
Chapter 2 
 

MOTION IN A STRAIGHT LINE 
 

Art 28 

 
 
 
 
 
 
 
 



SOLUTION MANUAL: DYNAMICS OF A PARTICLE                         4 
 

 
 

Art 34 

 

 

 

 

 

 

 



CHAPTER 2: MOTION IN A STRAIGHT LINE                    5 
 

 
   

End of Art 37 

EXAMPLES ON CHAPTER 2 

 

 
 
 
 
 
 
 
 
 



SOLUTION MANUAL: DYNAMICS OF A PARTICLE                         6 
 

 
 
 
 
 
 
 



CHAPTER 2: MOTION IN A STRAIGHT LINE                    7 
 

 
   

 
 
 
 
 
 
 
 
 
 
 



SOLUTION MANUAL: DYNAMICS OF A PARTICLE                         8 
 

 
 
 
 
 
 
 
 



CHAPTER 2: MOTION IN A STRAIGHT LINE                    9 
 

 
   

 
 
 
 
 
 
 
 
 
 
 
 



SOLUTION MANUAL: DYNAMICS OF A PARTICLE                         10 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 2: MOTION IN A STRAIGHT LINE                    11 
 

 
   

 

 
 
 
 
 
 
 
 
 
 
 



SOLUTION MANUAL: DYNAMICS OF A PARTICLE                         12 
 

 

 
 



CHAPTER 2: MOTION IN A STRAIGHT LINE                    13 
 

 
   

 
 
 
 
 
 
 
 
 
 
 



SOLUTION MANUAL: DYNAMICS OF A PARTICLE                         14 
 

 
 

 
 
 
 
 
 
 
 
 
 
 



CHAPTER 2: MOTION IN A STRAIGHT LINE                    15 
 

 
   

 

 
 
 
 
 
 
 
 



Chapter 2

MOTION IN A STRAIGHT LINE

20. Let the distance of a moving point P from a fixed point be O at
any time t. Let its distance similarly at time t +4t be x+4x, so that
PQ =4x.

A P Q

x

The velocity of P at time t = Limit, when 4t = 0, of
PQ
4t

= Limit,

when 4t = 0, of
4x
4t

=
dx
dt

.

Hence the velocity v =
dx
dt

.

Let the velocity of the moving point at time t +4t be v+4v.
Then the acceleration of P at time t = Limit, when 4t = 0, of
4v
4t

=
dv
dt

=
d2x
dt2

21. Motion in a straight line with constant acceleration f
Let x be the distance of the moving point at time t from a fixed

point in the straight line.

Then
d2x
dt2 = f ...(1),

Hence, on integration v =
dx
dt

= f t +A ...(2),

13



14 Chapter 2: Motion in a Straight Line

where A is an arbitrary constant.
Integrating again, we have

x =
1
2

f t2 +At +B ...(3),

where B is an arbitrary constant.

Again, on multiplying (1) by 2
dx
dt

, and integrating with respect to
t, we have

v2 =
(

dx
dt

)2

= 2 f x+C ...(4),

where C is an arbitrary constant.
These three equations contain the solution of all questions on mo-

tion in a straight line with constant acceleration. The arbitrary con-
stants A,B,C are determined from the initial conditions.

Suppose for example that the particle started at a distance a from a
fixed point O on the straight line with velocity u in a direction away
from O, and suppose that the time t is reckoned from the instant of
projection.

We then have that when t = 0, then v = u and x = a. Hence the
equations (2), (3), and (4) give

u = A, a = B, and u2 = C +2 f a.

Hence we have v = u+ f t, x−a = ut + 1
2 f t2 and v2 = u2 +2 f (x−a),

the three standard equations of Elementary Dynamics.

22. A particle moves in a straight line OA starting from rest at A
and moving with an acceleration which is always directed towards
O and varies as the distance from O; to find the motion.
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Let x be the distance OP of the particle from at any time t; and let
the acceleration at this distance be µx.
The equation of motion is then

d2x
dt2 =−µx ...(1).

[We have a negative sign on the right-hand side because
d2x
dt2 is the

acceleration in the direction of x increasing, i.e. in the direction OP;
whilst µx is the acceleration towards O, i.e. in the direction PO.]

A’ P’A’ A
PO

Multiplying by 2
dx
dt

and integrating, we have

(
dx
dt

)2

=−µx2 +C.

If OA be a, then
dx
dt

= 0 when x = a, so that 0 =−µa2 +C, and

∴
(

dx
dt

)2

= µ(a2− x2)

∴ dx
dt

=−√µ
√

a2− x2 ...(2).

[The negative sign is put on the right-hand side because the velocity
is clearly negative so long as OP is positive and P is moving towards
O.]

Hence, on integration,

t
√

µ =−
∫ dx√

a2− x2
= cos−1 x

a
+C1,

where 0 = cos−1 a
a

+C1, i.e. C1 = 0,
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if the time be measured from the instant when the particle was at A.

∴ x = cos
√

µt ...(3).

When the particle arrives at O,x is zero; and then, by (2), the ve-
locity =−a

√µ. The particle thus passes through O and immediately
the acceleration alters its direction and tends to diminish the veloc-
ity; also the velocity is destroyed on the left-hand side of O as rapidly
as it was produced on the right-hand side; hence the particle comes
to rest at a point A′ such that OA and OA′ are equal. It then retraces
its path, passes through O, and again is instantaneously at rest at A.
The whole motion of the particle is thus an oscillation from A to A′

and back, continually repeated over and over again.
The time from A to O is obtained by putting x equal to zero in (3).

