aeh) L, AUoD)

25

X {(n - 1)h. Thus

The part lying in the recess has an extra phase difference equal to — 6 = —
the full amplitude is (note that the correct form is e~ ‘*")
A - A
(Al_—-z?-u +i))e“° - 72(1 —i)+As-A+...

~(2(1-:))e —2(1—1)+2
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A A
-~ (EL(I-“) etids i‘al-(u Ay m Ay = Al)and Az-A +Ag... = >

The corresponding intensity is
A2 .
I= T"[(l—i}e*“«ré][(l+i}e""-i]

w Jg[3-2¢c08d+28ind] = Io[3+2ﬁsin(5 - ‘:—‘)]

(38) For maximum intensity sin(ﬁ —%) = +1

X n
or 6—4-2k3+2,'k=0,1,2,...
3x 2=

Y (n-1})h

0= Zk:'l:-l-T -

A 3
SO h-;;-_—i-(k+8)

(b) For minimum intensity

sin| & - %] =1
) 3n L
6;— z-zkﬂ:-!-—'z—- or d = 2kn+ a
A TR
80 h = — (k+ 8 ]
(c) Forlm Iy, cos 3=0)] or { sin d = 0
sin § = -1 cos & = +1
Thus O=2kn h= k)
n-1
Ix A In
or 6-2kn+-2—,h-"_1(k+ 4]
5.104 The contribution to the wave amplitude of the inner half-zone is
Vboa2
~ikb s
23‘00: J‘ e k82 o 40
i) —_— —)ﬁ
2nage” kb b4
- 0 fe-ikx/bdx —
b 0 —
) P
-ikb —_—
2'."‘“03 (e-ikl/‘—l)x —blk

- b
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2niage'*? ] A,y )
= X (-i-1) =+ 2(1+z)

A -,
With phase facior this becomes -?1( 1+1) ¢'® where 8 = g-i-t-( n - 1) h. The contribution of

the remaining aperture is %(1-:’)
(so that the sum of the two parts when 6 = Q is A, )
Thus the complete amplitude is
‘-42—1(1+i)e"“+‘-42—1(1-i)
and the intensity is
I=L{(1+i)e+(1-i)]{(1-i)e ¥+ (1+i)]
=I[2+2+(1-i)Ye 4 (1+i)e®

=Ig[4-2ie ®*+2ie®] = Ij(4-4sind)
AZ
Here Iy = Tl is the intensity of the incident light which is the same as the intensity due to
an aperture of infinite extent (and no recess). Now

I is maximum when sind = -1

or 5 = 2kmeon
2
A 3
SO h-»”_1 (k-l—z) and b) I, = 8.

We follow the argument of 5.103. we find that the contribution of the first Fresnel zone is

4ri -
Al-- k aoe Skb

A,

> (1+i)

For the next half zone it is -

A .
(The contribution of the remaining part of the 2™ Fresnel zone will be - -2—2 1-1))

If the disc has a thickness A, the extra phase difference suffered by the light wave in passing
through the disc will be

2n
d = X (n-1)h.
Thus the amplitude at P will be
A . A
EP=(Al-f(1+i)]e“°-—2-"‘-(1_i)+A3_A4-A5+...

. (Al(l‘i))e—ia+fﬂ

5 > -%[(1-i)e"'°+i]
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5.106

5.107

5.108

The corresponding intensity will be
I=1(3-2cos8-2sind) = 10(3-2ﬁsin(a+§-))

The intensity will be a maximum when '

sm(a+£]--1

4
n 3x
or 6+4-2kn+ >
. 5
ie. b-(h-s).Zn

) h = i"l k+%)r,.:-0,1,2,...
Note :- It is not clear why & = 2 for h . normal choice will be k = 0. If we take
k=0wegeth, =059pm.

Here the focal point acts as a virtual source of light. This
means that we can take spherical waves converging
towards F. Let us divide these waves into Fresnel zones
just after they emerge from the stop. We write

rrafio(f-nP=(b-mr2y - -1’

Here r is the radius of the m™ fresnel zone and h is the r P
distance to the left of the foot of the perpendicular. Thus h F

P w2fh=-bmr+2bh
So hebmi2(b-f)
and P = fobmi(b-f).
The intensity maxima are observed when an odd number of Fresnel zones are exposed by the
stop. Thus

kbf )\
b-f

For the radius of the periphery of the k™ 2one we bave
i
=V kA2 - VEND ifa=o.
a+b

If the aperture diameter is reduced v times it will produce a similar deffraction pattern (reduced
7 times) if the radii of the Fresnel zones are also n times less. Thus

r, = where k£ = 1,3.5,...

r'k = Iy /Tl
This requires b’ = b/n>.

