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Chapter 6

TANGENTIAL AND NORMAL
ACCELERATIONS: UNIPLANAR
CONSTRAINED MOTION

87. In the present chapter will be considered questions which chiefly
involve motions where the particle is constrained to move in defi-
nite curves. In these cases the accelerations are often best measured
along the tangent and normal to the curve. We must therefore first
determine the tangential and normal accelerations in the case of any
plane curve.

88. To show that the accelerations along the tangent and normal

to the path of a particle are
d2s
dt2

(
= v

dv
ds

)
and

v2

ρ
, where ρ is the

radius of curvature of the curve at the point considered.
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Let v be the velocity at time t along the tangent at any point P,
whose arcual distance from a fixed point C on the path is s, and let
v +4v be the velocity at time t +4t along the tangent at Q, where
PQ =4s.

Let φ and φ +4φ be the angles that the tangents at P and Q make
with a fixed line Ox, so that 4φ is the angle between the tangents at
P and Q.

Then, by definition, the acceleration along the tangent at P

= lim
4t=0

[
Velocity along the tangent at time (t +4t)

− the same at time t

]

4t

= lim
4t=0

(v+4v)cos4φ − v
4t

= lim
4t=0

v+4v− v
4t

,on neglecting small quantities of the second order,

=
dv
dt

=
d2s
dt2

Also
dv
dt

=
dv
ds

ds
dt

= v
dv
ds

.

Again the acceleration along the normal at P

= lim
4t=0

[
Velocity along the normal at time (t +4t)

− the same at time t

]

4t
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= lim
4t=0

(v+4v)sin4φ
4t

= lim
4t=0

(v+4v).
sin4φ
4φ

.
4φ
4s

.
4s
4t

= v.1.
1
ρ

.v =
v2

ρ
.

COR. In the case of a circle we have ρ = a,s = aθ ,v = a
.

θ and the
accelerations are a

..
θ and

.
θ 2.

89. The tangential and normal accelerations may also be directly
obtained from the accelerations parallel to the axes.

For
dx
dt

=
dx
ds

.
ds
dt

.

∴ d2x
dt2 =

d2x
ds2

(
ds
dt

)2

+
dx
ds

d2s
dt2 .

So
d2y
dt2 =

d2y
ds2

(
ds
dt

)2

+
dy
ds

d2s
dt2 .

But, by Differential Calculus,

1
ρ

=
−d2x

ds2

dy
ds

=

d2y
ds2

dx
ds

∴ d2x
dt2 =−dy

ds
.
1
ρ

.

(
ds
dt

)2

+
dx
ds

.
d2s
dt2 =−sinφ

ρ
v2 +

d2s
dt

.cosφ ,

and
d2y
dt2 =

dx
ds

.
1
ρ

.

(
ds
dt

)2

+
dy
ds

.
d2s
dt2 =

cosφ
ρ

.v2 +
d2s
dt2 sinφ .

Therefore the acceleration along the tangent

=
d2x
dt2 cosφ +

d2y
dt2 sinφ =

d2s
dt2 =

dv
dt

=
dv
ds

ds
dt

= v
dv
ds

,
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and the acceleration along the normal

=−d2x
dt2 sinφ +

d2y
dt2 cosφ =

v2

ρ
.

90. EX. A curve is described by a particle having a constant accel-
eration in a direction inclined at a constant angle to the tangent;
show that the curve is an equiangular spiral.

Here
vdv
ds

= f cosα and
v2

ρ
= f sinα , where f and α are constants,

∴ 2 f cosαs+ const. = v2 = f sinα.ρ = f sinα
ds
dψ

.

∴ 1
2

ds
dψ

= scot α +A, where A is constant.

∴ log(scotα +A) = 2ψ cotα + const.

∴ s =−A tanα +Be2ψ cotα ,

which is the intrinsic equation of an equiangular spiral.

EXAMPLES

1. Find the intrinsic equation to a curve such that, when a point moves
on it with constant tangential acceleration, the magnitudes of the
tangential velocity and the normal acceleration are in a constant
ratio.

2. A point moves along the arc of a cycloid in such a manner that the
tangent at it rotates with constant angular velocity; show that the
acceleration of the moving point is constant in magnitude.