This gives cos(
√µt) = 0, i.e. t =

π
2
√µ

.

The time from A to A′ and back again, i.e. the time of a complete

oscillation, is four times this, and therefore =
2π√µ

.

This result is independent of the distance a, i.e. is independent of
the distance from the centre at which the particle started. It depends
solely on the quantity µ which is equal to the acceleration at unit
distance from the centre.

23. Motion of the kind investigated in the previous article is called
Simple Harmonic Motion.

The time,
2π√µ

, for a complete oscillation is called the Periodic

Time of the motion, and the distance, OA or OA′, to which the par-
ticle vibrates on either side of the centre of the motion is called the
Amplitude of its motion.
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The Frequency is the number of complete oscillations that the

particle makes in a second, and hence =
1

Periodic time
=
√µ
2π

.

24. The equation of motion when the particle is on the left-hand side
of O is

d2x
dt2 = acceleration in the direction P′A = µ .P′O = µ(−x) =−µx.

Hence the same equation that holds on the right hand of O holds
on the left hand also.

As in Art. 22 it is easily seen that the most general solution of this
equation is

x = a cos[
√

µt + ε] ...(1),

which contains two arbitrary constants a and ε .

This gives
dx
dt

=−a
√

µ sin (
√

µt + ε) ...(2).

(1) and (2) both repeat when t is increased by
2π√µ

, since the sine

and cosine of an angle always have the same value when the angle
is increased by 2π .

Using the standard expression (1) for the displacement in a sim-
ple harmonic motion, the quantity ε is called the Epoch, the angle√µt + ε is called the Argument, whilst the Phase of the motion
is the time that has elapsed since the particle was at its maximum
distance in the positive direction. Clearly x is a maximum at time t0
where

√µt0 + ε = 0.

Hence the phase at time t = t− t0 = t +
ε√µ

=
√µt + ε√µ

.
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Motion of the kind considered in this article, in which the time of
falling to a given point is the same whatever be the distance through
which the particle falls, is called Tautochronous.

25. In Art. 22 if the particle, instead of being at rest initially, be
projected from A with velocity V in the positive direction, we have

V 2 =−µa2 +C.

Hence
(

dx
dt

)2

=V 2+µ(a2−x2)= µ(b2−x2), where b2 = a2+
V 2

µ
...(1),

∴ dx
dt

=
√

µ
√

b2− x2 and t
√

µ =−cos−1 x
b

+C1,

where 0 =−cos−1 a
b

+C1.

∴ t
√

µ =−cos−1 a
b
− cos−1 x

b
...(2).

From (1), the velocity vanishes when x = b =

√
a2 +

V 2

µ
,

and then, from (2),

t
√

µ = cos−1 a
b
, i.e., t =

1√µ
cos−1 a√

a2 + V 2

µ

.

The particle then retraces its path, and the motion is the same as in
Art. 22 with b substituted for a.

26. Compounding of two simple harmonic motions of the same
period and in the same straight line

The most general displacements of this kind are given by
acos(nt + ε) and bcos(nt + ε ′), so that
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x = acos(nt + ε)+bcos(nt + ε ′)
= cos nt(acosε +bcosε ′)− sinnt(asinε +bsinε ′)

Let acosε +bcosε ′= AcosE and asinε +bsinε ′= Asin E
...(1),

so that

A =
√

a2 +b2 +2abcos(ε− ε ′) and tanE =
asinε +bsinε ′

acosε +bcosε ′
.

Then x = acos(nt +E),

so that the composition of the two given motions gives a similar
motion of the same period whose amplitude and epoch are known.

If we draw OA (= a) at an angle ε to a fixed line, and OB (=
b) at an angle ε ′ and complete the parallelogram OACB then by
equations (1) we see that OC represents A and that it is inclined at
an angle E to the fixed line. The line representing the resultant of the
two given motions is therefore the geometrical resultant of the lines
representing the two component motions.

So with more than two such motions of the same period.

27. We cannot compound two simple harmonic motions of different
periods.

The case when the periods are nearly but not quite equal, is of
some considerable importance.

In this case we have

x = acos(nt + ε)+bcos(n′t + ε ′), where n′−n is small, = λ say.

Then x = acos(nt + ε)+bcos[nt + ε1], where ε ′1 = λ t + ε ′.
By the last article
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x = Acos(nt +E) ...(1),

where A2 = a2 +b2 +2abcos(ε− ε ′1)
= a2 +b2 +2abcos(ε− ε ′− (n′−n)t]

...(2),

and tanE =
asinε +bsinε ′1
acosε +bcosε ′1

=
asinε +bsin[ε ′+(n′−n)t]
acosε +bcos[ε ′+(n′−n)t]

...(3).
The quantities A and E are now not constant, but they vary slowly

with the time, since n′−n is very small.
The greatest value of A is when ε−ε ′− (n′−n)t = any even mul-

tiple of π and then its value is a+b.
The least value of A is when ε− ε ′− (n′−n)t = any odd multiple

of π and then its value is a−b.
At any given time therefore the motion may be taken to be a sim-

ple harmonic motion of the same approximate period as either of
the given component motions, but with its amplitude A and epoch
E gradually changing from definite minimum to definite maximum

values, the periodic times of these changes being,
2π

n′−n
.