(a) If a point source is placecd before an opaque ball, the diffraction pattern consists of a
bright spot inside a dark disc followed by fringes. The bright spot is on the line joining
the point source and the centre of the ball. When the object is a finite source of transverse



169

diamension y, every point of the source has its corresponding image on the line joining
that point and the centre of the ball. Thus the transverse dimension of the image is given
by

, b
y=7Zy= 9 mm.
(b) The minimum height of the irregularities covering the surface of the ball at random, at
which the ball obstructs light is, according to the note at the end of the problem, com-

parable with the width of the Fresnel zone along which the edge of opaque screen passes.
So Ay ™ Ar

To find A r we note that

’2 . kAlab
a+b
or 2rAr = DAr = labAk
a+b
Where D = diameter of the disc (= diameter of the last Fresnel zone) and Ak = 1

Adb
Thus hy;, = D(a+bh) = (-099 mm.

5.109 In a zone plate an undarkened circular disc is followed by a number of altemately undarkened
and darkened rings. For the proper case, these correspond to
1% 2™ 3" Fresnel zones.

Let r; = radius of the central undarkened circle. Then for
this to be first Fresnel zone in the present case, we must
have

SL+LI-SI w2
Thus if ry is the radius of the periphery of the first zone

- 1

\/a2+r§+\/b2+r§—(a+b)-% 1L

rz .Sé'///T\

1{1 1 A 1 1 1 t

MY N . E IR Qa
or 2(a+b) > OF ¥y r%/?\. ! b I
It is clear that the plate is acting as a lens of focal length

’i ab
fl-i—-a*_b-'ﬁmetre.

This is the principle focal length.
Other maxima are obtained when

A A
SL+LI-SI=3%,57,..
A on
3

These focal lengths are also I TWAL
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5.110 Just below the edge the amplitude of the wave is given by l .l ‘ (\ ¢ l J

A = %-(Al-Az-i-A;-A.;-r...)e’“

,. W §
+ E(Al ~Ay+A3~AL+...)

4

Here the quantity in the brackets is the contribution of various Fresnel zunes; the factor -;— is

to take account of the division of the plate into two parts by the ledge; the phase factor 3 is
given by

2n
O = Y hin-1)

and takes into account the ¢xtra length traversed by the waves on the left.

A
Using Ay-Ay+Ay-A+... = -il
A .
we get A -71(1"'9‘&)
and the corresponding intensity 8
2
1 [ A
I=1, *;"’ . whm}ooe(-—zl)
(a) This is minimum when
cosd = -1
So & =(2k+1)mn
A
and k-(2k+1)m, k=012..

using n = 15, A = 0-60um
h=060(2k+1)pum.

(b) 1 = Iy/2 when cosd = 0

or 6-ku+§-(2k+l)g—
Thus in this case h=030(2k+1) pm.
5.111 (a) From the Cornu’s spiral, the intensity of the first maximum is given as
Imx,l = 1'37.[0
and the intensity of the first minimum is given by
Imm = 0'7810
so the required ratio is
J
22 = 176

Foin
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(b) The value of the distance x is related to the parameter v in Fresnel’s integral by
y = x\/ 2
ba '
For the first two maxima the distances x;, x, are related to the parameters v,, v, by

‘/bl 1/!))&
X = T"l, | $]

Thus (Vz—vl) 't% -xz—xl-Ax
2
2 Ax
of }"SB(IQ—VI)

From the Cornu’s spiral the positions of the maxima are
vy = 122, v, = 2:34, v; = 3-08elc
2
Ax

"2
Thus A = b(1-12) = 063um.

5.112 We shall use the equation written down in 5.103, the Fresnel-Huyghens formula.

s e — — -
7 I x
9‘ b TP 2
7

é._._,, ————————— h———-ll-xl
‘“2;_

Suppose we want to find the intensity at P which is such that the coordinates of the edges
(x-coordinates) with respect to P are x; and - x;. Then, the amplitude at P is

fﬂ -ikr
E=[K(g)—~e'tds
We write dS = dxdy, y is to integrated from — o + 0+ o ‘We write

P .5’ 1)

2b

(r is the distance of the element of surface on I from P. It is \/b2 +%+ y2 and hence
approximately (1)). We then get




172

" o -x,
. 2 oy 2
E 'Ao(b) fe-ikx/zb dx-'- fe-:kx.f!bdx
_‘tz - O
- o _vl
2
’ r. LA -ixuzﬂ
= A’y (b) fe 2 du+fe du

¥ -0
‘/ 2 -‘/ 2
vy = b_i‘xz, vy = 3"{_-’51

The intensity is the square of the amplitude. In our case, at the centre

V1=V2‘V"5"2'x'§=v a’ <064
Wiy

where

2bA

(a = width of the strip = 0-7mm, b = 100cm, A = 060 um)
At, say, the lower edge vi =0, v, = 1:28

Thus
o x -064 s 2 1 2 1
~inu /2 ~-ixu/2 . 2 .
- 0{48 du+ f e du (Z-C(064]) +(2 S(064))
¢ - = -
I B 0 1-C(128))+(1-5(128))
£ f e-ul:n/‘2du+ J‘ e-i:u’&du ( (
128 -0
where

v 2
C(v)-fms-’-‘-i‘f-du
0

S(v) -fsiné’-'-‘—z-'ﬁz-du
0

Rough evaluation of the integrals using cormu’s spiral gives

I
L W)
Tegge

FE.T 4 PET s 1
(Wehaveused{cos > du-{sm > du-z

C (0:64) = 062, S (0-64) = 015
C (128) = 065 S (1:28) = 0-67

2
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5.113 If the aperture has width 4 then the parameters (v, - v)

