Indices

PRACTICE SET 26 [PAGE 44]

Practice Set 26 | Q 1 | Page 44

Complete the table below.

Sr. No	Indices (Numbers in index form)	Base	Index	Multiplication form	Value
(i)	34	3	4	3 × 3 × 3 × 3	81
(ii)	16 ³				
(iii)		(-8)	2		
(iv)				3/7×3/7×3/7×3/7	81/2401
(v)	(-13) ⁴				

Solution:

Sr. No	Indices (Numbers in index form)	Base	Index	Multiplication form	Value
(i)	3 ⁴	3	4	$3 \times 3 \times 3 \times 3$	81
(ii)	16 ³	16	3	16 × 16 × 16	4096
(iii)	(-8) ²	(-8)	2	(-8) × (-8)	64
(iv)	$\left(\frac{3}{7}\right)^4$	$\frac{3}{7}$	4	$rac{3}{7} imesrac{3}{7} imesrac{3}{7} imesrac{3}{7}$	$\frac{81}{2401}$
(v)	(-13) ⁴	- 13	4	(-13) × (-13)× (-13)× (-13)	28561

Practice Set 26 | Q 2.1 | Page 44

Find the value of 2¹⁰.

= 1024

Practice Set 26 | Q 2.2 | Page 44

Find the value of 5^3 .

Solution: $5^3 = 5 \times 5 \times 5 = 125$

Practice Set 26 | Q 2.3 | Page 44

Find the value of (-7)⁴

Solution: $(-7)^4 = (-7) \times (-7) \times (-7) \times (-7) = 2401$

Practice Set 26 | Q 2.4 | Page 44

Find the value of (-6)³

Solution: $(-6)^3 = (-6) \times (-6) \times (-6) = -216$

Practice Set 26 | Q 2.5 | Page 44

Find the value of 9³

Solution: $9^3 = 9 \times 9 \times 9 = 729$

Practice Set 26 | Q 2.6 | Page 44

Find the value of 81

Solution: $8^1 = 8$

Practice Set 26 | Q 2.7 | Page 44

Find the value of $\left(\frac{4}{5}\right)^3$

Solution:

$$\left(\frac{4}{5}\right)^3 = \frac{4}{5} \times \frac{4}{5} \times \frac{4}{5}$$

$$=\frac{64}{125}$$

Practice Set 26 | Q 2.8 | Page 44

Find the value of $\left(-\frac{1}{2}\right)^4$

Solution:

$$\left(-\frac{1}{2}\right)^4 = -\frac{1}{2} \times -\frac{1}{2} \times -\frac{1}{2} \times -\frac{1}{2}$$

$$=\frac{1}{16}$$

PRACTICE SET 27 [PAGE 45]

Practice Set 27 | Q 1.1 | Page 45

Simplify: $7^4 \times 7^2$

Solution: It is known that, $a^m \times a^n = a^{m+n}$, where m and n are integers and a is a non-zero rational number.

$$7^4 \times 7^2$$

$$=7^4 + 2$$

$$=7^{6}$$

Practice Set 27 | Q 1.2 | Page 45

Simplify: $(-11)^5 \times (-11)^2$

Solution: It is known that, $a^m \times a^n = a^{m+n}$, where m and n are integers and a is a non-zero rational number.

$$(-11)^5 \times (-11)^2$$

$$=(-11)^{5+2}$$

$$=(-11)^7$$

Practice Set 27 | Q 1.3 | Page 45

Simplify:
$$\left(\frac{6}{7}\right)^3 imes \left(\frac{6}{7}\right)^5$$

$$\left(\frac{6}{7}\right)^{3} \times \left(\frac{6}{7}\right)^{5}$$

$$= \left(\frac{6}{7}\right)^{3+5}$$

$$= \left(\frac{6}{7}\right)^{8}$$

Practice Set 27 | Q 1.4 | Page 45

Simplify:
$$\left(-\frac{3}{2}\right)^5 imes \left(-\frac{3}{2}\right)^3$$

Solution: It is known that, $a^m \times a^n = a^{m+n}$, where m and n are integers and a is a non-zero rational number.