3. A point moves in a curve so that its tangential and normal accel-
erations are equal and the tangent rotates with constant angular
velocity; find the path.
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4. If the relation between the velocity of a particle and the arc it has

described be 2as = log
b+ac2

b+av2 , find the tangential force acting on
the particle and the time that must elapse from the beginning of
the motion till the velocity has the value V .

5. Show that a cycloid can be a free path for a particle acted on at
each point by a constant force parallel to the corresponding radius
of the generating circle, this circle being placed at the vertex.

6. A heavy particle lying in limiting equilibrium on a rough plane,
inclined at an angle α to the horizontal, is projected with velocity
V horizontally along the plane; show that the limiting velocity is
1
2

V and find the intrinsic equation to the path.
7. A circle rolls on a straight line, the velocity of its centre at any in-

stant being v and its acceleration f ; find the tangential and normal
accelerations of a point on the edge of the circle whose angular
distance from the point of contact is θ .

91. A particle is compelled to move on a given smooth plane curve
under the action of given forces in the plane; to find the motion.

Let P be a point of the curve whose actual distance from a fixed
point C is s, and let v be the velocity at P.

C XP

Q

T

R

O

f

Y

y

x
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Let X , Y be the components parallel to two rectangular axes Ox,Oy
of the forces acting on the particle when at P; since the curve is
smooth the only reaction will be a force R along the normal at P.

Resolving along the tangent and normal, we have

m
vdv
ds

= force along T P = X cosφ +Y sinφ = X
dx
ds

+Y
dy
ds

...(1),

and m.
v2

ρ
=−X sinφ +Y cosφ +R =−X

dy
ds

+Y
dx
ds

+R ...(2),

When v is known, equation (2) gives R at any point.
Equation (1) gives

1
2

mv2 =
∫

(Xdx+Y dy) ...(3).

Suppose that Xdx +Y dy is the complete differential of some func-
tion φ(x,y), so that

X =
dφ
dx

and Y =
dφ
dy

.

Then
1
2

mv2 =
∫ (

dφ
dx

dx+
dφ
dy

dy
)

= φ(x,y)+C ...(4).

Suppose that the particle started with a velocity V from a point

whose coordinates are x0,y0. Then
1
2

mV 2 = φ(x0,y0)+C.

Hence, by subtraction,
1
2

mv2− 1
2

mV 2 = φ(x,y)−φ(x0,y0) ...(5).
This result is quite independent of the path pursued between the

initial point and P, and would therefore be the same whatever be the
form of the restraining curve.
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From the definition of Work it is clear that Xdx +Y dy represents
the work done by the forces X ,Y during a small displacement ds
along the curve. Hence the right-hand side of (3) or of (4) represents
the total work done on the particle by the external forces, during
its motion from the point of projection to P, added to an arbitrary
constant.

Hence, when the components of the forces are equal to the differ-
entials with respect to x and y of some function φ(x,y), it follows
from (5) that
The change in the Kinetic Energy of the particle = the Work done by
the External Forces.

Forces of this kind are called Conservative Forces.
The quantity φ(x,y) is known as the Work-Function of the system

of forces. From the ordinary definition of a Potential Function, it
is clear that φ(x,y) is equal to the Potential of the given system of
forces added to some constant.

If the motion be in three dimensions we have, similarly, that the

forces are Conservative when
∫

(Xdx+Y dy+Zdz) is a perfect dif-
ferential, and an equation similar to (5) will also be true. [See Art.
131.]

92. The Potential Energy of the particle, due to the given system of
forces, when it is in the position P = the work done by the forces as
the particle moves to some standard position.

Let the latter position be the point (x1,y1). Then the potential en-
ergy of the particle at P
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=
∫ (x1,y1)

(x,y)
(Xdx+Y dy) =

∫ (x1,y1)

(x,y)

(
dφ
dx

dx+
dφ
dy

dy
)

= [φ(x,y)](x1,y1)
(x,y) = φ(x1,y1)−φ(x,y).

Hence, from equation (4) of the last article,
(Kinetic Energy + Potential Energy) of the particle when at P

= φ(x,y)+C +φ(x1,y1)−φ(x,y) = C +φ(x,y1) = a constant.