[The Student who is acquainted with the theory of Sound may
compare the phenomenon of Beats.]

28. EX. 1. Show that the resultant of two simple harmonic vibrations
in the same direction and of equal periodic time, the amplitude of
one being twice that of the other and its phase a quarter of a period
in advance, is a simple harmonic vibration of amplitude

√
5 times

that of the first and whose phase is in advance of the first by
tan−1 2

2π
of a period.

EX. 2. A particle is oscillating in a straight line about a centre
of force O, towards which when at a distance r the force is m.n2r,
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and a is the amplitude of the oscillation; when at a distance
a
√

3
2

from O, the particle receives a blow in the direction of motion which
generates a velocity na. If this velocity be away from O, show that
the new amplitude is a

√
3.

EX. 3. A particle P, of mass m, moves in a straight line Ox under a
force mµ(distance) directed towards a point A which moves in the
straight line Ox with constant acceleration a. Show that the motion

of P is simple harmonic, of period
2π√µ

, about a moving centre which

is always at a distance
a
µ

behind A.

EX. 4. An elastic string without weight, of which the unstretched
length is l and the modulus of elasticity is the weight of n ozs., is
suspended by one end, and a mass of m ozs. is attached to the other;

show that the time of a vertical oscillation is 2π
√

ml
ng

.

EX. 5. One end of an elastic string, whose modulus of elasticity is
λ and whose unstretched length is a, is fixed to a point on a smooth
horizontal table and the other end is tied to a particle of mass m
which is lying on the table. The particle is pulled to a distance where
the extension of the string is b and then let go; show that the time of

a complete oscillation is 2
(

π +
2a
b

)√
am
λ

.

EX. 6. An endless cord consists of two portions, of lengths 2l
and 2l′ respectively, knotted together, their masses per unit of length
being m and m′. It is placed in stable equilibrium over a small smooth
peg and then slightly displaced. Show that the time of a complete

oscillation is 2π

√
ml +m′l′

(m−m′)g
.
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EX. 7. Assuming that the earth attracts points inside it with a force
which varies as the distance from its centre, show that, if a straight
frictionless airless tunnel be made from one point of the earth’s sur-
face to any other point, a train would traverse the tunnel in slightly
less than three-quarters of an hour. (Assume the earth to be a homo-
geneous sphere of radius 6400 km.)

29. Motion when the motion is in a straight line and the acceleration
is proportional to the distance from a fixed point O in the straight
line and is always away from O.

Here the equation of motion is
d2x
dt2 = µx ...(1).

Suppose the velocity of the particle to be zero at a distance a from
O at time zero.
The integral of (1) is(

dx
dt

)2

= µx2 +A, where 0 = µa2 +A

∴ dx
dt

=
√

µ(x2−a2) ...(2),

the positive sign being taken in the right-hand member since the
velocity is positive in this case.

∴ t
√µ =

∫ dx√
x2−a2

= log[x+
√

x2−a2]+B,

where 0 = log[a]+B

∴ t
√µ = log

x+
√

x2−a2

a
. ∴ x+

√
x2−a2 = aet

√µ .

∴ x−
√

x2−a2 =
a2

x+
√

x2−a2
= ae−t

√µ

Hence, by addition,
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x =
a
2

et
√µ +

a
2

e−t
√µ ...(3).

As t increases, it follows from (3) that x continually increases, and
then from (2) that the velocity continually increases also.

Hence the particle would continually move along the positive di-
rection of the axis of x and with continually increasing velocity.

Equation (3) may be written in the form

x = acosh(
√

µt),

and then (2) gives
v = a

√
µ sinh(

√
µt).

30. In the previous article suppose that the particle were initially pro-

jected towards the origin O with velocity V ; then we should have
dx
dt

equal to −V when x = a; and equation (2) would be more compli-
cated. We may however take the most general solution of (1) in the
form

x = Ce
√µt +De−

√µt ...(4),

where C and D are any constants.

Since, when t = 0, we have x = a and
dx
dt

=−V, this gives

a = C +D, and −V =
√

µC−√µD.

Hence C =
1
2

(
a− V√µ

)
and D =

1
2

(
a+

V√µ

)
.

∴ (4) gives x =
1
2

(
a− V√µ

)
e
√µt +

1
2

(
a+

V√µ

)
e−
√µt

...(5)

= a cosh(
√

µt)− V√µ
sinh(

√
µt) ...(6).
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In this case the particle will arrive at the origin O when

0 =
1
2

(
a− V√µ

)
e
√µt +

1
2

(
a+

V√µ

)
e−
√µt,

i.e. when e2
√µt =

V +a
√µ

V −a
√µ

i.e. when t =
1

2
√µ

log
V +a

√µ
V −a

√µ
.

In the particular case when V = a
√µ , this value of t is infinity.

If therefore the particle were projected at distance a towards the
origin with the velocity a

√µ , it would not arrive at the origin until
after an infinite time.

Also, putting V = a
√µ in (5), we have x = ae−

√µt,

and v =
dx
dt

=−a
√

µe−
√µt.