$$\left(-\frac{3}{2}\right)^{5} \times \left(-\frac{3}{2}\right)^{3}$$

$$= \left(-\frac{3}{2}\right)^{5+3}$$

$$= \left(-\frac{3}{2}\right)^{8}$$

Practice Set 27 | Q 1.5 | Page 45

Simplify: a¹⁶ ×a⁷

Solution: It is known that, $a^m \times a^n = a^{m+n}$, where m and n are integers and a is a non-zero rational number.

$$a^{16} \times a^7$$

$$=a^{16+7}$$

$$=a^{23}$$

Practice Set 27 | Q 1.6 | Page 45

Simplify:
$$\left(\frac{P}{5}\right)^3 \times \left(\frac{P}{5}\right)^7$$

Solution: It is known that, $a^m \times a^n = a^{m+n}$, where m and n are integers and a is a non-zero rational number.

$$\left(\frac{\mathrm{P}}{\mathrm{5}}\right)^{\mathrm{3}} \times \left(\frac{\mathrm{P}}{\mathrm{5}}\right)^{\mathrm{7}}$$

$$= \left(\frac{p}{5}\right)^{3+7}$$

$$= \left(\frac{p}{5}\right)^{10}$$

PRACTICE SET 28 [PAGE 46]

Practice Set 28 | Q 1.1 | Page 46

Simplify: $a^6 \div a^4$

Solution: It is known that, $a^m \div a^n = a^{m-n}$, where m and n are integers and a is non-zero rational number.

 $a^6 \div a^4$

 $= a^{6-4}$

 $= a^2$

Practice Set 28 | Q 1.2 | Page 46

Simplify: m⁵ ÷ m⁸

Solution: It is known that, $a^m \div a^n = a^{m-n}$, where m and n are integers and a is non-zero rational number.

 $\mathrm{m}^5 \div \mathrm{m}^8$

 $= m^{5-8}$

 $= m^{-3}$

Practice Set 28 | Q 1.3 | Page 46

Simplify: $p^3 \div p^{13}$

Solution: It is known that, $a^m \div a^n = a^{m-n}$, where m and n are integers and a is non-zero rational number.

$$\mathsf{p}^3 \div \mathsf{p}^{13}$$

$$= p^{3-13}$$

$$= p^{-10}$$

Practice Set 28 | Q 1.4 | Page 46

Simplify: $x^{10} \div x^{10}$

Solution: It is known that, $a^m \div a^n = a^{m-n}$, where m and n are integers and a is non-zero rational number.

$$x^{10} \div x^{10}$$

$$= x^{10-10}$$

$$= x^0$$

$$= 1 \quad (:: a^0 = 1)$$

Practice Set 28 | Q 2.1 | Page 46

Find the value.

$$(-7)^{12} \div (-7)^{12}$$

Solution: It is known that, $a^m \div a^n = a^{m-n}$, where m and n are integers and a is a non-zero rational number.

$$(-7)^{12} \div (-7)^{12}$$

$$= (-7)^{12-12}$$

$$= (-7)^0$$

$$= 1 \quad (: a^0 = 1)$$

Practice Set 28 | Q 2.2 | Page 46

Find the value.

$$7^5 \div 7^3$$

$$7^5 \div 7^3$$

$$=7 \times 7$$

$$= 49$$

Practice Set 28 | Q 2.3 | Page 46

Find the value.

$$\left(\frac{4}{5}\right)^3 \div \left(\frac{4}{5}\right)^2$$

Solution: It is known that, $a^m \div a^n = a^{m-n}$, where m and n are integers and a is a non-zero rational number.

$$\left(\frac{4}{5}\right)^3 \div \left(\frac{4}{5}\right)^2$$

$$= \left(\frac{4}{5}\right)^{3-2}$$

$$=\left(\frac{4}{5}\right)^{1}$$

$$=rac{4}{5}$$

Practice Set 28 | Q 2.4 | Page 46

Find the value.