Hence, when a particle moves under the action of a Conservative
System of Forces, the sum of its Kinetic and Potential Energies is
constant throughout the motion.

93. In the particular case when gravity is the only force acting we
have, if the axis of y be vertical, X = 0 and Y =−mg.

Equation (3) then gives
1
2

mv2 =−mgy+C
Hence, if Q be a point of the path, this gives kinetic energy at P -

kinetic energy at Q
= mgx× difference of the ordinates at P and Q
= the work done by gravity as the particle passes from Q to P.

This result is important; from it, given the kinetic energy at any
known point of the curve, we have the kinetic energy at any other
point of the path, if the curve be smooth.

94. If the only forces acting on a particle be perpendicular to its di-
rection of motion (as in the case of a particle tethered by an inexten-
sible string, or moving on a smooth surface) its velocity is constant;
for the work done by the string or reaction is zero.

95. All forces which are one-valued functions of distances from fixed
points are Conservative Forces.
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Let a force acting on a particle at the point (x,y) be a function ψ(r)
of the distance r from a fixed point (a,b) so that

r2 = (x−a)2 +(y−b)2.

Also let the force act towards the point (a,b).

Then r
dr
dx

= (x−a), and r
dr
dy

= y−b.

The component X of this force parallel to the axis of x

=−ψ(r)× x−a
r

,

if the force be an attraction, and the component Y parallel to y

=−ψ(r)× y−b
r

.

Hence

Xdx+Y dy =−ψ(r)× (x−a)dx+(y−b)dy
r

=−ψ(r)
rdr
r

=−ψ(r)dr.

Hence, if F(r) be such that
d
dr

F(r) =−ψ(r) ...(1),

we have
∫

(Xdx+Y dy) =
∫ d

dr
F(r)dr = F(r)+ const.

Such a force therefore satisfies the condition of being a Conserva-
tive Force.

If the force be a central one and follow the law of the inverse
square, so that ψ(r) =

µ
r2 , then F(r) = −

∫
ψ(r)dr =

µ
r

and hence
∫

(Xdx+Y dy) =
µ
r

+ constant.
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96. The work done in stretching an elastic string is equal to the ex-
tension produced multiplied by the mean of the initial and final ten-
sions.

Let a be the unstretched length of the string, and λ its modulus of
elasticity, so that, when its length is x, its tension

= λ .
x−a

a
, by Hooke’s law.

The work done in stretching it from a length b to a length c

=
∫ c

b
T.dx =

∫ c

b
λ

x−a
a

dx =
λ
2a

[
(x−a)2]c

b =
λ
2a

[(c−a)2− (b−a)2]

= (c−b)
[

λ
b−a

a
+λ

c−a
a

]
× 1

2

= (c−b)× mean of the initial and final tensions.

EX. A and B are two points in the same horizontal plane at a dis-
tance 2a apart; AB is an elastic string whose unstretched length is
2a. To O, the middle point of AB, is attached a particle of mass m
which is allowed to fall under gravity; find its velocity when it has
fallen a distance x and the greatest vertical distance through which
it moves.

When the particle is at P, where OP = x, let its velocity be v,

so that its kinetic energy then is
1
2

mv2.

The work done by gravity = mg.x.
The work done against the tension of the string

= 2× (BP−BO)× 1
2

λ
BP−BO

a
=

λ
a
(BP−a)2 =

λ
a

[√
x2 +a2−a

]2
.

Hence, by the Principle of Energy,
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1
2

mv2 = mgx− λ
a

[√
x2 +a2−a

]2
.

The particle comes to rest when v = 0, and then x is given by the
equation

mgxa = λ
[√

x2 +a2−a
]2

.

EXAMPLES

1. If an elastic string, whose natural length is that of a uniform rod,
be attached to the rod at both ends and suspended by the middle
point, show by means of the Principle of Energy, that the rod will
sink until the strings are inclined to the horizon at an angle θ given
by the equation

cot3
θ
2
− cot

θ
2

= 2n,

given that the modulus of elasticity of the string is n times the
weight of the rod.

