3. Geometry

Exercise 3.1

1 A. Question

Choose the correct answer:

Which of the following will be the angles of a triangle?

A. 35°, 45°, 90°

B. 26°, 58°, 96°

C. 38°, 56°, 96°

D. 30°, 55°, 90°

Answer

Formula used: Angle Sum Property = $\angle A + \angle B + \angle C = 180^{\circ}$

Option A: $35^{\circ} + 45^{\circ} + 90^{\circ} = 170^{\circ}$. Hence, this cannot be correct because sum of all the angles of triangle.

Option B: $26^{\circ} + 58^{\circ} + 96^{\circ} = 180^{\circ}$. Hence, this is correct because sum of all the angles of triangle.

Option C: $38^{\circ} + 56^{\circ} + 96^{\circ} = 190^{\circ}$. Hence, this cannot be correct because sum of all the angles of triangle.

Option D: $35^{\circ} + 45^{\circ} + 90^{\circ} = 175^{\circ}$. Hence, this cannot be correct because sum of all the angles of triangle.

1 B. Question

Choose the correct answer:

Which of the following statement is correct?

A. Equilateral triangle is equiangular.

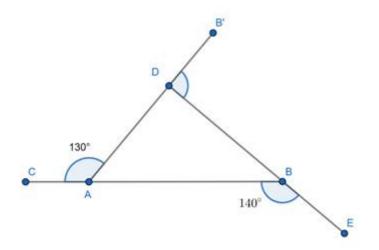
B. Isosceles triangle is equiangular.

- C. Equiangular triangle is not equilateral.
- D. Scalene triangle is equiangular

Answer

Reason: All angles of an equilateral triangle are equal.

1 C. Question


Choose the correct answer:

The three exterior angles of a triangle are 130°, 140°, x° then x° is

- A. 90°
- B. 100°
- C. 110°
- D. 120°

Answer

Angle Sum Property = $\angle A + \angle B + \angle C = 180^{\circ}$ [T1]

$$\angle$$
 DAC = 130° and \angle ABE = 140°

 \angle DAC + \angle DAB = 180° (sum of the angle on a straight line at point is 180°)

$$\therefore \angle DAB = 180^{\circ} - \angle DAC$$

 $\Rightarrow \angle \text{DAB} = 180^{\circ} - 130^{\circ} = 50^{\circ}$

Similarly,

 \angle ABE + \angle ABD = 180° (sum of the angle on a straight line at point is 180°)

$$\therefore \angle ABD = 180^{\circ} - \angle ABE$$

 $\Rightarrow \angle \text{DAB} = 180^{\circ} - 140^{\circ} = 60^{\circ}$

 \angle BDB' = \angle DAB + \angle DBA

(if a side of a triangle is produced, the exterior angle so formed, is equal to the sum of the two interior opposite angles)

 $\angle x^{\circ} = 50^{\circ} + 60^{\circ} = 110^{\circ}$

Hence, option C is correct.

1 D. Question

Choose the correct answer:

Which of the following set of measurements will form a triangle?

A. 11 cm, 4 cm, 6 cm

B. 13 cm, 14 cm, 25 cm

C. 8 cm, 4 cm, 3 cm

D. 5 cm, 16 cm, 5 cm

Answer

Any Two sides of triangle together are greater than the third side.

Option A: AB + BC > AC = 11 + 4 > 6 = 15 > 6true

BC + AC > AB = 4 + 6 > 11 = 10 > 11not true

AC + AB > BC = 11 + 6 > 4 = 17 > 4 true.

∴, this cannot be true because only condition is satisfied.

Option B: AB + BC > AC = 13 + 14 > 25 = 27 > 25 true

BC + AC > AB = 14 + 25 > 13 = 39 > 13 true

AC + AB > BC = 25 + 13 > 14 = 38 > 13 true.

 \therefore , this is true because all condition is satisfied.