$$4^7 \div 4^5$$

$$4^7 \div 4^5$$

$$=4^{7-5}$$

$$= 4^2$$

$$=4\times4$$

$$= 16$$

PRACTICE SET 29 [PAGE 48]

Practice Set 29 | Q 1.01 | Page 48

Simplify:
$$\left[\left(\frac{15}{12} \right)^3 \right]^4$$

Solution: It is known that, $(a^m)^n = a^{mn}$, where m and n are integers and a is a non-zero rational number.

$$\left[\left(\frac{15}{12} \right)^3 \right]^4$$

$$= \left(\frac{15}{12}\right)^{3\times 4}$$

$$= \left(\frac{15}{12}\right)^{12}$$

Practice Set 29 | Q 1.02 | Page 48

Simplify: (3⁴)⁻²

Solution: It is known that, $(a^m)^n = a^{mn}$, where m and n are integers and a is a non-zero rational number.

$$(3^4)^{-2}$$

$$=3^4 \times (-2)$$

$$=3^{-8}$$

Practice Set 29 | Q 1.03 | Page 48

Simplify:
$$\left(\left(\frac{1}{7}\right)^{-3}\right)^4$$

$$\left(\left(\frac{1}{7}\right)^{-3}\right)^4$$

$$=\left(\frac{1}{7}\right)^{-3\times4}$$

$$=\left(\frac{1}{7}\right)^{-12}$$

Practice Set 29 | Q 1.04 | Page 48

Simplify:
$$\left(\left(\frac{2}{5}\right)^{-2}\right)^{-3}$$

Solution: It is known that, $(a^m)^n = a^{mn}$, where m and n are integers and a is a non-zero rational number.

$$\left(\left(\frac{2}{5}\right)^{-2}\right)^{-3}$$

$$=\left(\frac{2}{5}\right)^{(-2)\times(-3)}$$

$$=\left(\frac{2}{5}\right)^{6}$$

Practice Set 29 | Q 1.05 | Page 48

Simplify:
$$\left(6^5\right)^4$$

$$(6^5)^4$$

$$=6^{5\times 4}$$

$$= 6^{20}$$

Practice Set 29 | Q 1.06 | Page 48

Simplify:
$$\left[\left(\frac{6}{7} \right)^5 \right]^2$$

Solution: It is known that, $(a^m)^n = a^{mn}$, where m and n are integers and a is a non-zero rational number.

$$\left\lceil \left(\frac{6}{7}\right)^5 \right\rceil^2$$

$$= \left(\frac{6}{7}\right)^{5\times 2}$$

$$= \left(\frac{6}{7}\right)^{10}$$

Practice Set 29 | Q 1.07 | Page 48

Simplify:
$$\left[\left(\frac{2}{3}\right)^{-4}\right]^5$$

$$\left[\left(\frac{2}{3} \right)^{-4} \right]^5$$

$$= \left(\frac{2}{3} \right)^{-4 \times 5}$$

$$= \left(\frac{2}{3} \right)^{-20}$$

Practice Set 29 | Q 1.08 | Page 48

Simplify:
$$\left[\left(\frac{5}{8} \right)^3 \right]^{-2}$$

Solution: It is known that, $(a^m)^n = a^{mn}$, where m and n are integers and a is a non-zero rational number.

$$\left[\left(\frac{5}{8} \right)^3 \right]^{-2}$$

$$= \left(\frac{5}{8} \right)^{3 \times (-2)}$$

$$= \left(\frac{5}{8} \right)^{-6}$$

Practice Set 29 | Q 1.09 | Page 48

Simplify:
$$\left[\left(\frac{3}{4} \right)^6 \right]^1$$

$$\left[\left(\frac{3}{4} \right)^6 \right]^1$$

$$= \left(\frac{3}{4}\right)^{6\times 1}$$

$$= \left(\frac{3}{4}\right)^6$$

Practice Set 29 | Q 1.1 | Page 48

Simplify:
$$\left[\left(\frac{2}{5}\right)^{-3}\right]^2$$

Solution: It is known that, $(a^m)^n = a^{mn}$, where m and n are integers and a is a non-zero rational number.