5114

associated with {k/z , -%) are given by Z
v +h
v-% % - h/V2ba /2

The intensity of light at O on the screen is obtained as the b
square of the amplitude A of the wave at @ which is ’
2“ %2

v
A _ oonstfe_i“zmdu
Thus I=2L{((C(v)P’+(S(v)))
where C(v) and S(v) have been defined above and [, is the intensity at O due to an

infinitety wide (v = o ) aperture for then
2 2

1 1 1
1‘210((52m+(5] } - 20x% = 1

By definition v corresponds to the first minimum of the intensity. This means

v =y 90
. . h+Ah
when we increase 2 to A+ Ah, the corresponding v, = relates to the second
V2bA
minimum of intensity, From the comu’s spiral v, » 2-75
Thus Ah =Y2bh (v-v) =085V2bA
2 2
Ah 1 070 1
or ’“‘(o-ss) 25 '[o-ss) Zx0gM™ = 0565pm

Let a = width of the recess and

a.‘/2 a 06
v-2 b o 060

V2br  V2x077%065
be the parameter along Cornu’s spiral corresponding to the half-width of therecess.
The amplitude of the diffracted wave is given by

v o v
. N 2 2 2
_ const [ e‘“fe“"“’q'du +f e‘“'“'/zdu-l-f e'i’”"/zdu‘
-y v -

where ﬁ-zT“(n-l)h

is the extra phase due to the recess. (Actually an extra >le

phase e i appears outside the recess. When we take it A I 0
out and absorb it in the constant we get the expression

written). a LI ,

Thus the amplitude is V
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_const J(CO-iS(v)e'®+ %—-C(v))-i(%—b‘(v)

From the Cornu’s spiral, the coordinates corresponding to the parameter v = 0-60 are
C(v) = 057, S(v) = 0-13
so the intensity at O is proportional to

| [(0»57-0-13i)e‘° - 007-;'0-37] |2
= (0572 +0-13%) + 0-07° + 037
+ (0-57-013i)(-007+037i)e‘®
+ (057 +013i)(-007-i037i)e”"®
We write
0-57 7013 i= 0585 ¢*‘® o = 12:8°
-007+ 037 i= 0:377 e*'* B = 100-7°

Thus the cross term is

2 x 0-585 x 0-377 cos (3 + 88°)

- 2 x 0-585 x 0-377 cos(b-i-g-)

For maximum intensity

6+§ -2K®, K =1,234,..
=2(k+1)x, k=0,1,223,...
or d = 2kn+§~£
2
A 3
SO h = — (k+4)
5.115
@m%f"__
e a -
| |
bi :
| i
| !
| I
screeén
[ 2
Using the method of problem 5.103 we can immediately write down the amplitudes at 1 and
2. We get :
P 7 i
At1l amplitude A, _ const fe'”“‘ dute’ fe' “du

- v
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. 2 . . 2
At2 amplitude A, _ const fe"'“/zdu+e"&f e i/ gy
- 0

.‘/ 2
where Veg b

is the parameter of Cornu’s spiral and constant factor is common to 1 and 2.
With the usual notation

- v 2
CwC(v) -fcos%du
0

v 2
S=8(v)=fsinE=du
0

2
o 2 -]
and the result fcos Ezidu -fsin#du - %
0 0

We find the ratio of intensities as

(%-C)-i(%-s)a,e"“-(-—l—;-fl 2

B

(The constants in A; and A, must be the same by symmetry)

In our case, a = 0-30mm, A = 0-65pm, b = 1-1m

2
V= 03(}va = 050

C(0:50) = 048 5(050) = 0-06
2

. . ] ""6_(1-‘.) Ly iX
L, |002-0Mire 14(002-044i)VZ e** 7
h —1—2'——‘e"°+0-02-0-44i 14(002-044i)V2 e 0%

But 0-02-0-44i = 0-d44¢’®, o = 1525 rad (= 87:4°)

, 2
L | 1+044xV2xe' -0 1" 142(044)*+2V 2 x 044 cos (8 -0:740)
I | 14044xV2xe ¥3+¥M0) 1 71 12(044)2+2V 2 x 0-44 cos (6 +0-740)

I, is maximum when 8 ~0740 = 0 (modulo 2x)

: B 1-387 + 1:245 2:632
Thus In that case 7 = 1387 + 1245 cos (148) ~ 15 ~ 17
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5,116 We apply the formula of problem 5.103 and calculate

Lzema-f S

Semicircle Slit

The contribution of the full 1* Fresnel zone has been evaluated in 5.103. The contribution of
the semi-circle is one half of it and is

2x - . ;
—'—E—laoe ikd = —lao;\-e ikb
The contribution of the slit is
0%V b 2 L]
a . X TS
f- f e kb ,-ikog dxje ikys2b dy
(] -m
o0 . -3 2
ik LS
Now fe b gy =fe “ox dy

