

ANSWERS

Multiple Choice Questions

- **1.** (d)
 - (ii) 20 moles of water = 20×18 g = 360 g of water, because mass of 1 mole of water is the same as its molar mass, i.e., 18 g.
 - (iv) 1.2044×10^{25} molecules of water contains

$$\frac{1.2044 \times 10^{25}}{N_{A}} \text{ number of moles, } N_{A} = 6.023 \times 10^{23}$$
$$\therefore \frac{1.2044 \times 10^{25}}{6.022 \times 10^{23}} = 20 \text{ moles}$$
$$20 \text{ moles of water} = 20 \times 18 \text{ g}$$
$$= 360 \text{ g of water.}$$

- **2.** (a) Inert gases exist in monoatomic form.
- **3.** (b)
- **4.** (d)
- **5.** (c)

Weight of a sample in gram = number of moles × molar mass (a) 0.2 moles of $C_{12}H_{22}O_{11} = 0.2 \times 342 = 68.4 \text{ g}$ (b) 2 moles of $CO_2 = 2\times44 = 88 \text{ g}$ (c) 2 moles of $CaCO_3 = 2\times100 = 200 \text{ g}$ (d) 10 moles of $H_2O = 10\times18 = 180 \text{ g}$

6. (d)

Number of atoms =
$$\frac{\text{Massof substance} \times \text{Number of atoms in the molecule}}{\text{Molar mass}} \times \text{N}_{\text{A}}$$

$$\therefore \quad \text{(a) 18 g of water} = \frac{18 \times 3}{18} \times N_{\text{A}} = 3 N_{\text{A}}$$

(b) 18 g of oxygen =
$$\frac{18 \times 2}{32} \times N_A = 1.12 N_A$$

(c) 18 g of CO₂ =
$$\frac{18 \times 3}{44} \times N_A = 1.23 N_A$$

(d) 18 g of CH₄ =
$$\frac{18 \times 5}{16} \times N_A = 5.63 N_A$$

7. (c)

1 g of H₂ =
$$\frac{1}{2} \times N_A = 0.5 N_A$$

= 0.5×6.022×10²³
= 3.011×10²³

8. (a)

Mass of one atom of oxygen = Atomic mass/ N_{A}

$$=\frac{16}{6.022\times10^{23}}g$$

9. (a)

Number of moles of sucrose
$$=\frac{Mass of substance}{Molar mass}$$

-

$$=\frac{3.42 \text{ g}}{342 \text{ g mol}^{-1}}=0.01 \text{ mol}$$

 $= 6.68 \times 10^{23}$

1 mol of sucrose ($C_{12} H_{22} O_{11}$) contains = 11× N_A atoms of oxygen 0.01 mol of sucrose ($C_{12} H_{22} O_{11}$) contains = 0.01 × 11 × N_A atoms of oxygen = 0.11× N_A atoms of oxygen

Number of moles of water =
$$\frac{18g}{18g \text{ mol}^{-1}} = 1 \text{ mol}$$

1 mol of water (H₂O) contains $1 \times N_A$ atom of oxygen Total number of oxygen atoms = Number of oxygen atoms from sucrose + Number of oxygen atoms from water = $0.11 N_A + 1.0 N_A = 1.11 N_A$ Number of oxygen atoms in solution = $1.11 \times Avogadro's$ number = $1.11 \times 6.022 \times 10^{23}$

10. (c)

Short Answer Questions

11. (b) BiPO₄—Both ions are trivalent Bismuth phosphate

12. (a) CuBr₂

- (b) $Al(NO_3)_3$
- (c) $Ca_{3}(PO_{4})_{2}$
- (d) Fe_2S_3
- (e) HgCl₂
- (f) $Mg(CH_3COO)_2$

13.	$CuCl_2 / CuSO_4 / Cu_3 (PO_4)_2$
	$NaCl/Na_2SO_4/Na_3PO_4$
	FeCl ₂ /Fe ⁻ ₀ (SO ₂) ₂ /FePO ₂

14.	Anions	Cations		
	(a) CH ₃ COO ⁻	Na ⁺		
	(b) Cl-	Na ⁺		
	(c) It is a covalent	is a covalent compound		
	(d) NO $\frac{1}{3}$	NH_{4}^{+}		