$$\left[\left(\frac{2}{5} \right)^{-3} \right]^2$$

$$= \left(\frac{2}{5}\right)^{-3 \times 2}$$

$$= \left(\frac{2}{5}\right)^{-6}$$

Practice Set 29 | Q 2.1 | Page 48

Write the following numbers using positive indices.

$$\left(\frac{2}{7}\right)^{-2}$$

Solution:

It is known that, $\mathbf{a}^{-\mathbf{m}} = \frac{1}{\mathbf{a}^{\mathbf{m}}}$ where m is an integer and a is a non-zero rational number.

$$\left(\frac{2}{7}\right)^{-2}$$

$$=\frac{1}{\left(\frac{2}{7}\right)^2}$$

$$=\left(\frac{7}{2}\right)^2$$

Practice Set 29 | Q 2.2 | Page 48

Write the following numbers using positive indices.

$$\left(\frac{11}{3}\right)^{-5}$$

Solution:

It is known that, $\mathbf{a}^{-\mathbf{m}} = \frac{1}{\mathbf{a}^{\mathbf{m}}}$ where m is an integer and a is a non-zero rational number.

$$\left(\frac{11}{3}\right)^{-5}$$

$$=\frac{1}{\left(\frac{11}{3}\right)^5}$$

$$=\left(\frac{3}{11}\right)^5$$

Practice Set 29 | Q 2.3 | Page 48

Write the following numbers using positive indices.

$$\left(\frac{1}{6}\right)^{-3}$$

Solution:

It is known that, $a^{-m}=\frac{1}{a^m}$ where m is an integer and a is a non-zero rational number.

$$\left(\frac{1}{6}\right)^{-3}$$

$$=\frac{1}{\left(\frac{1}{6}\right)^3}$$

$$=\left(\frac{6}{1}\right)^3$$

$$=6^3$$

Practice Set 29 | Q 2.4 | Page 48

Write the following numbers using positive indices.

$$(y)^{-4}$$

Solution:

It is known that, $a^{-m}=\frac{1}{a^m}$ where m is an integer and a is a non-zero rational number.

$$(y)^{-4}$$

$$= \frac{1}{y^4}$$

$$= \left(\frac{1}{y}\right)^4$$

PRACTICE SET 30 [PAGE 50]

Practice Set 30 | Q 1 | Page 50

Find the square root of 625.

Solution: The prime factorization of 625 is,

$$625 = \underline{5 \times 5} \times \underline{5 \times 5}$$

To find the square root, we will take one number from each pair and multiply.

$$\sqrt{625} = 5 \times 5 = 25$$

$$\sqrt{625} = 25$$

Practice Set 30 | Q 2 | Page 50

Find the square root of 1225.

Solution: The prime factorization of 1225 is,

$$1225 = \underline{5 \times 5} \times \underline{7 \times 7}$$

To find the square root, we will take one number from each pair and multiply.

$$\sqrt{1225} = 5 \times 7 = 35$$

$$\sqrt{1225} = 35$$

Practice Set 30 | Q 3 | Page 50

Find the square root of 289.

Solution: The prime factorization of 289 is,

$$289 = \underline{17 \times 17}$$

To find the square root, we will take one number from each pair and multiply.

$$\sqrt{289} = 17 \times 17 = 17$$

$$\sqrt{289} = 17$$

Practice Set 30 | Q 4 | Page 50

Find the square root of 4096.

Solution: The prime factorization of 4096 is,

To find the square root, we will take one number from each pair and multiply.

$$\sqrt{4096} = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64$$

$$\sqrt{4096} = 64$$

Practice Set 30 | Q 5 | Page 50

Find the square root of 1089.

Solution: The prime factorization of 1089 is,

$$1089 = 3 \times 3 \times 11 \times 11$$

To find the square root, we will take one number from each pair and multiply.

$$\sqrt{1089} = 3 \times 11 = 33$$

$$\sqrt{1089} = 33$$