Option C: AB + BC > AC = 8 + 4 > 3 = 12 > 3 true

BC + AC > AB = 4 + 3 > 8 = 7 > 8 not true

AC + AB > BC = 8 + 3 > 4 = 11 > 4 true.

 \div , this cannot be true because only condition is satisfied.

Option D: AB + BC > AC = 5 + 16 > 5 = 21 > 5true

BC + AC > AB = 16 + 5 > 11 = 21 > 5 true

AC + AB > BC = 5 + 5 > 16 = 10 > 16 not true.

 \therefore , this cannot be true because only condition is satisfied.

1 E. Question

Choose the correct answer:

Which of the following will form a right-angled triangle, given that the two angles are

A. 24°, 66° B. 36°, 64° C. 62°, 48°

D. 68°, 32°

Answer

For the triangle to be right-angled triangle one angle is 90° and sum of the two angles should be 90°

Option A: $24^{\circ} + 66^{\circ} = 90^{\circ}$. This option is correct.

Option B: $36^{\circ} + 64^{\circ} = 100^{\circ}$. This option is not correct.

Option C: $62^{\circ} + 48^{\circ} = 110^{\circ}$. This option is not correct.

Option D: $68^{\circ} + 32^{\circ} = 100^{\circ}$. This option is not correct.

2. Question

The angles of a triangle are $(x - 35)^\circ$, $(x - 20)^\circ$ and $(x + 40)^\circ$.

Find the three angles.

Answer

Theorem 1: The sum of three angles is 180°.

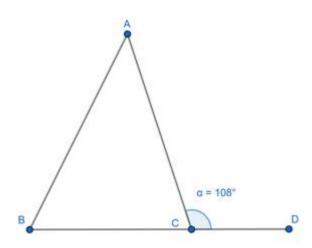
i.e. $\angle A + \angle B + \angle C = 180^{\circ}$ $\Rightarrow (x - 35)^{\circ} + (x - 20)^{\circ} + (x + 40)^{\circ} = 180^{\circ}$ $\Rightarrow x - 35 + x - 20 + x + 40 = 180$ $\Rightarrow 3x - 55 + 40 = 180$ $\Rightarrow 3x - 15 = 180$ $\Rightarrow 3x = 180 + 15$ $\Rightarrow 3x = 195$ $\Rightarrow x = \frac{195}{3}$ $\Rightarrow x = 15$

3. Question

In \triangle ABC, the measure of \angle A is greater than the measure of \angle B by 24°. If exterior angle \angle C is 108°. Find the angles of the \triangle ABC.

Answer

Theorem 2:


If a side of a triangle is produced, the exterior angle so formed, is equal to the sum of the two interior angle.

Let the $\angle B$ be x.

 $\therefore \angle A = \angle B + 24^{\circ}$

= x + 24°

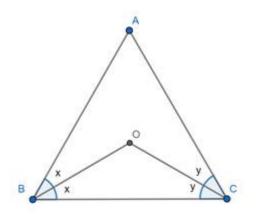
 $\therefore \angle B = x$

Ext. $[\underline{T2}] \angle C = \angle B + \angle A$

 $\Rightarrow 108^{\circ} = x + x + 24^{\circ}$ $\Rightarrow 108^{\circ} = 2x + 24^{\circ}$ $\Rightarrow 2x = 108^{\circ} - 24^{\circ}$ $\Rightarrow 2x = 84^{\circ}$ $\Rightarrow x = \frac{84^{\circ}}{2}$ $\Rightarrow x = 42^{\circ}$

4. Question

The bisectors of $\angle B$ and $\angle C$ of a $\triangle ABC$ meet at 0.


Show that BOC =
$$90^{\circ} + \frac{\angle A}{2}$$
.

Answer

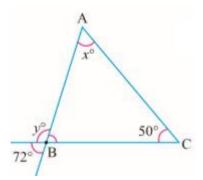
Theorem 1:

The sum of all three angles is 180°.

Let the \angle B and \angle C be 2x and 2y respectively.