The particle would therefore always be travelling towards O with
a continually decreasing velocity, but would take an infinite time to
get there.

31. A particle moves in a straight line OA with an acceleration which
is always directed towards O and varies inversely as the square of
its distance from O; if initially the particle were at rest at A, find the
motion.

A’

P

O

A

P’

Let OP be x, and let the acceleration of the particle when at P be
µ
x2 in the direction PO. The equation of motion is therefore

d2x
dt2 = acceleration along OP =− µ

x2 ...(1).
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Multiplying both sides by 2
d2x
dt2 and integrating, we have

(
dx
dt

)2

=
2µ
x

+C,

where 0 =
2µ
a

+C, from the initial conditions.

Subtracting,
(

dx
dt

)2

= 2µ
(

1
x
− 1

a

)
.

∴ dx
dt

=−
√

2µ
√

a− x
ax

...(2),

the negative sign being prefixed because the motion of P is towards
O, i.e. in the direction of x decreasing.

Hence

√
2µ
a

.t =−
∫ √

x
a− x

dx.

To integrate the right-hand side, put x = acos2 θ , and we have
√

2µ
a

.t =
∫ cosθ

sinθ
.2acosθ sinθ dθ = a

∫
(1+ cos2θ)dθ

= a
(
θ + 1

2 sin2θ
)
+C1 = acos−1

√
x
a

+
√

ax− x2 +C1,

where 0 = acos−1(1)+0+C1, i.e. C1 = 0

∴ t =
√

a
2µ

[√
ax− x2 +acos−1

√
x
a

]
...(3).

Equation (2) gives the velocity at any point P of the path, and (3)
gives the time from the commencement of the motion.

The velocity on arriving at the origin O is found, by putting x = 0
in (2), to be infinite.



26 Chapter 2: Motion in a Straight Line

Also the corresponding time, from (3),

=
√

a
2µ

[acos−1 0] =
π
2

a3/2
√

2µ
.

The equation of motion (1) will not hold after the particle has passed
through O; but it is clear that then the acceleration, being opposite to
the direction of the velocity, will destroy the velocity, and the latter
will be diminished at the same rate as it was produced on the positive
side of O. The particle will therefore, by symmetry, come to rest at
a point A′ such that AO and OA′ are equal. It will then return, pass
again through O and come to rest at A.

The total time of the oscillation = four times the time from A to O

= 2π
a3/2
√

2µ
.

32. By the consideration of Dimensions only we can show that the

time ∝
a3/2
√µ

. For the only quantities that can appear in the answer

are a and µ . Let then the time be ap µq.
Since

µ
( distance )2 is an acceleration, whose dimensions are [L][T ]−2,

the dimensions of µ are [L]3[T ]−2; hence the dimensions of apµq are
[L]p+3q [T ]−2q. Since this is a time, we have p+3q = 0 and−2q = 1.

∴ q =−1
2

and p =
3
2
. Hence the required time ∝

a3/2
√µ

.

33. As an illustration of Art. 31 let us consider the motion of a parti-
cle let fall towards the earth (assumed at rest) from a point outside it.
It is shown in treatises on Attractions that the attraction on a particle
outside the earth (assumed to be a homogeneous sphere), varies in-
versely as the square of its distance from the centre. The acceleration
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of a particle outside the earth at distance x may therefore be taken to
be

µ
x2 .

If a be the radius of the earth this quantity at the earth’s surface is
equal to g, and hence

µ
a2 = g. i.e. µ = ga2.

For a point P outside the earth the equation of motion is therefore

d2x
dt2 =−ga2

x2 ...(1),

∴
(

dx
dt

)2

=
2ga2

x
+C.

If the particle started from rest at a distance b from the centre of
the earth, this gives

(
dx
dt

)2

= 2ga2
(

1
x
− 1

b

)
...(2),

and hence the square of the velocity on reaching the surface of the
earth

= 2ga
(

1− a
b

)
...(3).

Let us now assume that there is a hole going down to the earth’s
centre just sufficient to admit of the passing of the particle.

On a particle inside the earth the attraction can be shown to vary
directly as the distance from the centre, so that the acceleration at
distance x from its centre is µ1x,, where µ1a = its value at the earth’s
surface = g.

The equation of motion of the particle when inside the earth there-

fore is
d2x
dt2 =−g

a
x,

and therefore
(

dx
dt

)2

=−g
a

x2 +C1.
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Now when x = a, the square of the velocity is given by (3), since
there was no instantaneous change of velocity at the earth’s surface.

∴ 2ga
(

1− a
b

)
=−g

a
.a2 +C1,

∴
(

dx
dt

)2

=−g
a

x2 +ga
[

3− 2a
b

]
.

On reaching the centre of the earth the square of the velocity is

therefore ga
(

3− 2a
b

)
.

34. EX. 1. A particle falls towards the earth from infinity; show
that its velocity on reaching the earth is the same as it would have
acquired in falling with constant acceleration g through a distance
equal to the earth’s radius.

EX. 2. Show that the velocity with which a body falling from infin-
ity reaches the surface of the earth (assumed to be a homogeneous
sphere of radius 6400 km) is about 11.25 km per second.

In the case of the sun show that it is about 610 km per second,
the radius of the sun being 708,000 km and the distance of the earth
from it 149,000,000 km.

