Mensuration

- Area of a triangle:
 - Area of a triangle = $\frac{1}{2} \times B$ as $e \times Altitude$
 - All the congruent triangles are equal in area, but the triangles having equal areas may or may not be congruent.

Example: $\triangle ABC$ is isosceles with AC = BC = 6 cm. AE and BD are the medians and AF = 4 cm. What is the area of $\triangle ABD$?

Solution: In $\triangle ABE$ and $\triangle BAD$, we have BE = AD $\left[AC = BC \Rightarrow \frac{1}{2}AC = \frac{1}{2}BC\right]\right]$ $\angle ABE = \angle BAD$ [Angles opposite to equal sides] AB = AB[Common] $\Rightarrow \triangle ABE \cong \triangle BAD$ [By SAS congruency criterion] Area ($\triangle ABE$) = Area ($\triangle BAD$) Now, Area $\triangle ABE = \frac{1}{2} \times B$ as $e \times Altitude$ $= \frac{1}{2} \times BE \times AF$ $= \frac{1}{2} \times \left(\frac{6 \text{ cm}}{2}\right) \times 4 \text{ cm}$ $= 6 \text{ cm}^2$ $\Rightarrow \text{ Area } \triangle ABD = 6 \text{ cm}^2$

• Area of triangle using Heron's formula:

When all the three sides of a triangle are given, its area can be calculated using Heron's formula, which is given by:

Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$

Here, *s* is the semi-perimeter of the triangle and is given by, $s = \frac{a+b+c}{2}$

Example:

Find the area of a triangle whose sides are 9 cm, 28 cm and 35 cm. Solution:

Let a = 9 cm, b = 28 cm and c = 35 cmSemi-perimeter, $s = \frac{a+b+c}{2} = \frac{9+28+35}{2} \text{ cm} = 36 \text{ cm}$ Area of triangle = $\sqrt{36(36-9)(36-28)(36-35)} \text{ cm}^2$

- $= \sqrt{36 \times 27 \times 8 \times 1} \text{ cm}^2$ $= 36\sqrt{6} \text{ cm}^2$
 - Perimeter of a rectangle = 2 (length + breadth)

Example:

What is the perimeter of a rectangular field whose length and breadth are 15 m and 8 m respectively?

Solution:

Perimeter of rectangular field = 2 (15 m + 8 m) = (2×23) m = 46 m

• Area of a rectangle is given by the formula:

Area of a rectangle = length × breadth

Example: How much carpet is required to cover a rectangular floor of length 25 m and breadth 18 m?

Solution: Area of the carpet required = Area of rectangular floor

$$= 25 \text{ m} \times 18 \text{ m} = 450 \text{ m}^2$$

• Area of a square is given by the formula:

Area of a square = side × side

Example: What is the area of a square park of side 10 m 20 cm?

Solution: Length of park = 10 m 20 cm = 10.2 m

Area of park = $10.2 \text{ m} \times 10.2 \text{ m} = 104.04 \text{ m}^2$

• Area and perimeter of various shapes:

Shape	Area	Perimeter
1. Rectangle with adjacent sides <i>a</i> and <i>b</i>	$a \times b$	2(a+b)
2. Square with side <i>a</i>	a^2 πr^2	4 <i>a</i> 2πr
3. Circle with radius <i>r</i>		
4. Triangle with base <i>b</i> and its corresponding height <i>h</i>	$\frac{1}{2} \times b \times h$ $b \times h$	Sum of the three sides Sum of the four sides
5. Parallelogram with base <i>b</i> and its corresponding height <i>h</i>		

Area of trapezium = $\frac{1}{2}$ (Sum of the lengths of the parallel sides) × (Perpendicular distance between them)

- Area of a parallelogram:
 - The perpendicular dropped on a side from its opposite vertex is known as the height and the side is known as the base.
 - Area of a parallelogram = Base × Height

Example:

Find the height of the parallelogram PQRS corresponding to the base RQ.

Solution:

Let the height corresponding to the base RQ be x cm. Area of the parallelogram PQRS = PQ × ST = 10 cm × 7.2 cm = 72 cm² Area of the parallelogram = RQ × x = 8 cm × x cm = 8x cm² $\Rightarrow x = 9$

Thus, the height of the parallelogram corresponding to the base RQ is 9 cm.

- Area of rhombus $=\frac{1}{2}$ (Product of its diagonals)
- Area of a polygon can be calculated by breaking the polygon into triangles or any types of a quadrilateral.

Example: Find the area of the given polygon, where ABCD is a trapezium.