 $In \Delta ABC$

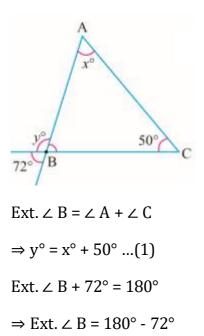
 $\angle A + \angle B + \angle C = 180^{\circ} \text{ (Angle Sum Property)}$ $\Rightarrow \angle A + 2x + 2y = 180^{\circ}$ $\Rightarrow 2x + 2y = 180^{\circ} - \angle A$ $\Rightarrow 2(x + y) = 180^{\circ} - \angle A$ $\Rightarrow x + y = \frac{180^{\circ} - \angle A}{2}$ $\Rightarrow x + y = 90^{\circ} - \frac{\angle A}{2} \dots (1)$ In \triangle OBC $\angle OBC + \angle OCB + \angle BOC = 180^{\circ} \text{ (Angle Sum Property)}$ $\Rightarrow x + y + \angle BOC = 180^{\circ}$ $\Rightarrow 90 - \frac{\angle A}{2} + \angle BOC = 180^{\circ}$


$$\Rightarrow \angle BOC = 180^{\circ} - 90^{\circ} + \frac{\angle A}{2}$$

$$\Rightarrow \angle BOC = 90^\circ + \frac{\angle A}{2}$$

Hence Proved.

5 A. Question


Find the value of x° and y° from the following figures:

Answer

Theorem 2:

If a side of a triangle is produced, the exterior angle so formed, is equal to the sum of the two-interior angle.

$$\Rightarrow$$
 Ext. \angle B = 108°

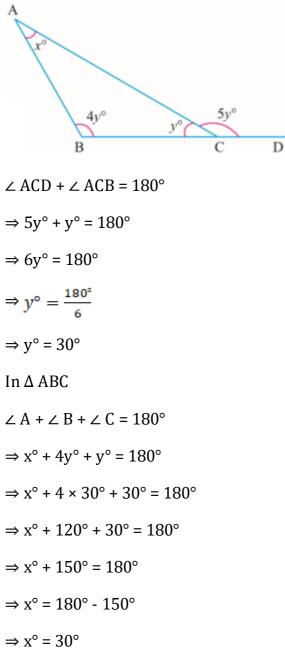
$$\Rightarrow$$
 y° = 108°

Put y = 108° in (1)

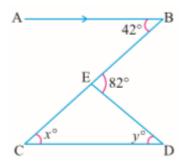

$$\Rightarrow 108^{\circ} = x^{\circ} + 50^{\circ}$$

$$\Rightarrow$$
 x° = 108° - 50°

 $\Rightarrow x^{\circ} = 58^{\circ}$

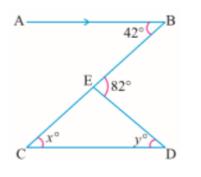

5 B. Question

Find the value of x° and y° from the following figures:


Answer

theorem 1: Sum of all the angles of triangle is 180°

5 C. Question


Find the value of x° and y° from the following figures:

Answer

Theorem 2:

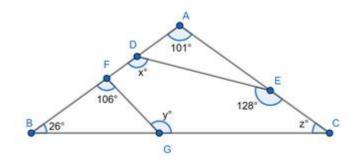
If a side of a triangle is produced, the exterior angle so formed, is equal to the sum of the two interior angle.

 \angle C = \angle B (Alternate interior angles)

 $\Rightarrow x^{\circ} = 42^{\circ}$ In \triangle CDE Ext. \angle E = \angle C + \angle D $\Rightarrow 82^{\circ} = 42^{\circ} + y^{\circ}$ $\Rightarrow y^{\circ} = 82^{\circ} - 42^{\circ}$ $\Rightarrow y^{\circ} = 40^{\circ}$

6. Question

Find the angles $x^\circ\!\!,y^\circ\!\!$ and $z^\circ\!\!$ from the given figure.