‘\f blf -utu/Zdu_\/— -in/4

Thus the coatribution of the slit is

09xV2
N . Y 2
fbgm e-:kb-—:m@ f e-utu/Z du 22&
0
127

—ikb-inva 1 —inun2
- ayhe —_— f e du
V2 A

Thus the intensity at the observation point P on the screen is

L (L=i) (067 - 065i) |
2

a3\ i+l (c:(127)-13(127))\ aof\

(on using C(127) = (067 and S(1-27) = 0-65)
23| -i+001-066i]

@A 001-166i)
= 276 a2 )
Now 0(2, 22 is the intensity due to half of 1% Fresnel zone and is therefore equal to I, (It can

also be obtained by doing the x—integral over- ® to + = ),
Thus I=2761,.
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£.117 From the statement of the problem we know that the width of the slit = diameter of the first
Fresnel zone = 2V b A where b is the distance of the observation point from the slit.

-

gELL

We calculate the amplitudes by :,/’;”/ 194058 77477,
evaluating the integral of problem 5.103 1791 02 30}';
4 7/
Weget AT 22%
-}
2 2
a i R -k
A = f- e kb oikgy dxf e *5 dy
Vonr 0
V2 ®
a . .2 o 2
__f_e—-lkb %&f e-mu/zduxfe mn/Zdu
V2 0
ao M -ikb N Y2
- < (1-i)e (c( 2)-:5( 2))

aoa\.(l—i)

C(VEZ)-is(VZ))e it

7 ((V2)-15(V2))e

where the contribution of the 1¥ half Fresnel zone (in Aj, first term) has been obtained from
the last problem.

Ay = —igghe ‘*b4

(1-8)(053-072i) |

2

Thus I = ai)\?

(onusing c(ﬁ) = 053, s( 2) - 0-72)
= a222 | -0095-0625i |* = 0-3996 a2 A2
I =41
Iy = a232| - 0095 -0625i-i ]|
= a2 | 0095 -1625i |
= 2:6496 a3 A®
So I = 661,
Thus Iiily: L m 1:4:7
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5.118 The radius of the first balf Fresnel zone is V b A/2 and
the amplitude at P is obtained using problem 5.103.

—qVbi2 o ]
2
__“_0_ —ikb kx )
A-b f+ f e 2b dx P
et n\,mJ
= v b2
fe-.kyfzbdy_._‘;;) -:kbfe-ikpzﬂbznpdp
-0 0
-nV b2
.a 2
We use f e~ ikx2bgy
2 :txz
-f e tkx72b 4y -f e 'sr dx
wV b2 nV b2
i Af bA O, (7T -ixin
-inu o0 - on _ -inu .
-Ie > du > i{ '!;)e du
"
bar (1 (1
-v 5 ((Z-C(n)) 1(2 S(ﬂ)))
A . -tkbd 1
Thus A“aoz"2 x(l-i)e [(E-C('ﬂ))

_i(%-s(n))]+aol(l-i) et

where we have used

Vb2

fe'”‘"zﬂb 2npdp = ZEL(-1-1) - 2—’;3(1-1') = Ab(1-i)
0

Thus the intensity is
2

I-|Af - a%ﬁn[(sxz-cm))’+[-§—-S(n)) }
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From Comu’s Spiral,
C(m) = C(107) = 076
S(m) = S(1:07) = 0:50
I=asA2x2x(074) = 109 a2 32
As before Iy=a32? so I~ 1,.

of width b and the diffracted wave is observed at a large

distance, the resulting pattern is called Fraunhofer

diffraction. The condition for this is b® <« I\ where [ is

the distance between the slit and the screen. In practice '

light may be focussed on the screen with the help of a

lens (or a telescope). A xsing

If a plane wave is incident normally from the left on a slit ‘

Consider an element of the slit which is an infinite strip
of width dx. We use the formula of problem 5.103 with
the following modifications.

The factor % characteristic of spherical waves will be omitted. The factor K ( ¢ ) will also be

dropped if we confine overselves to not too large ¢. In the direction defined by the angle
@ the extra path difference of the wave emitted from the element at x relative to the wave
emitted from the centre is

A=—-xsing

Thus the amplitude of the wave is given by

+b/2
o feiksin(pdx . (ei-;-kbsimp_e—i%kbsinw)/ i ke sin
-b2
nb
Tsmcp
B nb
e
sin’ a
Thus I = Io
a
where o = zb sin ¢ and

A
I, is a constant

Minima are observed for sina = 0 but a= 0

Thus we find minima at angles given by
bsing = kA, k=2 122 =23 ..
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5.120 Since I(a)is +ve and vanishes for bsing = kX ie for a = kx, we expect maxima of
I{(a)between a = +n & a = +2x, etc. We can get these values by.
sina d sina

d
da([(u))-102 a do o =0

o Cos O —-sina
5 =0 or tanc = o
a

Solutions of this transcendental equation can be oblained graphically.