2. A heavy ring, of mass m, slides on a smooth vertical rod and is
attached to a light string which passes over a small pulley distant
a from the rod and has a mass M(> m) fastened to its other end.
Show that, if the ring be dropped from a point in the rod in the same

horizontal plane as the pulley, it will descend a distance
2Mma

M2−m2
before coming to rest. Find the velocity of m when it has fallen
through any distance x.

3. A shell of mass M is moving with velocity V . An internal explo-
sion generates an amount of energy E and breaks the shell into
two portions whose masses are in the ratio m1 : m2. The fragments
continue to move in the original line of motion of the shell. Show
that their velocities are
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V +
√

2m2E
m1M

and V −
√

2m1E
m2M

.

4. An endless elastic string, of natural length 2πa, lies on a smooth
horizontal table in a circle of radius a. The string is suddenly set
in motion about its centre with angular velocity ω . Show that if
left to itself the string will expand and that, when its radius is r, its

angular velocity is
a2

r2 ω, and the square of its radial velocity from

the centre is
a2ω2

r2 (r2− a2)− 2πλ (r−a)2

ma
, where m is the mass

and λ the modulus of elasticity of the string.
5. Four equal particles are connected by strings, which form the

sides of a square, and repel one another with a force equal to
µ × distance; if one string be cut, show that, when either string
makes an angle θ with its original position, its angular velocity is

√
4µ sinθ(2+ sinθ)

2− sin2 θ
.

[As in Art 47 the centre of mass of the whole system remains at
rest; also the repulsion, by the well-known property, on each parti-
cle is the same as if the whole of the four particles were collected
at the centre and = 4µ × distance from the fixed centre of mass.
Equate the total kinetic energy to the total work done by the repul-
sion.]

6. A uniform string, of mass M and length 2a, is placed symmet-
rically over a smooth peg and has particles of masses m and m′

attached to its extremities; show that when the string runs off the
peg its velocity is
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√
M +2(m−m′)

M +m+m′ ag.

7. A heavy uniform chain, of length 2l, hangs over a small smooth
fixed pulley, the length l +c being at one side and l−c at the other;
if the end of the shorter portion be held, and then let go, show that
the chain will slip off the pulley in time

(
l
g

)1/2

log
l +
√

l2− c2

c
.

8. A uniform chain, of length l and weight W , is placed on a line of
greatest slope of a smooth plane, whose inclination to the horizon-
tal is α , and just reaches the bottom of the plane where there is
a small smooth pulley over which it can run. Show that, when a
length x has run off the tension at the bottom of the plane is

W (1− sinα)
x(l− x)

l2 .

9. Over a small smooth pulley is placed a uniform flexible cord; the
latter is initially at rest and lengths l−a and l+a hang down on the
two sides. The pulley is now made to move with constant vertical
acceleration f . Show that the string will leave the pulley after a
time √

l
f +g

cosh−1 l
a
.

97. Oscillations of a Simple Pendulum.
A particle m is attached by a light string, of length l, to a fixed

point and oscillates under gravity through a small angle; to find the
period of its motion.
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When the string makes an angle θ with the vertical, the equation
of motion is

m
d2s
dt2 =−mgsinθ ...(1).

But s = lθ .

∴
..
θ =−g

l
sinθ =−g

l
θ , to a, first approximation.

A’

O

A

P

T

q

If the pendulum swings through a small angle α on each side of
the vertical, so that θ = α and

.
θ = 0 when t = 0, this equation gives

θ = α cos
[√

g
l
t
]
, so that the motion is simple harmonic and the

time, T1, of a very small oscillation = 2π
√

l
g
, as in Art. 22.

For a higher approximation we have, from equation (1),

l
.

θ
2
= 2g(cosθ − cosα) ...(2),

since
.

θ is zero when θ = α.
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[This equation follows at once from the Principle of Energy.]

∴
√

2g
l

.t =
∫ a

0

dθ√
cosθ − cosα

, where t is the time of a quarter-

swing.

∴ 2
√

g
l
.t =

∫ a

0

dθ√
sin2 α

2
− sin2 θ

2

.