Answer

Theorem 1: Sum of all the angles of triangles is 180°

Theorem 2:

If a side of a triangle is produced, the exterior angle so formed, is equal to the sum of the two interior angle.

 $In \Delta ABC$

- $\angle A + \angle B + \angle C = 180^{\circ}$ (Angle Sum Property)
- $\Rightarrow 101^{\circ} + 26^{\circ} + z^{\circ} = 180^{\circ}$
- $\Rightarrow 127^{\circ} + z^{\circ} = 180^{\circ}$
- \Rightarrow z° = 180° 127°
- \Rightarrow z° = 53°

In Δ FBG

- Ext. $\angle G = \angle B + \angle F$
- \Rightarrow y° = 26° + 106°
- \Rightarrow y° = 132°
- $\angle AED + \angle DEC = 180^{\circ}$
- $\Rightarrow \angle AED + 128^{\circ} = 180^{\circ}$
- $\Rightarrow \angle AED = 180^{\circ} 128^{\circ}$
- $\Rightarrow \angle AED = 52^{\circ}$

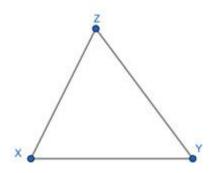
In AED

- Ext. $\angle D = \angle A + \angle C$
- \Rightarrow x° = 101° + 52°

 $\Rightarrow x^{\circ} = 153^{\circ}$

Exercise 3.2

1 A. Question


Choose the correct answer:

In the isosceles ΔXYZ , given XY = YZ then which of the following angles are equal?

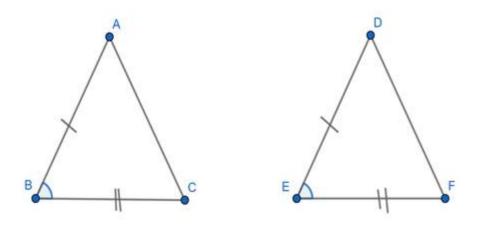
- A. $\angle X$ and $\angle Y$
- B. ∠Y and ∠Z
- C. ∠Z and ∠X
- D. ∠X, ∠Y and ∠Z

Answer

Reason: Angles opposite XY and YZ are angle X and Z respectively.[T3]

1 B. Question

Choose the correct answer:


In \triangle ABC and \triangle DEF, \angle B = \angle E, AB = DE, BC = EF. The two triangles are congruent under _____ axiom

- A. SSS
- B. AAA
- C. SAS
- D. ASA

Answer

option C.

If any two sides and the included angle of a triangle are respectively equal to any two sides and the included angles of another triangle then the two triangles are congruent.

1 C. Question

Choose the correct answer:

Two plane figures are said to be congruent if they have

A. the same size

B. the same shape

C. the same size and the same shape

D. the same size but not same shape

Answer

Reason: If two geometrical figures are identical in shape and size then they are said to be congruent.

1 D. Question

Choose the correct answer:

In a triangle ABC, $\angle A = 40^{\circ}$ and AB = AC, then ABC is _____ triangle.

A. a right angled

B. an equilateral

C. an isosceles

D. a scalene

Answer

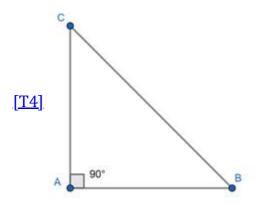
In a triangle, When two sides are equal then triangle are said to be an isosceles triangle.