The first three solutions are
o =143n, a; = 246w, o3 = 347 n
on the +ve side. (On the negative side the solution are - a,), — ap, — ag, ... )

Thus bsing, = 143
bsingp, = 2:46 A
bsingy = 347
Asymptotically the solutions are

bsin g, = (M+%)A

5.121 The relation bsin @ = kA
for minima (when light & incident normally on the slit ) bas a simple interpretation : b sin 8 is the
path difference between extreme wave normals emitted at angle @

—>
b
—_
—>

When light is incident at an angle 0, the path difference is
b(sinB-sin8y)
and the condition of minima is
b(sin@-sinQy) =kA
For the first minima

b(sin®-sinBy) = + A or sinG = sinGyx %

Putting in numbers 8y = 30°, A = 050 um b = 10pum
1

. 1
SinQ = 2:: 2 " 0-55 or 0-45

B,, = 33°-20' and 0, = 26° 44’



5.122 (a) This case is analogous to the previous one except that

the incident wave moves in glass of RI n Thus the
expression for the path difference for light diffracted
at angle 6 from the normal to the hypotenuse of the
wedge is

b ( sin O — n sin ©)
we write 0=0+A0

Then for the direction of principal Fraunhofer maximum

+

b(sin(©@+A0 )-nsin®) =0 2
ot AG =sin"'(nsin©)-0 .
Using © = 15° n = 15 we get
AD = 784°

(b) The width of the central maximum is obtained from (A= 0-60 pum, b =10 pum)

b(sin0Q, -nsin®) = £ A

Thus 6,, = sin'l(‘nsin®+% ) = 26-63°

0., = sin”’ (nsin@%) = 19-16°

66 o= 9_,_1—9_1 = 7'47°

The path difference between waves reflected at A and B is
d(cosoy-cosa)

and for maxima
d{cosog~cosa)=kh k=01 =2 .

In our case, k = 2 and oy, a are small in radiaus. Then

2
2 2
o - d
Thus G LR
3x ) -3
for as——lso,ao -——180,d 10 " m

181
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5.124 The general formula for diffraction from N sliw is
sin‘a sin’N B

I =]
o sinﬁ
nasin b
where o m ———
A
xn{a+b)sinb
= Y
and N = 3 in the cases here.
(8) In this case a+b = 2a
2
50 ﬁ-2aandI-Iosma(3 4sin’2 a )?

On plotting we get a curve that qualitatively looks like the one below

ﬁ Iﬂ'o

I

oL —
(b) In this case e+ b = 3 a
80 f=3a

2
and I-Is‘““(z 4sin’3 a )

a
This has 3 minima between the principal maxima

5.125 From the formula dsin® = mA
we have dsin45° = 2 = 2x0-65um
or d = 2Y2 x 065 um
Then for A, = 0-50 in the third order

2V 2 x0655in0 = 3x0-50
15
SinG = ———— = (-81602
13xv >

This gives 6 = 5468° = 55°
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5.126 The diffraction formula is

5.127

5.128

dsin 6y = ny A
where 6, = 35° is the angle of diffraction corresponding to order ny (which is not yet known).
ngy A
d = = .
Thus 5in 6, ng x 0°9327 pm

onusing A = 0535um

For the n™ order we get

0
If ng = 1, then n> ng is at least 2 and sin 0 > 1 so n = 1 is the highest order of diffraction.

sin® = —sin 0, = — (0-573576)
n no

If ng = 2thenn = 3,4,but sin @ > 1 for n = 4 thus the highest order of diffraction is 3.

If ny =3,
then n=4356.
Forn = 6,sin0 = 2x0-57 > 1, so not allowed while for

n=35,sn0 = 2x0-573576<1

3
is allowed. Thus in this case the highest order of diffraction is five as given. Hence
ng =3
and d =3%x09327 = 27981 =~ 2-8 um.
Given that
d sin 91 = A
dsin®, = dsin(0;+A0) = 2A
Thus sin 0;'cos AO +cos 0;sin A® = 2sin 0
or sinB; (2-cosA0O) = cos0;sinADO
sin A O
0, = —m——————
or tan 9, 2-cosAD
or sin 0, = sin4 0
\/si112A6+(2-cosAG)2
_ sin A O
\/5 -4cosAD
Finally A= dsinA B .
V5-4cosAD

Substitution gives A = 0-534um

(a) Here the simple formula
dsin © = m; A holds.

m x 0-530

Thus 1S5sin® = mx0-530 sin0 = 15
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Highest permissible m is m = 2 because sin 6 > 1 if m = 3. Thus

sin 0 = % for m = 2, This gives © = 45" nearby.

(b) Here d(sinB-sin@) = nA
Thus sin @ = sin 90—%
0-53

= sin60°-nx—175—

= (86602 — n x 0-353333 .

Forn = 5, sin® = - 0-900645
fbr n =6, sin8<-1.
Thus the highest orderis n = 5 and we get

8 = sin~ ' (- 0900645 ) = - 64°

5.129 For the lens

1 1 1 R
f ) (n-l)(R_ w) o f= n-1
For the grating
dsin®; = A or sinf; = %
d ‘\/ d
cosecBl-I,cotel- (I) -1
tan 91 = 1
ay
A
Hence the distance between the two symmetrically placed first order maxima
=2ftan 0, = 2R
/ 2
(n-1) a) _ 1
A

Onputting R =20, n =15 d=60um
A=060pm we get 804 cm.