Put sin
θ
2

= sin
α
2

.sinφ . ∴ 2
√

g
l
.t =

∫ π/2

0

2sin
α
2

cosφdφ

cos
θ
2
.sin

α
2

cosφ

∴ t =

√
l
g
.
∫ π/2

0

dφ
(

1− sin2 α
2

sin2 φ
)1/2 ...(3)

=

√
l
g

∫ π/2

0

[
1+

1
2

sin2 α
2

.sin2 φ +
1.

2.

3
4

sin4 α
2

sin4 φ + · · ·
]

dφ

=

√
l
g
.
π
2

[
1+

1
22 sin2 α

2
+

(
1.

2.

3
4

)2

sin4 α
2

+
(1.3.5

2.4.6

)2
sin6 α

2 + · · ·
]

...(4)
Hence a second approximation to the required period, T2,

= T1

[
1+

1
4
.sin2 α

2

]
= T1

[
1+

a2

16

]
,

if powers of a higher than the second are neglected.
Even if α be not very small, the second term in the bracket of (4) is

usually a sufficient approximation. For example, suppose α = 30o,
so that the pendulum swings through an angle of 60o; then sin2 α

2
=

sin2 15o = .067, and (4) gives
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t =
π
2

√
l
g
[1+ .017+ .00063+ ...].

[The student who is acquainted with Elliptic Functions will see that
(3) gives

sinφ = sin
(

t
√

g
l

)
,
(

mod. sin
α
2

)
,

so that sin
θ
2

= sin
a
2

sin
(

t
√

g
l

)
,
(

mod. sin
α
2

)
.

The time of a complete oscillation is also, by (3), equal to
√

l
g

multiplied by the real period of the elliptic function with modulus
sin

α
2

. ]

98. The equations (1) and (2) of the previous article give the motion
in a circle in any case, when α is not necessarily small. If ω be
the angular velocity of the particle when passing through the lowest
point A, we have

l
.

θ 2 = 2gcosθ + const. = lω2−2g(1− cosθ) ...(5).

This equation cannot in general be integrated without the use of
Elliptic Functions, which are beyond the scope of this book.

If T be the tension of the string, we have

T −mgcosθ = force along the normal PO
= ml

.
θ 2 = mlω2−2mg(1− cosθ),

∴ T = m{lω2−g(2−3cosθ)} ...(6).

Hence T vanishes and becomes negative, and hence circular mo-
tion ceases, when
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cosθ =
2g− lω2

3g
.

Particular Case. Let the angular velocity at A be that due to a fall
from the highest point A′, so that

l2ω2 = 2g.2l, i.e. ω2 =
4g
l

.

Then (5) gives
.

θ 2 =
2g
l

(1+ cosθ)

∴ t

√
2g
l

=
∫ dθ√

1+ cosθ
=

1√
2

∫ dθ

cos
θ
2

.

∴ t =
1
2

√
l
g

[
2logtan

(
π
4

+
θ
4

)]θ

0
=

√
l
g

log
cos

θ
4

+ sin
θ
4

cos
θ
4
− sin

θ
4

=
√

l
g

log
1+ sin

θ
2

cos
θ
2

=

√
l
g

log
[

sec
θ
2

+ tan
θ
2

]
,

giving the time t of describing an angle θ from the lowest point.

Also in this case T = m{4g−2g+3gcosθ}= mg[2+3cosθ ].

Circular motion therefore ceases when cosθ = −2
3

, and then

sec
θ
2

=
√

6 and tan
θ
2

=
√

5. Therefore the time during which is

circular motion lasts =

√
l
g

loge(
√

5+
√

6).

99. EX. 1. Show that a pendulum, which beats seconds when it
swings through 3o on each side of the vertical, will lose about 12



154 Chapter 6: Tangential and Normal Accelerations: Uniplanar Constrained Motion

secs. per day if the angle be 4o and about 27 secs. per day if the
angle be 5o.

EX. 2. A heavy bead slides on a smooth fixed vertical circular
wire of radius a; if it be projected from the lowest point with ve-
locity just sufficient to carry it to the highest point, show that the
radius to the bead is at time t inclined to the vertical at an angle

2 tan−1
[

sinh
√

g
a

t
]
, and that the bead will be an infinite time in ar-

riving at the highest point.

