# CAPACITOR



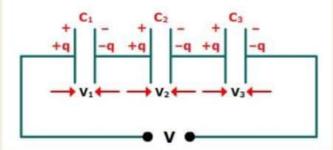
# Capacitor



Capacitor is a passive device of the circuit which stores electrical energy or charge. It is also known as condenser.

$$C = \frac{Q}{V}$$
 or  $C = \frac{\epsilon_0 A}{d}$ 

Capacitance is measured in Farad (F)


Q = Charge

A = Area

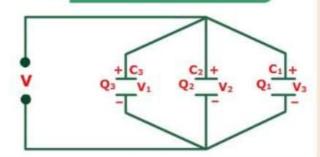
V = Voltage d = Diameter

# Combination

## Series



Charge stored on each capacitor is same and equal to the magnitude of the charge, which comes from the battery...


$$Q = q_1 = q_2 = q_3$$

The sum of voltage across the individual capacitor is equal to the voltage of the battery.

$$V = V_1 + V_2 + V_3$$

- Equivalent capacitance of the capacitor is always less than the smallest value of the capacitance of the capacitor in the circuit.

# **Parallel**

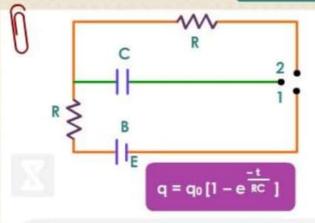


The Voltage across each capacitor is the same, and it is equal to the voltage of the battery.

$$V=V_1=V_2=V_3$$

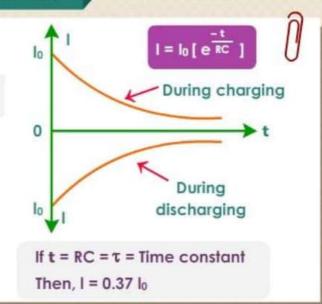
The sum of the charge stored on an individual capacitor is equal to the magnitude of the charge, which comes from the battery.

$$Q = q_1 + q_2 + q_3$$

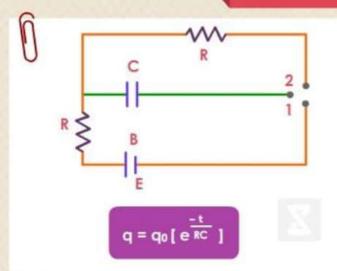

- $C_{eq} = C_1 + C_2 + C_3$
- Equivalent capacitance of the capacitor is always greater then the largest value of the capacitance of the capacitor in the circuit.

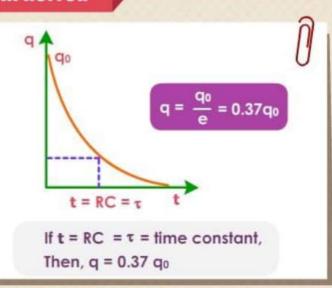


# **CIRCUIT SOLUTION**


# CHARGING AND DISCHARGING OF A CAPACITOR

#### **CHARGING OF A CAPACITOR**

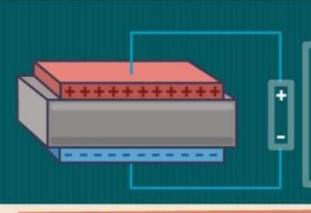




Where  $q_0 = maximum$  final value of charge at  $t = \infty$ .

Time t = RC is known as Time Constant.

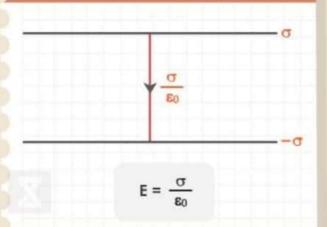


#### DISCHARGING OF A CAPACITOR






#### FORCE BETWEEN THE PLATES OF A CAPACITOR

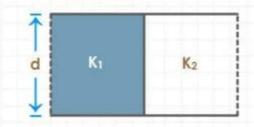

$$F = -\frac{d}{dx} \left[ \frac{q^2}{2\epsilon_0 A} x \right] = \frac{-1}{2} \frac{q^2}{\epsilon_0 A}$$

The negative sign implies that the force is attractive.



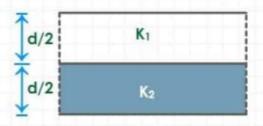
# CAPACITOR WITH DIELECTRIC

#### 1. Without Dielectric



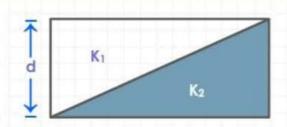






$$C = \frac{AK\epsilon_0}{d}$$
 A = Area of Dielectric Slab

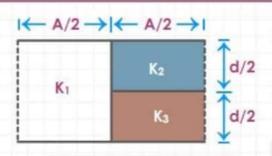
# 3. Dielectric Placed Vertically




$$C = C_1 + C_2 \longrightarrow C = \frac{\epsilon_0(K_1 + K_2)A}{2d}$$

## 4. Dielectric Placed Horizontally




$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} \longrightarrow C = \frac{2\epsilon_0 A K_1 K_2}{(K_1 + K_2)d}$$

## 5. Dielectric Placed Diagonally



$$C = \frac{\varepsilon_0 A K_1 K_2}{(K_2 - K_1)} \log_e \frac{K_1}{K_2}$$

#### 6. Capacitor With 3 Dielectrics



$$C = \frac{\varepsilon_0 A}{d} \left[ \frac{K_1}{2} + \frac{K_2 K_3}{K_2 + K_3} \right]$$