5.130 The diffraction formula is easily obtained on taking account of the fact that the optical path
in the glass wedge acquires a factor n (refractive index). We get
d{nsin®-sin(©06,)) = kA
Since n>0, ©- 8;>0 and so O, must be negative. We get, using © = 30°

1 . o . °
>%5 = sin ( 30° - 0y) = sin 486
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Thus By = - 18-6°

Also for k = 1
3 . an A_0S 1
4-sm(30 _9”)-d 0" a

Thus 6,, =0°

We calculate 8 for various k& by the above formula. For k = 6, ———-

sin (6, - 30°) = %=a.» B, = 786°

For k = 7

sin(0,-30°) = + 1= 6, = 120°
This is in admissible. Thus the highest order that can be observed is
k=6

corresponding to 6, = 78-6°
(for k = 7 the diffracted ray will be grazing the wedge).
The intensity of the central Fraunhofer maximum will be zero if the waves from successive

grooves (not in the same plane) differ in phase by an odd multiple of x. Then since the phase
difference is

5= %E(n ~1)h
for the central ray we have

21, 1
T(n—l)h - (k"i)zn’ k=1,23,..

or h = A (k—l).

The path difference between the rays 1 & 2 is

approximately (neglecting terms of order 6%)
asin@+a-na

= asin@-(n-1)a

Thus for a maximum

asine-(k’+%)l = mA

orasinh = (m+k’+%)?\,

m=0=x1,+2,...
The first maximum after the central minimum is obtained when m+ k' =

We get’ asin; = %)\.



186

5.132 When standing ultra sonic waves are sustained in the tank it behaves like a grating whose
grating clement is

v .
d= v wavelength of the ultrasonic
v = velocity of ultrasonic. Thus for maxima
V )
L sin O, = mA

On the other hand
ftanB, = mAx

Assuming 6, to be small (because A << %)

Ax = ftan 0 _ ftan 0 _ Avf

m M sin 0 M
vA m

we get

Ax

Putting the values A = 0-55um, v = 47MHz
f=035m and Ax = 0-60 x 10™*m we easily get
v = 1-51 km/sec.

5.133 Each star produces its own diffraction pattern in the focal
plane of the objective and these patterns are separated by
angle 1. As the distance d decreases the angle 6 between
the .neighbouring maxima in either diffraction pattern
increases {(sin O = A/d ). When 0 becomes equal to 2 y the
first deterioration of visibility occurs because the maxima
of one system of fringes coincide with the minima of the d
other system. Thus from the condition

A
0 =2y and cin 0 -dwcgct

1 A .
Y = 29 s Zd(radlans)

Puiting the values we get ¢y = 0-06"

5.134 (a) For normal incidence, the maxima are given by

dsin® = n i
SO sin9=n&=nx0'530
d 1-500
Clearly n<2as sin@>1 for n = 3.

Thus the highest order is n = 2. Then
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5.136

D

do kK k 1
d

“dh T dcos®
\/1-(9_

d
Putting k = 2, A = 033 pum, d = 15um = 1500nm
2 1 180

1500 ;
L _ (106
15

(b) We write the diffraction formula as
d(sinGy+sin®) = kA

we get D =

) |

x x 60 = 647 ang. min/nm .

SO sin Oy +sin 6 = k%
Here By = 45° and sin 8y = 0707
50 sin By +sin O < 1-707. Since

A 053

4~ 15 = 0-353333, we see that

k<4
Thus highest order corresponds to k = 4.
Now as before D = % SG
k k/d
D=Gee "

2
VI-(Q--sinBO)

d
= 12-948 ang. min/nm,

We have dsin@ = kA

de D = k___1an
"0 dn deos® = A
For the second order principal maximum

dsinG, = 20 = kA

or l!ij-t-dsin 8, = 2N~n
minima adjacent to this maximum occur at

N——-;-t-dsin(ﬁzzAB) = (2Nz1)x
or dcos 0, A0 = .3

N

187
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Finally angular width of the 2* principal maximum is
2AB-Ndzc:s92- = 'mz\re2
Ndv'1-(kwd)
On putting the values we get 11-019" of arc

5.137 Using
A Ndsin 0
R = s kN = Y
L Isin® < 1
A A
5.138 For the just resolved waves the frequency difference
5 cdA _c __¢
VETN TART NN
c 1

" Ndsin® ~ b1
since N dsin O is the path difference between waves emitted by the extremities of the grating.

5.139 6 A = -050nm
_A 60

R 3™ 05 - 12000 (nearly)
= kN
On the other hand
dsin® = kA
Thus -& sin = A

where I = 102 metre is the width of the grating

Hence sin 6 = 12000 x ?-;'-
12000 x 600 x 10”7 = 0-72
or 0 = 46°.