100. Motion on a smooth cycloid whose axis is vertical and vertex
lowest.

Let AQD be the generating circle of the cycloid CPAC′, P being any
point on it; let PT be the tangent at P and PQN perpendicular to the
axis meeting the generating circle in Q. The two principal properties
of the cycloid are that the tangent T P is parallel to AQ, and that the
arc AP is equal to twice the line AQ.

A T

C
G

D

Q
N

R

P

q

'A

mg

x

'C

'P

q
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Hence, if PT x be θ , we have θ = ∠QAx = ADQ, and
s = arc AP = 2.AQ = 4asinθ ...(1),
if a be the radius of the generating circle.
If R be the reaction of the curve along the normal, and m the parti-

cle at P, the equations of motion are then

m
d2s
dt2 = force along PT =−mgsinθ ...(2),

and m.
v2

ρ
= force along the normal = R−mgcosθ . ...(3).

From (1) and (2), we then have

d2s
dt2 =− g

4a
s ...(4),

so that the motion is simple harmonic, and hence, as in Art. 22, the
time to the lowest point

=

π
2√

g
4a

= π
√

a
g
,

and is therefore always the same whatever be the point of the curve
at which the particle started from rest.

Integrating equation (4), we have

v2 =
(

ds
dt

)2

=− g
4a

s2 +C =−g.4asin2 θ +C = 4ag(sin2 θ0− sin2 θ),

if the particle started from rest at the point where θ = θ0.

[This equation can be written down at once by the Principle of
Energy.]
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Also ρ =
ds
dθ

= 4acosθ .

Therefore (3) gives

R = mgcosθ +mg
sin2 θ0− sin2 θ

cosθ
= mg

cos2θ + sin2 θ0

cosθ
,

giving the reaction of the curve at any point of the path.
On passing the lowest point the particle ascends the other side until

it is at the height from which it started, and thus it oscillates back-
wards and forwards.

101. The property proved in the previous article will be still true
if, instead of the material curve, we substitute a string tied to the
particle in such a way that the particle describes a cycloid and the
string is always normal to the curve. This will be the case if the
string unwraps and wraps itself on the evolute of the cycloid. It can
be easily shown that the evolute of a cycloid is two halves of an equal
cycloid.

For, since ρ = 4acosθ , the points on the evolute corresponding to
A and C are A′, where AD = DA′, and C itself. Let the normal PG
meet this evolute in P′, and let the arc CP′ be σ . By the property of
the evolute

σ = arc P′C = P′P, the radius of curvature at P
= 4acosθ = 4asinP′GD.

Hence, by (1) of the last article, the curve is a similar cycloid whose
vertex is at C and whose axis is vertical. This holds for the arc CA.
The evolute for the arc C′A is the similar semi-cycloid C′A′.

Hence if a string, or flexible wire, of length equal to the arc
CA′, i.e. 4a, be attached at A′ and allowed to wind and unwind itself
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upon fixed metal cheeks in the form of the curve CA′C′, a particle
P attached to its other end will describe the cycloid CAC′, and the
string will always be normal to the curve CAC′; the times of oscil-
lation will therefore be always isochronous, whatever be the angle
through which the string oscillates. In actual practice, a pendulum is
only required to swing through a small angle, so that only small por-
tions of the two arcs near A′ are required. This arrangement is often
adopted in the case of the pendulum of a small clock, the upper end
of the supporting wire consisting of a thin flat spring which coils and
uncoils itself from the two metal cheeks at A′.

102. Motion on a rough curve under gravity.
Whatever be the curve described under gravity with friction, we

have, if φ be the angle measured from the horizontal made by the
tangent, and if s increases with φ .

RP

O

mg

f
Rm

v
dv
ds

= gsin−µR
m

...(1),

and
v2

ρ
= gcosφ − R

m
...(2).
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∴ 1
2

d.v2

ds
−µ

v2

ρ
= g(sinφ −µ cosφ).

∴ dv2

dφ
−2µv2 = 2gρ(sinφ −µ cosφ).

Multiplying by e−2µφ and integrating, we have

v2e−2µφ = 2g
∫

ρe−2µφ(sinφ −µ cosφ)dφ + Constant.