EX. 3. If the earth’s attraction vary inversely as the square of the
distance from its centre, and g be its magnitude at the surface, the
time of falling from a height h above the surface to the surface is

√
a+h

2g

[
a+h

a
sin−1

√
h

a+h
+

√
h
a

]
,

where a is the radius of the earth and the resistance of the air is
neglected.
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If h be small compared with a, show that this result is approxi-

mately

√
2h
g

[
1+

5
6

h
a

]
.

35. It is clear that equations (2) and (3) of Art. 31 cannot be true
after the particle has passed O; for on giving x negative values these
equations give impossible values for v and t.

When the particle is at P′, to the left of O, the acceleration is
µ

OP′2 , i.e.
µ
x2 , towards the right. Now

d2x
dt2 means the acceleration

towards the positive direction of x. Hence, when P′ is on the left of
O, the equation of motion is

d2x
dt2 =

µ
x2 ,

giving a different solution from (2) and (3).
The general case can be easily considered. Let the acceleration be

µ(distance)n towards O. The equation of motion when the particle
is on the right hand of O is clearly

d2x
dt2 =−µ.xn.

When P′ is on the left of O, the equation is

d2x
dt2 = acceleration in direction OA = µ(P′O)n = µ(−x)n.

These two equations are the same if

−µ.xn = µ(−x)n, i.e., if (−1)n =−1,

i.e. if n be an odd integer, or if it be of the form
2p+1
2q+1

, where p and

q are integers; in these cases the same equation holds on both sides
of the origin; otherwise it does not.
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36. EX. A small bead, of mass m, moves on a straight rough wire
under the action of a force equal to mµ times the distance of the bead
from a fixed point A outside the wire at a perpendicular distance a
from it. Find the motion if the bead start from rest at a distance c
from the foot, O, of the perpendicular from A upon the wire.
Let P be the position of the bead at any time t, where OP = x and
AP = y.
Let R be the normal reaction of the wire and µ1 the coefficient of
friction.

Q
O x

R

C

a

P

A

'C

ymm

R1m

Resolving forces perpendicular to the wire, we have
R = mµysinOPA = mµa.

Hence the friction µ1R = mµµ1a.

The resolved part of the force mµy along the wire
= mµycosOPA = mµx.

Hence the total acceleration = µµ1a−µx.
The equation of motion is thus

d2x
dt2 = µµ1a−µx =−µ(x−µ1a) ...(1),

so long as P is to the right of O.
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[If P be to the left of O and moving towards the left, the equation
of motion is

d2x
dt2 = acceleration in the direction OC

= µµ1a+ µ(−x), as in the last article,

and this is the same as (1) which therefore holds on both sides of O.]
Integrating, we have
(

dx
dt

)2

=−µ(x−µ1a)2 +C, where 0 =−µ(c−µ1a)2 +C.

∴ v2 =
(

dx
dt

)2

= µ[(c−µ1a)2− (x−µ1a)2] ...(2),

and therefore, as in Art. 22,√
µt = cos−1 x−µ1a

c−µ1a
+C1,

where 0 = cos−1 c−µ1a
c−µ1a

+C1, i.e. C1 = 0.

∴ √
µt = cos−1 x−µ1a

c−µ1a
...(3),

(2) and (3) give the velocity and time for any position.
From (2) the velocity vanishes when x−µ1a =±(c−µ1a),

i.e. when x = c = OC, and when x =−(c−2aµ1),
i.e. at the point C′, where OC′ = c−2aµ1,

and then from (3) the corresponding time

=
1√µ

cos−1 −c+ µ1a
c−µ1a

=
1√µ

cos−1(−1) =
µ√µ

.

The motion now reverses and the particle comes to rest at a point C′′

on the right of O where OC′′ = OC′−2µ1a = OC−4µ1a.
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Finally, when one of the positions of instantaneous rest is at a dis-
tance which is equal to or less than µ1a from O, the particle remains
at rest. For at this point the force towards the centre is less than the
limiting friction and therefore only just sufficient friction will be ex-
erted to keep the particle at rest.

It will be noted that the periodic time
2π√µ

is not affected by the

friction, but the amplitude of the motion is altered by it.

37. EX. A particle, of mass m, rests in equilibrium at a point N,
being attracted by two forces equal to mµn (distance)n and mµ ′n

(distance)n towards two fixed centres O and O′. If the particle be
slightly displaced from N, and if n be positive, show that it oscillates,
and find the time of a small oscillation.

OO N

Px

'O

Let OO′ = a, ON = d, and NO′ = d′, so that

µn.dn = µ
′n.d

′n ...(1),

since there is equilibrium at N.

∴ d
µ ′

=
d′

µ
=

a
µ + µ ′

...(2).

Let the particle be at a distance x from N towards O′.
The equation of motion is then

d2x
dt2 =−µn.OPn + µ ′n.PO

′n = µn(d + x)n + µ ′n(d′− x)n ...(3).

If x is positive, the right-hand side is negative; if x is negative, it is
positive; the acceleration is towards N in either case.
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Expanding by the Binomial Theorem, (3) gives

d2x
dt2 =−µn(dn +ndn−1x+ · · ·)+ µ ′n(d

′n−nd
′n−1x+ · · ·)

=−nx[µndn−1 + µ ′nd
′n−1]+ terms involving higher powers of x

=−nxan−1 (µµ ′)n−1

(µ + µ ′)n−2 + · · · by (2).