Solution:

Area of ABCED = Area of trapezium ABCD + Area of \triangle CDE

= $12 \times 3 + 5 \times 3 + 12 \times 5 \times 4$ = 12 + 10= 22 cm^2

• Area of a circle = $\pi \times (\text{Radius})^2$

Example: What is the area of a circle whose circumference is 44 cm? $\left(\pi = \frac{22}{7}\right)$

Solution:

Circumference =
$$2\pi r = 44$$
 cm
 $\Rightarrow 2 \times \frac{22}{7} \times r = 44$ cm
 $\Rightarrow r = 44 \times \frac{7}{22 \times 2} = 7$ cm
 \therefore Area of the circle = $\pi r^2 = \frac{22}{7} \times 7 \times 7 = 154$ cm²

• Surface areas of cuboid:

Lateral surface area of the cuboid = 2h(l + b)

Total surface area of the cuboid = 2(lb + bh + hl)

Note: Length of the diagonal of a cuboid = $\sqrt{l^2 + b^2 + h^2}$

Example:

Find the edge of a cube whose surface area is 294 m².

Solution:

Let the edge of the given cube be a.

- \therefore Surface area of the cube = $6a^2$
- Given, $6a^2 = 294$
- $\Rightarrow a^2 = 49 \text{ m}^2$

 $\therefore a = \sqrt{49} \text{ m} = 7 \text{ m}$

• Surface areas of cube:

Lateral surface area of the cube = $4a^2$

Total surface area of the cube = $6a^2$

Note: Length of the diagonal of a cube = $\sqrt{a^2 + a^2 + a^2} = \sqrt{3a^2} = \sqrt{3a}$

• Surface areas of solid cylinder

• Curved surface area = $2\pi rh$, where *r* and *h* are the radius and height

• Total surface area = $2\pi r (r + h)$, where *r* and *h* are the radius and height

Example :

What is the curved surface area of a cylinder of radius 2 cm and height 14 cm?

Solution:

Curved surface area of cylinder = $2\pi rh$

$$= 2 \times \frac{22}{7} \times 2 \times 14 \text{ cm}^2$$
$$= 176 \text{ cm}^2$$

- Surface areas of hollow cylinder
 - Curved surface area = $2\pi h (r + R)$, where *r*, *R* and h are the inner radius, outer radius and height
 - Total surface area = CSA of outer cylinder + CSA of inner cylinder + $2 \times$ Area of base

= $2\pi (r + R) (h + R - r)$, where *r*, *R* and h are the inner radius, outer radius and height

• Space occupied by a solid shape is its volume while the maximum quantity of liquid that it can hold shows its capacity.

• When each of the length, breadth and height of a cube measures 1 cm, its volume is said to be 1 cubic centimeter. It is written as c.c. or cm^3 , which is the fundamental unit of volume. This cube is called the unit cube of side 1 cm.

Example:

By using the small cube in figure (a), find the volume of the solid in figure (b).

Figure (a)

Figure (b)

Solution:

Volume of smaller cube in figure (a) = 1 cm^3

It can be observed that the solid in figure (b) consists of 18 cubes like figure (a).

- : Volume of solid = (18×1) cm³ = 18 cm³
 - Volume of cube and cuboid

- Volume of cube = a^3 , where *a* is the side of the cube
- Volume of cuboid = $l \times b \times h$, where *l*, *b* and *h* are respectively the length, breadth and height of the cuboid.

Example:

What is the side of a cube of volume 512 cm^3 ?

Solution:

Volume of cube = 512 cm^3

$$\Rightarrow a^3 = 512 \text{ cm}^3$$
$$\Rightarrow a = \sqrt[3]{512} \text{ cm}^3$$
$$\Rightarrow a = 8 \text{ cm}$$

- Volume of the solid cylinder and hollow cylinder
 - Volume of solid cylinder = $\pi r^2 h$, where *r* and *h* are the radius and height of the solid cylinder

• Volume of the hollow cylinder = $\pi (R^2 - r^2) h$, where *r*, *R* and *h* are the inner radius, outer radius and height of hollow cylinder

Example:

Find the volume of the pillar of radius 70 cm and height 10 m.

Solution:

Radius of the pillar (r) = 70 cm = $\frac{70 \text{ m}}{100}$ = 0.7 m

Height of the pillar (h) = 10 m

Volume of the pillar $=\pi r^2 h$ $=\frac{22}{7} \times (0.7)^2 \times 10 \text{ m}^3$ $= 15.4 \text{ m}^3$