1 E. Question

Choose the correct answer:

In the triangle ABC, when $\angle A = 90^{\circ}$ the hypotenuse is _____

A. AB


B. BC

C. CA

D. None of these

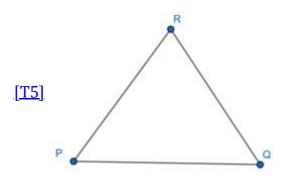
Answer

option B

1 F. Question

Choose the correct answer:

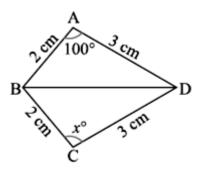
In the Δ PQR the angle included by the sides PQ and PR is


A.∠P

B.∠Q

C.∠R

D. None of these


Answer

1 G. Question

Choose the correct answer:

In the figure, the value of x° is_____

B. 100^o

C. 120°

D. 200°

Answer

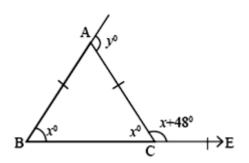
In Δ ABD and Δ CBD

AB = CB = 2cm

AD = CD = 3cm

BD = BD = common

$\therefore \Delta \text{ ABD} \cong \Delta \text{ CBD}$


$$\therefore \angle A = \angle C$$

$$\Rightarrow 100^{\circ} = x^{\circ}$$

Hence, option B is correct.

2. Question

In the figure, ABC is a triangle in which AB = AC. Find x° and y°.

Answer

Theorem 2:

If a side of a triangle is produced, the exterior angle so formed, is equal to the sum of the two interior angle.

$$\angle ACE + \angle ACB = 180^{\circ}$$

$$\Rightarrow x + 48^{\circ} + x^{\circ} = 180^{\circ}$$

$$\Rightarrow 2x + 48^{\circ} = 180^{\circ}$$

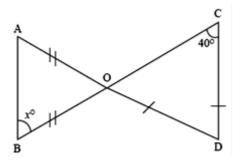
$$\Rightarrow 2x = 180^{\circ} - 48^{\circ}$$

$$\Rightarrow 2x = 132^{\circ}$$

$$\Rightarrow x = \left(\frac{132}{2}\right)^{\circ}$$

$$\Rightarrow x = 66^{\circ}$$
Ext. $\angle A = \angle B + \angle C$

$$\Rightarrow y^{\circ} = x^{\circ} + x^{\circ}$$


$$\Rightarrow y^{\circ} = 2x^{\circ}$$

$$\Rightarrow y^{\circ} = 2x^{\circ}$$

$$\Rightarrow y^{\circ} = 132^{\circ}$$

3. Question

In the figure, Find x°.

Answer

Theorem 1: Sum of all the angles of the triangles is 180°

 $In\,\Delta\,COB$

OD = DC

 $\therefore \angle \text{COD} = \angle \text{DCO} = 40^{\circ}$

 $In \Delta AOB$

OA = OB (Given)

 $\therefore \angle \mathsf{OAB} = \angle \mathsf{OBA} = \mathbf{x}^{\circ}$

 \angle OAB + \angle OBA + \angle AOB = 180° (Angle Sum Property)

$$\Rightarrow x^{\circ} + x^{\circ} + \angle AOB = 180^{\circ}$$

$$\Rightarrow 2x^{\circ} + \angle AOB = 180^{\circ}$$

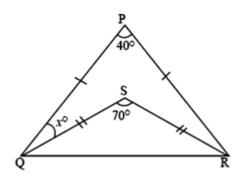
$$\Rightarrow \angle AOB = 180^{\circ} - 2x^{\circ}$$

$$\angle AOB = \angle COD \text{ (opposite angles are equal)}$$

$$180 - 2x^{\circ} = 40^{\circ}$$

$$\Rightarrow 180^{\circ} = 40 + 2x^{\circ}$$

$$\Rightarrow 180^{\circ} - 40^{\circ} = 2x^{\circ}$$


$$\Rightarrow 140^{\circ} = 2x^{\circ}$$

$$\Rightarrow x = \frac{140^{\circ}}{2}$$

$$\Rightarrow x = 70^{\circ}$$

4. Question

In the figure ΔPQR and ΔSQR are isosceles triangles. Find x°.