If x be so small that its squares and higher powers may be ne-
glected, this gives

d2x
dt2 =−n

(µµ ′a)n−1

(µ + µ ′)n−2x ...(4).

Hence, as in Art. 22, the time of a small oscillation

2π÷
√

n
(µµ ′a)n−1

(µ + µ ′)n−2 = 2π

√
(µ + µ ′)n−2

n(µ µ ′a)n−1 .

If n be negative, the right-hand member of (4) is positive and the
motion is not one of oscillation.

EXAMPLES ON CHAPTER 2

1. A particle moves towards a centre of attraction starting from rest
at a distance a from the centre; if its velocity when at any distance

x from the centre vary as

√
a2− x2

x2 , find the law of force.
2. A particle starts from rest at a distance a from a centre of force

where the repulsion at distance x is µx−2; show that is velocity at

distance x is

√
2µ(x−a)

ax
and that the time it has taken is
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√
a

2µ

[√
x2−ax+a loge

(√
x
a

+
√

x
a
−1

)]
.

3. Prove that it is impossible for a particle to move from rest so that its
velocity varies as the distance described from the commencement
of the motion.
If the velocity vary as (distance)n, show that n cannot be greater

than
1
2
.

4. A point moves in a straight line towards a centre of force{
µ

(distance)3

}
, starting from rest at a distance a from the centre

of force; show that the time of reaching a point distant b from

the centre of force is
a
√

a2−b2
√µ

, and that its velocity then is
√µ
ab

√
a2−b2.

5. A particle falls from rest at a distance a from a centre of force,
where the acceleration at distance x is µn−5/3; when it reaches the
centre show that its velocity is infinite and that the time it has taken

is
2a1/3
√

3µ
.

6. A particle moves in a straight line under a force to a point in it
varying as (distance)−4/3; show that the velocity in falling from
rest at infinity to a distance a is equal to that acquired in falling
from rest at a distance a to a distance

a
8
.

7. A particle, whose mass is m, is acted upon by a force µ
(

x+
a4

x3

)

towards the origin; if it start from rest at a distance a, show that it
will arrive at the origin in time

π
4
√µ

.
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8. A particle moves in a straight line with an acceleration towards a

fixed point in the straight line, which is equal to
µ
x2 −

λ
x3 when the

particle is at a distance x from the given point; it starts from rest at
a distance a; show that it oscillates between this distance and the

distance
λa

2µa−λ
, and that its periodic time is

2πµa3

(2aµ−λ )3/2 .

9. A particle moves with an acceleration which is always towards,
and equal to µ divided by the distance from, a fixed point O. If it
start from rest at a distance a from O, show that it will arrive at O

in time a
√ π

2µ
.

[
Assume that

∫ ∞

0
e−x2

dx =
√

π
2

.

]

10. A particle is attracted by a force to a fixed point varying inversely
as the nth power of the distance; if the velocity acquired by it in
falling from an infinite distance to a distance a from the centre is
equal to the velocity that would be acquired by it in falling from

rest at a distance a to a distance
a
4

, show that n =
3
2
.

11. A particle rests in equilibrium under the attraction of two centres
of force which attract directly as the distance, their attractions per
unit of mass at unit distance being µ and µ ′; the particle is slightly
displaced towards one of them; show that the time of a small os-

cillation is
2π√
µ + µ ′

.

12. A mass of 100 kg. hangs freely from the end of a rope. The mass is
hauled up vertically from rest by winding up the rope, the pull of
which starts at 150 kg. weight and diminishes uniformly at the rate
of 1 kg weight for each metre wound up. Neglecting the weight of
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the rope, show that the mass has described 50 metres at the end of

time
5π
√

2
4.428

secs. and that its velocity then is 11.07
√

2 metres/sec.
13. A particle moves in a straight line with an acceleration equal to

µ ÷ the nth power of the distance from a fixed point O in the
straight line. If it be projected towards O, from a point at a distance
a, with the velocity it would have acquired in falling from infinity,

show that it will reach O in time
2

n+1

√
n−1
2µ

.a
n+1

2 .

14. In the previous question if the particle started from rest at distance
a, show that it would reach O in time

√
n−1
2µ

πa
n+1

2
Γ

( 1
n−1 + 1

2

)

Γ
( 1

n−1

) , or
√

π
2µ(1−n)

a
n+1

2
Γ

( 1
1−n

)

Γ
( 1

1−n + 1
2

).

according as n is > or < unity.
15. A shot, whose mass is 25 kg is fired from a gun, 2.5 metres in

length. The pressure of the powder gas is inversely proportional to
the volume behind the shot and changes from an initial value of
1600 kg weight per square centimetre to 160 kg weight per square
centimetre as the shot leaves the gun. Show that the muzzle ve-
locity of the shot is approximately 240 metres per second, having
given loge 10 = 2.3026.

16. If the Moon and Earth were at rest, show that the least velocity
with which a particle could be projected from the Moon, in order
to reach the Earth, is about 21

4 km per second, assuming their radii
to be 1760 and 6400 km respectively, the distance between their
centres 385,000 km, and the mass of the Moon to be 1/81 that of
the Earth.