5.140 (a) We see that
N = 65x10x200 = 13000

Now to resolve lines with 8 A = 0-015 nm and A = 670-8 nm we must have

670-8
0-015

Since 3N <R <4 N one must go to the fourth order to resolve the said components.

R = 44720

(b) we have d = ﬁmm =S5um

kA _ kx0670
d 5

SO sinQ =
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since [sin 0| <1 we must have ks 7-46
d
SO kpox =7 = X
Thus Rw=kme=91000~1—Vx4=%

where | = 65 cm is the grating width.
A 670 A

Finally OAnin = R = 91000 - 007nm = 7pm = R
5.141 Here
A 589-3
Rg&kg 06 = kN = 5N
5893 1072
% N="73"-74
3x10°?
d= 5893 m = 0509 mm
(b) To resolve a doublet with A = 460-0nm and 8 A = 0-13 nm in the third order we must
have
R 460
N=3=30: 17"

This means that the grating is
Nd = 1179 x 00509 = 60-:03 mm
wide = 6 cm wide.

5.142 (a) From dsin® = kA

W et 6 LQ.A'_
©8 dcos 0
On the other hand x = fsinB
SO 6x=f005669=l£d£6k
For f=080m, A = 003 nm! and
1
d = 25Omm

we get 6x-{6um if k = 1

12um if k = 2

(b) Here N = 25 x 250 = 6250
A _ 310169
5\ 003

and so to resolve we need k = 2 For k = 1 gives an R.P. of only 6250.

and = 10339-->N
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5.143

A

Suppose the incident light consists of two wavelengths A and A + 8 A which are just resolved
by the prism. Then by Rayleigh’s criterion, the maximum of the line of wavelength A must
coincide with the first minimum of the line of wavelength A + & A. Let us write both conditions
in terms of the optical path differences for the extreme rays :
For the light of wavelength A
bn-(DC+CE) =0

For the light of wavelength A+ 8 A

b{(n+dn)-(DC+CE) = A+dA
because the path difference between extreme rays equals A for the first minimum in a single
slit diffraction (from the formula asin© = i ).
Hence bdnw A

and R-...)f.._b_a__

n dn
5 A dA

=b 7%

A

5144 (@) ;=R =" dn

ve——— F = 3
dh‘ 2Bb/A

For b=5cm,B=00lpm? A =043dpm =5x10%um

R, = 1223 x 10°
for Ay = (656 um
R, = 03542 x 10

(b) To resolve the D-lines we require
5893

R = > = 982
002xb
Thus 82 = o T
b = 982"3%’3893 )3um = 1005 x 10° um = 1005 cm
5.145 b _{1__[1_ = kN = 2x 10,000
an ’

l:v><0-10p.m'1 = 2 x 10
b=2x10°pm =02m =20cm.
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Resolving power of the objective
D 5x10"2 4
= ———— = = 7-45 % 10
1222 122x055x10"°
Let ( Ay )y be the minimum distance between two points at a distance of 3-0 km which the
telescope can resolve. Then
(Ay)un 1222 1

3x10° D T45x10°

3x10°
7-45 x 10°

or (AY )aun = = 004026 m = 4-03 cm .

The limit of resolution of a reflecting telescope is determined by diffraction from the mirror
and obeys a formula similar to that from a refracting telescope. The limit of resolution is
1 1227 (Ay)m
R™ b " 1L
where L = distance between the earth and the moon = 384000 km

Then putting the values A = 0:55um, D = 5m
we get (AY)un = 51:6 metre

By definition, the magnification
r = angle subtended by the image at the eye '
angle subtended by the object at the eye

At the limit of resolution Y = }-%-?:

where D = diameter of the objective
122 5
dy

On the other hand to be visible to the eye ¢’ =

where dy = diameter of the pupil

Thus to avail of the resolution offered by the telescope we must have

1220 / 1220 D
I' 2 Z / = T

dy
Hence I, = ‘% - 540 1:1;:1“ = 125
C
A B’
90-L
B A’
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5.150

Let A and B be two points in the field of a microscope which is represented by the lens C
D. Let A", B’ be their image points which are at equal distances from the axis of the lens

CD. Then all paths from A to A’ are equal and the extreme difference of paths from
A to B is equal to

ADB -ACPH
=AD+DB -(AC+CBHB')
= AD+DB -BD-DB
+BC+CB -AC-CPH
(as BD+DB = BC+CH')
=AD-BD+BC-AC
= 2ABcos(90°-a) = 2ABsina
From the theory of diffraction by circular apertures this distance must be equal to
1-22 A

when B’ coincides with the minimum of the diffraction due to A and A’ with the minimum
of the diffraction due to B. Thus

AB = 1-22 A A

- = (61 —
2sina sin &
Here 2 o is the angle subtended by the objective of the microscope at the object.

Substituting the values

2 061 x0-55

S 024

pm = 140 um.
Suppose d,,,, = minimum separation resolved by the microscope

Y = angle subtended at the eye by this object when the object is at the least distance of
distinct vision lj(= 25 cm ).