- **15.** (a) CaF_{2} (e) $Na_{2}O$ (b) $H_{2}S$ (f) CO, CO_{2}
 - (c) NH₃
 - (d) CCl₄
- **16.** (a) Incorrect, the correct symbol of cobalt is Co
 - (b) Incorrect, the correct symbol of carbon is C
 - (c) Incorrect, the correct symbol of aluminium is Al
 - (d) Correct (He)
 - (e) Incorrect, the correct symbol of sodium is Na

(d) AlF₃ (e) Mg S **17.** (a) NH₃ (b) CO (c) HCI $N: H \times 3$ C:OH:ClAl : $F \times 3$ Mg:S $14:1 \times 3$ 12:1627:19×3 1:35.524:329:19 3:414:33:42:71**18.** (a) 4 5 (b)(c) 7 (d) 2

19. ~ 8/18

Mass of one mole (Avogadro Number) of neutrons ~ 1 g

Mass of one neutron = $\frac{1}{\text{Avogadro Number (N_A)}} g$ Mass of one molecule of water = $\frac{\text{Molar mass}}{N_A} = \frac{18}{N_A} g$ There are 8 neutrons in one atom of oxygen Mass of 8 neutrons = $\frac{8}{N_A}$

Fraction of mass of water due to neutrons ~ $\frac{8}{18}$

Answers

- **20**. Yes, it is a temperature dependent property. The solubility generally, increases with increase in temperature. For example, you can dissolve more sugar in hot water than in cold water.
- **21**. (a) 2 (b) 3 (c) 3 (d) 8 (e) 4 (f) 4 (g) 14 (h) 3 (i) 2 (j) 5
 - (k) 1 (Noble gases do not combine and exist as monoatomic gases)
 - (l) Polyatomic. It is difficult to talk about the atomicity of metals as any measurable quantity will contain millions of atoms bound by metallic bond (about which you would learn later).
- **22.** On heating the powder, it will char if it is a sugar.

Alternatively, the powder may be dissolved in water and checked for its conduction of electricity. If it conducts, it is a salt.

23. Number of moles $=\frac{12}{24}=0.5$ mol

Long Answer Questions

24.	(a)	CO_2 has mola	ır ma	ass	= 44g	mol ⁻¹
		5 moles of CO ₂ have molar mass			= 44 ×	5
						g
		H ₂ O has mola	ar ma	ass	= 18 g	g mol ⁻¹
		5 moles of H_2O have mass			= 18 ×	5 g
					= 90 g	5
	(b)	Number of m	oles	in 240g Ca meta	$1 = \frac{24}{40}$	$\frac{0}{0} = 6$
		Number of m	oles	in 240g of Mg m	$etal = \frac{2}{3}$	$\frac{240}{2} = 10$
		Datio 6:10				24
		Rauo 6:10				
		3: 5				
25 .	(a) Ca	co	(b)	MgCl ₂	(c)	H_2SO_4
	Ca	: C:O × 3		$Mg: Cl \times 2$		$H \times 2: S: O \times 4$
	40	: 12 : 16×3		$24:35.5 \times 2$		1×2 : $32 : 16 \times 4$
	40	: 12:48		24:71		2:32:64
	10	: 3: 12				1:16:32
	(d) C ₂ I	H ₅ OH	(e)	NH ₃	(f)	Ca (OH) $_2$
	C ×	2 : H × 6: O		$N: H \times 3$		Ca: $O \times 2 : H \times 2$
	12 3	× 2 : 1 × 6: 16		14: 1 × 3		$40:16 \times 2:1 \times 2$
	24	: 6 : 16		14:3		40:32:2
	12	: 3 : 8				20:16:1

26. 1 mole of calcium chloride = 111g

: 222g of CaCl, is equivalent to 2 moles of CaCl, Since 1 formula unit CaCl, gives 3 ions, therefore, 1 mol of CaCl, will give 3 moles of ions 2 moles of $CaCl_2$ would give $3\times 2=6$ moles of ions. No. of ions = No. of moles of ions × Avogadro number $= 6 \times 6.022 \times 10^{23}$ = 36.132 ×10²³ $= 3.6 \ 132 \ \times 10^{24}$ ions A sodium atom and ion, differ by one electron. For 100 moles each of 27. sodium atoms and ions there would be a difference of 100 moles of electrons. Mass of 100 moles of electrons = 5.48002 g