LONEY’S DYNAMICS OF A PARTICLE WITH SOLUTION MANUAL (Kindle edition) 37

17. A small bead can slide on a smooth wire AB, being acted upon by
a force per unit of mass equal to µ ÷ the square of its distance
from a point O which is outside AB. Show that the time of a small

oscillation about its position of equilibrium is
2π√µ

b3/2, where b is

the perpendicular distance of O from AB.
18. A solid attracting sphere, of radius a and mass M, has a fine hole

bored straight through its centre; a particle starts from rest at a
distance b from the centre of the sphere in the direction of the hole
produced, and moves under the attraction of the sphere entering
the hole and going through the sphere; show that the time of a
complete oscillation is

4√
2γM

[√
2a3/2 sin−1

√
b

3b−2a
+b3/2 cos−1

√
a
b

+
√

ab(b−a)

]
,

where γ is the constant of gravitation.
19. A circular wire of radius a and density ρ attracts a particle accord-

ing to the Newtonian law γ
m1m2

(distance)2 ; if the particle be placed on

the axis of the wire at a distance b from the centre, find its velocity
when it is at any distance x.
If it be placed on the axis at a small distance from the centre, show

that the time of a complete oscillation is a
√

2π
γρ

.

20. In the preceding question if the wire repels instead of attracting,
and the particle be placed in the plane of the wire at a small dis-

tance from its centre, show that the time of an oscillation 2a
√ π

γρ
.

21. A particle moves in a straight line with an acceleration directed
towards, and equal to µ times the distance from, a point in the
straight line, and with a constant acceleration f in a direction op-
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posite to that of its initial motion; show that its time of oscillation
is the same as it is when f does not exist.

22. A particle P moves in a straight line OCP being attracted by a force
mµ . PC always directed towards C, whilst C moves along OC with
constant acceleration f . If initially C was at rest at the origin O,
and P was at a distance c from O and moving with velocity V ,
prove that the distance of P from O at any time t is

(
f
µ

+ c
)

cos
√

µt +
V√µ

sin
√

µt− f
µ

+
f
2

t2.

23. Two bodies, of masses M and M′, are attached to the lower end
of an elastic string whose upper end is fixed and hang at rest; M′

falls off; show that the distance of M from the upper end of the

string at time t is a+b+ccos
(√

g
b

t
)

, where a is the unstretched

length of the string, and b and c the distances by which it would
be stretched when supporting M and M′ respectively.

24. A point is performing a simple harmonic motion. An additional
acceleration is given to the point which is very small and varies
as the cube of the distance from the origin. Show that the increase
in the amplitude of the vibration is proportional to the cube of the
original amplitude if the velocity at the origin is the same in the
two motions.

25. One end of a light extensible string is fastened to a fixed point and
the other end carries a heavy particle; the string is of unstretched
length a and its modulus of elasticity is n times the weight of the
particle. The particle is pulled down till it is at a depth b below the
fixed point and then released.
Show that it will return to this position at the end of time
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2
√

a
ng

[π
2

+ cosec−1p+
√

p2−1
]
,

where p =
nb
a
− (n+1), provided that p is not >

√
1+4n.

If p >
√

1+4n, show how to find the corresponding time.
26. An endless elastic string, whose modulus of elasticity is λ and

natural length is 2πc, is placed in the form of a circle on a smooth
horizontal plane and is acted upon by a force from the centre equal
to µ times the distance per unit mass of the string. Show that its

radius will vary harmonically about a mean length
2πλc

2πλ −mµc
,

where m is the mass of the string, assuming that 2πλ > mµc. Ex-
amine the case when 2πλ = mµc.

27. An elastic string of mass m and modulus of elasticity λ rests un-
stretched in the form of a circle whose radius is a. It is now acted
on by a repulsive force situated in its centre whose magnitude per
unit mass of the string is

µ
(distance)2 . Show that when the circle

next comes to rest its radius is a root of the quadratic equation

r2−ar =
mµ
πλ

.

28. A smooth block, of mass M, with its upper and lower faces hori-
zontal planes, is free to move in a groove in a parallel plane, and a
particle of mass m is attached to a fixed point in the upper face by
an elastic string whose natural length is a and modulus E. If the
system starts from rest with the particle on the upper face and the
string stretched parallel to the groove to (n + 1) times its natural
length, show that the block will perform oscillations of amplitude
(n+1)am

M +m
in the periodic time 2

(
π +

2
n

)√
aMm

E(M +m)
.
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29. A particle is attached to a point in a rough plane inclined at an an-
gle α to the horizon; originally the string was unstretched and lay
along a line of greatest slope; show that the particle will oscillate

only if the coefficient of friction is <
1
3

tanα.

30. A mass of m kg moves initially with a velocity of u metres per
sec. A constant power equal to H horse-power is applied so as
to increase its velocity; show that the time that elapses before the

acceleration is reduced to
1
n

th of its original value is

m(n2−1)u2

150gH
.

31. Show that the greatest velocity which can be given to a bullet of
mass M fired from a smooth-bore gun is

√
2ΠV

M
(m logm+1−m),

where changes of temperature are neglected, and the pressure Π
in front of the bullet is supposed constant, the volume V of the
powder in the cartridge being assumed to turn at once, when fired,
into gas of pressure mΠ will and of volume V .