¥’ = minimum angular separation resolved by the eye = 1'? A
0

Yrom the previous problem

061 A

Qs = =
sin
dma 061
and Y =

Iy - lo sin o

Now .
angle subtended at the eye by the image
angle subtended at the eye by the object

when the object is at the least distance of distinct vision

2 M - Z(E]sina
P do

I' = magnifying power =

b\ . 25
Thus T, = 2(—;]8111& - 2x 2% 024 = 30
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Path difference
=BC-AD
= a(cos 60° - cos o)
For diffraction maxima
a(cos60°-cosa) = kA,

&

>
Q =
o

. 2
since A = —a, we get

5
1 2
cosa-z—sk
1 2 o
and we get k= -1, Cosa=-2-+§=0°9,a=26

k=0, cosa=%=0-5,a=60°

1 2 o
k—l,cosa—z—s—()l,a—&i

1 4 o
k=2,wsa=2-5-—03,a—10’75
k=3 cosa=-1*~-6ﬂ=—0-7 o = 134-4°

] 2 5 >

Other values of k are not allowed as they lead to Jcosa|>1.

We give here a simple derivation of the condition for diffraction maxima, known as Laue
equations. It is easy to see form the above figure that the path difference between waves
scattered by nearby scattering centres P, and P, is

—p e

P,A-P,B =7r"5,-71-3

- P (5-5) = 775 z,
— ] —>
Here r is the radius vector P, P, . For A -
maxima this path difference must be an P ¢ ‘E

integer multiple of A for any two
neighbouring atoms. In the present case of
two dJunensional lattice with X - rays
incident  normally Fos = 0, Taking
successively - nearest neighbours in the
x - & y - directions
We get the equations

acoso = hh

beosfP = kA
Here cos o and cos f are the direction cosines of the ray with respect to the x & y axes of
the two dimensional crystal.

Ax .
cCOos L = nsm(lan

\/(Ax)2+412

14z
21

] = 028735
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so using h=Fk=2weget
40 x 2
a = Soassbm = 0278 nm
Similarly Cos f3 = ay - sin(tan'l%%) = (-19612
V(Ay)P+ai?
80
= msﬂpm = (-408 nm

5.153 Suppose a,f, and y are the angles between the direction to the diffraction maximum and
the directions of the array along the periods a, b, and ¢ respectively ( call them x, y, & z
axes). Then the value of these angles can be found from the following familiar conditions

a(l-cosa) =k
bcosf = kA and ccosy = k3 A
where k,, &, k3 are whole numbers (+, —, 0o10)

(These formulas are, in effect, Laue equations, see any text book on modem physics). Squaring

and adding we get on using cos? o + cos? B+ cos’ y=1

k 2 2 k g ki A
z-m-[(_l) ,,(fz] +(...s.] ];3
a b c a
2k1/a

A= .
[(kjaY+(kpfa) +(ks/a)’]
Knowing a, b, ¢ and the integer k;, k;, k3 we can find o, f,y as well as A

Thus

5.154 The unit cell of NaCl is shown below. In an
infinite crystal, there are four N ¢ and four
Cl” ions per unit cell. (Each ion on the
middle of the edge is shared by four wnit
cells; each ion on the face centre by two unit
cells, the ion in the middle of the cell by
one cell only and finaliy each ion on the
corner by eight unit cells.) Thus &}

M 3
4N—A pra

where M = molecular weight of NaCl in &
gms = 585 gms
N, = Avogadro number = 6-023 x 102

1 \/ M i
Thus 2a 2N.p 2.822A

The natural facet of the crystal is one of the faces of the unit cell. The interplanar distance

d = %—a - 2824
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Thus 2dsina = 2 A
So A =dsina = 2-822A><‘—/—2_3— = 244 pm.

When the crystal is rotated, the incident monochromatic beam is diffracted from a given
crystal plane of interplanar spacing d whenever in the course of rotation the value of 0 satisfies
the Bragg equation.

We have the equations 2dsin®; = k; A and 2dsin, = k; A
But -20; = n-28,+a or 26, =26,-a

o]
S0 92 = 61+ 3
Thus 2d{s1n91cos-g~+cosﬁlsm } kzk
92
s QA i
L Ki=
=3
Hence 2 dsin = cos 0, = (kz—klcosg]l. 7{...292 K?'
2 2
also  2dsin—sin 8, = k Asin =
2 2
12
Squaring and adding 2dsm§ = (k k22—2k1k2cos—g) A
/2
Hence kQZ-Zklkacos—g—]
251n-—
Substituting =60°, k =2,k =3,A=174pm
we get d=281pm=2-8113;

(and not 0-281 p m as given in the book.)
(Lattice parameters are typically in A's and not in fractions of a pm.)

In a polycrystalline specimen, microcrystals are oriented at various angles with respect to one
another. The microcrystals which are oriented at certain special angles with respect to the
incident beam produce diffraction maxima that appear as rings.

The radial of these rings are given by

r=1lItan2a

where the Bragg’s law gives

2dsina = kA
Inourcase £k =2,d=15pm, A =178pm
so Q@ = sin‘11—7§= 66° and r = 352 ¢m.
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