Answer

Theorem 1: Sum of all the angles of triangles is 180°

Let \angle PQR be y

In Δ SQR,

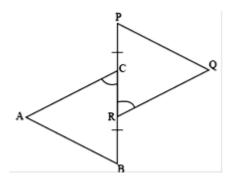
SQ = SR

$$\therefore \angle SQR = \angle SRQ$$

$$\angle$$
 SQR + \angle SRQ + \angle QSR = 180° (Angle Sum Property)

$$\Rightarrow 2 \angle SQR + 70^\circ = 180^\circ$$

$$\Rightarrow 2 \angle SQR = 180^{\circ} - 70^{\circ}$$


$$\Rightarrow 2 \angle SQR = 110^{\circ}$$

$$\Rightarrow \angle SQR = \frac{110^{\circ}}{2}$$

$$\Rightarrow \angle SQR = 55^{\circ} = \angle SRQ$$

In \triangle PQR,
 \angle PQR + \angle PRQ + \angle RPQ = 180°
 \Rightarrow y + y + 40° = 180°
 \Rightarrow 2y + 40° = 180°
 \Rightarrow 2y = 180° - 40°
 \Rightarrow 2y = 140°
 \Rightarrow y = $\frac{140^{\circ}}{2}$
 \Rightarrow y = 70°
 \angle PQR = \angle PQS + \angle SQR
 \Rightarrow 70° = x° + 55°
 \Rightarrow x° = 70° - 55°
 \Rightarrow x° = 15°

5. Question

In the figure, it is given that BR = PC and $\angle ACB = \angle QRP$ and $AB \parallel PQ$. Prove that AC = QR.

Answer

Given: BR = PC and \angle ACB = \angle QRP , AB || PQ

To Prove: AC = QR

Proof:

In Δ ABC, we have

BC = BR + RC

 $In \Delta PQR$

PR = PC + RC

But, BR = PC [Given]

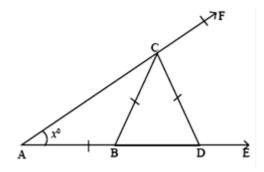
So, BC = PC + RC and PR = BR + RC

 \Rightarrow BC = PR

So, in Δ ABC and Δ PQR, we have

 \angle ACB = \angle QRP [Given]

BC = PR [Proved Above]


 \angle ABC = \angle QPR [AB || PQ, alternate interior angles]

Thus, \triangle ABC \cong \triangle PQR [Angle – Side – Angle]

 $\therefore AC = QR [C. P. C. T]$

6. Question

In the figure, AB = BC = CD, $\angle A = x^0$. Prove that $\angle DCF = 3 \angle A$.

Answer

Given: AB = BC = CD and $\angle A = x^{\circ}$

To Prove: \angle DCF = 3 \angle A

Proof:

 $In\,\Delta\,ABC$

AB = BC [Given]

$$\therefore \angle A = \angle C = x^{\circ}$$

Now,

$$\therefore \text{ ext. } \angle \mathbf{B} = \angle \mathbf{A} + \angle \mathbf{C}$$

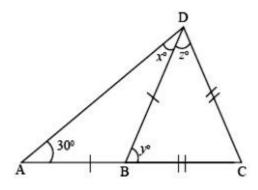
$$\Rightarrow$$
 Ext. \angle B = x° + x°

$$\Rightarrow$$
 Ext. \angle B = 2x^c

 $In\,\Delta\,CBD$

BC = CD [Given]

 $\therefore \angle \mathbf{B} = \angle \mathbf{D} = 2\mathbf{x}^{\circ}$


Now,

In Δ ADC,

Ext. \angle DCF = \angle CDA + \angle CAD $\Rightarrow \angle$ DCF = 2x + x $\Rightarrow \angle$ DCF = 3x $\Rightarrow \angle$ DCF = 3 \angle A [\angle A = x°, Given] Hence Proved.

7. Question

Find x°, y°, z° from the figure, where AB = BD, BC = DC and \angle DAC 30°.

Answer

Theorem 1: Sum of all the angles in the triangle is 180°.