Mass of 1 mole of electron
$$= \frac{5.48002}{100}$$
 g

Mass of one electron = $\frac{5.48002}{100 \times 6.022 \times 10^{23}}$ = 9.1×10⁻²⁸g = 9.1×10⁻³¹ kg

- **28.** Molar mass of HgS = $200.6 + 32 = 232.6 \text{ g mol}^{-1}$ Mass of Hg in 232.6 g of HgS = 200.6 g $=\frac{200.6}{232.6}$ × 225 = 194.04g Mass of Hg in 225 g of HgS
- **29.** One mole of screws weigh = 2.475×10^{24} g = 2.475×10²¹ kg

$$\frac{\text{Mass of the Earth}}{\text{Mass of 1 mole of screws}} = \frac{5.98 \times 10^{24} \text{ kg}}{2.475 \times 10^{21} \text{ kg}} = 2.4 \times 10^{3}$$

Mass of earth is 2.4×10^3 times the mass of screws The earth is 2400 times heavier than one mole of screws.

30. 1 mole of oxygen atoms = 6.023×10^{23} atoms

:.Number of moles of oxygen atoms = $\frac{2.58 \times 10^{24}}{6.022 \times 10^{23}}$ = 4.28 mol

4.28 moles of oxygen atoms.

- **31.** (a) Mass of sodium atoms carried by Krish = (5×23) g = 115 g While mass of carbon atom carried by Raunak = (5×12) g = 60g Thus, Krish's container is heavy
 - (b) Both the bags have same number of atoms as they have same number of moles of atoms

32.

Species	H_2O	CO ₂	Na atom	MgCl ₂
Property				
No. of moles	2	0.5	5	0.5
No of particles Mass	1.2044 ×10 ²⁴ 36g	3.011×10 ²³ 22g	3.011×10 ²⁴ 115g	3.011×10 ²³ 47.5g

33. Number of moles of stars =
$$\frac{10^{22}}{6.023 \times 10^{23}}$$

= 0.0166 mols

34 .	(a) kilo	(b) deci	(c) centi	(d) micro	(e) nano	(f) pico
35 .	(a) 5.84	×10 ⁻⁹ kg				

- (b) 5.834 ×10⁻² kg
 (c) 5.84 ×10⁻⁴ kg
 (d) 5.873 ×10⁻²⁴ kg
- 36. A Mg²⁺ ion and Mg atom differ by two electrons. 10³ moles of Mg²⁺ and Mg atoms would differ by 10³ × 2 moles of electrons Mass of 2 ×10³ moles of electrons = 2×10³ × 6.023 ×10²³ × 9.1 ×10⁻³¹ kg ⇒ 2×6.022 × 9.1×10⁻⁵kg ⇒ 109.6004 ×10⁻⁵ kg ⇒ 1.096 × 10⁻³kg
 37. (i) 100 g of N₂ = 100/28 moles

Number of molecules = $\frac{100}{28} \times 6.022 \times 10^{23}$

Number of atoms = $\frac{2 \times 100}{28} \times 6.022 \times 10^{23} = 43.01 \times 10^{23}$

(ii) 100 g of $NH_3 = \frac{100}{17}$ moles = $\frac{100}{17} \times 6.022 \times 10^{23}$ molecules

$$=\frac{100}{17} \times 6.022 \times 10^{23} \times 4 \text{ atoms}$$

= 141.69 ×10²³

 $\mathrm{NH}_{\!_3}$ would have more atoms

38. $5.85 \text{ g of NaCl} = \frac{5.85}{58.5} = 0.1 \text{ moles}$ or 0.1 moles of NaCl particle Each NaCl particle is equivalent to one Na⁺ one Cl- $\Rightarrow 2 \text{ ions}$ Total moles of $\text{ ions} = 0.1 \times 2$ 0.2 molesNo. of ions= $0.2 \times 6.022 \times 10^{23}$ $\Rightarrow 1.2042 \times 10^{23} \text{ ions}$ **39.** One gram of gold sample will contain $\frac{90}{100} = 0.9 \text{ g of gold}$ Number of moles of gold $= \frac{\text{Mass of gold}}{\text{Atomic mass of gold}}$ $= \frac{0.9}{197} = 0.0046$