32. Two masses, m1 and m2, are connected by a spring of such a
strength that when m1 is held fixed m2 performs n complete vi-
brations per second. Show that if m2 be held fixed, m1 will make

n
√

m2

m1
, and, if both be free, they will make n

√
m1 +m2

m1
, vibra-

tions per second, the vibrations in each case being in the line of
the spring.

33. A body is attached to one end of an inextensible string, and the
other end moves in a vertical line with simple harmonic motion of
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amplitude a and makes n complete oscillations per second. Show
that the string will not remain tight during the motion unless
n2 <

g
4π2a

.
34. A light spring is kept compressed by the action of a given force;

the force is suddenly reversed; prove that the greatest subsequent
extension of the spring is three times its initial contraction.

35. Two masses, M and m, connected by a light spring, fall in a ver-
tical line with the spring unstretched until M strikes an inelastic
table. Show that if the height through which M falls is greater than
M +2m

2m
l, the mass M will after an interval be lifted from the table,

l being the length by which the spring would be extended by the
weight of M.

36. Two uniform spheres, of masses m1 and m2 and of radii a1 and a2,
are placed with their centres at a distance a apart and are left to
their mutual attractions; show that they will have come together at
the end of time√

2πaDR
3g(m1 +m2)

[
acos−1

√
a1 +a2

a
+

√
(a1 +a2)(a−a1−a2)

]
,

where R is the radius, and D the mean density of the Earth.
If m1 = m2 = 4 kg, a1 = a2 = 6.25 cm, and a = 0.5 metre, show
that the time is about 41

2 hours, assuming R = 6400 km. and D =
5600 kg per cubic metre.
[When the spheres have their centres at a distance x, the accelera-
tion of m1 due to the attraction of m2 is γ

m2

x2 and that of m2, due to

m1 is γ
m1

x2 . Hence the acceleration of m2 relative to m1 is γ
m1 +m2

x2

and the equation of relative motion is
..
x =−γ

m1 +m2

x2 .]
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37. Assuming the mass of the Moon to be 1/81 that of the Earth, that
their radii are respectively 1760 and 6400 km, and the distance
between their centres 385,000 km, show that, if they were instan-
taneously reduced to rest and allowed to fall towards one another
under their mutual attraction only, they would meet in about 41

2

days.
38. A particle is placed at the end of the axis of a thin attracting cylin-

der of radius a and of infinite length; show that its kinetic energy

when it has described a distance x varies as log
x+

√
x2 +a2

a
.

39. AB is a uniform string of mass M and length 2a; every element
of it is repelled with a force, = µ . distance, acting from a point O
in the direction of AB produced; show that the acceleration of the
string is the same as that of a particle placed at its middle point,
and that the tension at any point P of the string varies as AP.PB.

40. Show that the curve which is such that a particle will slide down
each of its tangents to the horizontal axis in a given time is a cy-
cloid whose axis is vertical.

41. Two particles, of masses m and m′ are connected by an elastic
string whose coefficient of elasticity is λ ; they are placed on a
smooth table, the distance between them being a, the natural length
of the string. The particle m is projected with velocity V along the
direction of the string produced; find the motion of each particle,
and show that in the subsequent motion the greatest length of the
string is a+V p, and that the string is next at its natural length after

time π p, where p2 =
mm′

m+m′
a
λ

.

42. Two particles, each of mass m, are attached to the ends of an inex-
tensible string which hangs over a smooth pulley; to one of them.
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A, another particle of mass 2m is attached by means of an elastic
string of natural length a, and modulus of elasticity 2mg. If the
system be supported with the elastic string just unstretched and be
then released, show that A will descend with acceleration

gsin2
[√

g
2a

.t
]
.

43. A weightless elastic string, of natural length l and modulus λ , has
two equal particles of mass m at its ends and lies on a smooth
horizontal table perpendicular to an edge with one particle just
hanging over. Show that the other particle will pass over at the end
of time t given by the equation

2l +
mgl
λ

sin2

√
λ

2ml
t =

1
2

gt2.

ANSWERS WITH HINTS

Art. 28
Ex. 1 x = acosnt +2acos

(
nt +

π
2

)
= a

√
5cos(nt +β )

where
cosβ

1
=

sinβ
2

=
1√
5

.

Ex. 2 x = a
√

3cos
(

nt− π
3

)
.

Ex. 3
..
x =−µ

(
x− 1

2
at2

)
.

Ex. 4 m
..
x = mg−ng

x− l
l

.

Ex. 5 m
..
x =−λ

x−a
a

, See Art. 22.

Ex. 6 (2ml + 2m′l′)
..
x = g[m(l− x)+ m′(l′+ x)−m(l + x)−m′(l′−
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x)].
Ex. 7

..
x =−g

a
x, 421

2 mins. (approx.)

Art. 34
Ex. 1

..
x =−ga2

x3 .
Ex. 2 608.17 km/sec.

Ex. 3
..
x =−ga2

x2 , i.e.,
.
x2 = 2ga2

[
1
x
− 1

a+h

]

Examples on Chapter 2 (End of Art. 37).
1. The acceleration varies inversely as the cubic of the distance.
3. v = λxn, f = nλx2n−1, if 2n−1 > 0 both v = 0, f = 0 when x = 0
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