In Δ ABD,

We know that, AB = BD

$$\therefore \angle A = \angle D$$

$$\Rightarrow 30^{\circ} = x^{\circ}$$

Hence, $\angle A + \angle B + \angle C = 180^{\circ}$

$$\Rightarrow 30^{\circ} + \angle B + 30^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle B + 60^{\circ} = 180^{\circ}$$

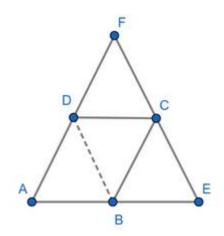
$$\Rightarrow \angle B = 180^{\circ} - 60^{\circ}$$

$$\Rightarrow \angle B = 120^{\circ}$$

 \angle DBA + \angle DBC = 180° (Sum of adjacent angles is 180°)

 $\Rightarrow 120^{\circ} + y^{\circ} = 180^{\circ}$ $\Rightarrow y^{\circ} = 180^{\circ} - 120^{\circ}$ $\Rightarrow y^{\circ} = 60^{\circ}$ In \triangle DBC We know that, BC = DC $\therefore \angle B = \angle D$ $\Rightarrow y^{\circ} = z^{\circ}$ $\Rightarrow 60^{\circ} = z^{\circ}$ 8. Question

In the figure, ABCD is a parallelogram. AB is produced to E such that AB = BE. AD produced to F such that AD = DF. Show that Δ FDC $\equiv \Delta$ CBE.



Answer

Given: Parallelogram ABCD and AB = BE and AD = FD

To prove: Δ FDC $\equiv \Delta$ CBE

Construction: Join DB

We know that,

AB = DC [opposite sides of parallelogram]

BE = DC [AB = BE, because B is the midpoint of AE]

Similarly,

AD = BC [opposite sides of parallelogram]

DF = BC [AD = DF, because B is the midpoint of AE]

Now, AD||BC and AB

 $\angle A = \angle B$ [corresponding angles] ...(1)

Now, AB||CD and AD

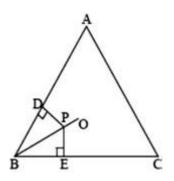
 $\angle A = \angle D$ [corresponding angles] ...(2)

 $\therefore \angle B = \angle D$ (From 1 and 2)

In Δ FDC and Δ CBE

FD = CB [Proved Above]

DC = BE [Proved Above]


 $\angle D = \angle B$ [Proved Above]

Thus, Δ FDC $\equiv \Delta$ CBE

Hence Proved.

9. Question

In figure, BO bisects $\angle ABC$ of $\triangle ABC$. P is any point on BO. Prove that the perpendicular drawn from P to BA and BC are equal.

Answer

Given: A \triangle ABC in which BO is bisector of \angle ABC

Also, we have PD \perp AB and PE \perp BC

To Prove: PD = PE

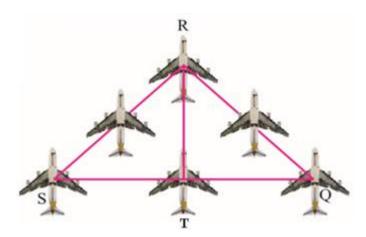
Proof:

In Δ PBD and Δ PBE

PB = PB [common]

 \angle PBD = \angle PBE [given]

 \angle PDB = \angle PEB = 90° [Given]


Thus, $\triangle PBD \cong \triangle PBE$ [Angle – Angle – Side]

 \therefore PD = PE

Hence Proved.

10. Question

The Indian Navy flights fly in a formation that can be viewed as two triangles with common side. Prove that Δ SRT $\equiv \Delta$ QRT, if T is the midpoint of SQ and SR = RQ.

Answer

Given: T is the mid-point of SQ and SR = RQ

To Prove: Δ SRT $\cong \Delta$ QRT

Proof

In Δ SRT and QRT

RT = RT [common]

ST = QT [T is the mid-point of SQ]

SR = RQ [Given]

Thus, Δ SRT $\cong \Delta$ QRT [Side – Side – Side]

Hence Proved.