One mole of gold contains N_A atoms = 6.022×10^{23} $\therefore 0.0046$ mole of gold will contain = $0.0046 \times 6.022 \times 10^{23}$ = 2.77×10^{21}

- **40.** Atoms of different elements join together in definite proportions to form molecules of compounds. Examples— water, ammonia, carbondioxide. Compounds composed of metals and non-metals contain charged species. The charged species are known as ions. An ion is a charged particle and can be negatively or positively charged. A negatively charged ion is called an anion and the positively charged ion is called cation. Examples— sodium chloride, calcium oxide.
- **41.** Mass of 1 mole of aluminium atom = the molar mass of aluminium = 27 g mol^{-1}

An aluminium atom needs to lose three electrons to become an ion, Al^{3+} For one mole of $A1^{3+}$ ion, three moles of electrons are to be lost. The mass of three moles of electrons = $3 \times (9.1 \times 10^{-28}) \times 6.022 \times 10^{23}$ g

 $= 27.3 \times 6.022 \times 10^{-5} g$ = 164.400 ×10⁻⁵ g = 0.00164 g = 0.00164 g mol⁻¹ = 26.9984 g mol⁻¹ Difference = 27 - 26.9984 = 0.0016 g **42.** Mass of silver = m g

Mass of gold = $\frac{m}{100}$ g

Number of atoms of silver =
$$\frac{Mass}{Atomic mass} \times N_A$$

$$= \frac{\mathrm{III}}{108} \times \mathrm{N}_{\mathrm{A}}$$

Number of atoms of gold = $\frac{\text{m}}{100 \times 197} \times \text{N}_{\text{A}}$

Ratio of number of atoms of gold to silver = Au : Ag

$$= \frac{m}{100 \times 197} \times N_{A} : \frac{m}{108} \times N_{A}$$

= 108 : 100×197
= 108 : 19700
= 1 : 182.41

43. Mass of 1 molecule of
$$CH_4 = \frac{16g}{N_A}$$

Mass of 1.5 ×10²⁰ molecules of methane = $\frac{1.5 \times 10^{20} \times 16}{N_A}$ g

Mass of 1 molecule of $C_2H_6 = \frac{30}{N_A}g$

Mass of molecules of
$$C_2H_6$$
 is = $\frac{1.5 \times 10^{20} \times 16}{N_A}g$

:. Number of molecules of ethane = $\frac{1.5 \times 10^{20} \times 16}{N_A} \times \frac{N_A}{30} = 0.8 \times 10^{20}$

- 44. (a) Law of conservation of mass
 - (b) Polyatomic ion
 - (c) (3 \times atomic mass of Ca) + (2 \times atomic mass of phosphorus) + (8 \times atomic mass of oxygen) = 310
 - (d) $\operatorname{Na}_2 \operatorname{CO}_3$; $(\operatorname{NH}_4)_2 \operatorname{SO}_4$

- (b) Six : Helium (He); Neon (Ne); Argon (Ar); Krypton (Kr); Xenon (Xe); Radon (Rn).
- **47.** (a) KOH

```
(39 + 16 + 1) = 56 \text{ g mol}^{-1}
```

- (b) NaHCO₃
 - $23 + 1 + 12 + (3 \times 16) = 84 \text{ g mol}^{-1}$
- (c) CaCO₃
 - $40 + 12 + (3 \times 16) = 100 \text{ g mol}^{-1}$
- (d) NaOH
 - $23+16+1 = 40 \text{ g mol}^{-1}$

Answers

(e)
$$C_2H_3OH = C_2H_8O$$

 $2 \times 12 + (6 \times 1) + 16 = 46 \text{ g mol}^1$
(f) NaCl
 $23 + 35.5 = 58.5 \text{ g mol}^1$
48. $6CO_2 + 6H_2O - \frac{\text{Chlorophyll}}{\text{Sunlight}} C_8H_{12}O_8 + 6O_2$
I mole of glucose needs (6×18) g of water
1 g of glucose will need $\frac{108}{180}$ g of water.
18 g of glucose would need $\frac{108}{180} \times 18$ g of water = 10.8 g
Volume of water used $= \frac{\text{Mass}}{\text{Density}} = \frac{10.8 \text{ g}}{1 \text{ g cm}^3} = 10.8 \text{ cm}^3$.

Exemplar Problems