When the curve is given, so that ρ is known in terms of φ , this

gives v2 and hence
(

ds
dφ

)2 (
dφ
dt

)2

. Hence
dφ
dt

is known, and there-

fore theoretically t in terms of φ .

103. If the cycloid of Art 100 be rough with a coefficient of friction
µ , to find the motion, the particle sliding downwards.

In this case the friction, µR, acts in the direction T P produced.
Since s = 4asinθ , we have ρ = 4acosθ , and v = 4acosθ , so that
the equations of motion are

m
d
dt

(4acosθ .
.

θ) = µR−mgsinθ ...(1),

and mv2/ρ = m.4acosθ .
.

θ 2 = R−mgcosθ ...(2).

∴ d
dt

(
.

θ cosθ)−µ cosθ .
.

θ 2 =− g
4a

(sinθ −µ cosθ),

i.e.
d
dt

[
.

θ cosθe−µθ ] =− g
4a

(sinθ −µ cosθ)e−µθ ...(3).

Now
d
dt

[e−µθ (sinθ −µ cosθ)] = (1+ µ2)e−µθ cosθ .
.

θ .

Hence (3) gives

d2

dt2 [e−µθ(sinθ −µ cosθ)] =−(1+ µ2)
g
4a

[e−µθ sinθ −µ cosθ)].
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∴ e−µθ (sinθ −µ cosθ) = Acos

[√
g(1+ µ2)

4a
t +B

]
...(4),

where A and B are constant depending on the initial conditions.
Differentiating (4), we obtain

v2 = 16a2 cos2 θ .
.

θ 2 =
4ag

1+ µ2 [A2e2µθ − (sinθ −µ cosθ)2].

EXAMPLES

1. A particle slides down the smooth curve y = asinh
x
a
, the axis of x

being horizontal, starting from rest at the point where the tangent
is inclined at α to the horizon; show that it will leave the curve
when it has fallen through a vertical distance asecα.

2. A particle descends a smooth curve under the action of gravity,
describing equal vertical distances in equal times, and starting in a
vertical direction. Show that the curve is a semi-cubical parabola,
the tangent at the cusp of which is vertical.

3. A particle is projected with velocity V from the cusp of a smooth
inverted cycloid down the arc; show that the time of reaching the
vertex is

2
√

a
g

tan−1
[√

4ag
V

]
.

4. A particle slides down the arc of a smooth cycloid whose axis is
vertical and vertex lowest; prove that the time occupied in falling
down the first half of the vertical height is equal to the time of
falling down the second half.

5. A particle is placed very close to the vertex of a smooth cycloid
whose axis is vertical and vertex upwards, and is allowed to run
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down the curve. Show that it leaves the curve when it is moving in
a direction making with the horizontal an angle of 45o.

6. A ring is strung on a smooth closed wire which is in the shape
of two equal cycloids joined cusp to cusp, in the same plane and
symmetrically situated with respect to the line of cusps. The plane
of the wire is vertical, the line of cusps horizontal, and the ra-
dius of the generating circle is a. The ring starts from the highest
point with velocity v. Prove that the times from the upper vertex
to the cusp, and from the cusp to the lower vertex are respectively

2
√

a
g

sinh−1
(√

4ag
V

)
and 2

√
a
g

sin−1

√
4ag

v2 +8ag
.

7. A particle moves in a smooth tube in the form of a catenary, being
attracted to the directrix by a force proportional to the distance
from it. Show that the motion is simple harmonic.

8. A particle, of mass m, moves in a smooth circular tube, of radius
a, under the action of a force, equal to mµ × distance, to a point
inside the tube at a distance c from its centre; if the particle be
placed very nearly at its greatest distance from the centre of force,
show that it will describe the quadrant ending at its least distance

in time
√

a
µc

log(
√

2+1).

9. A bead is constrained to move on a smooth wire in the form of an
equiangular spiral. It is attracted to the pole of the spiral by a force,
= mµ× (distance)−2, and starts from rest at a distance b from the
pole. Show that, if the equation to the spiral be r = aeθ cotα , the

time of arriving at the pole is
π
2

√
b3

2µ
.secα. Find also the reaction

of the curve at any instant.
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10. A smooth parabolic tube is placed, vertex downwards, in a vertical
plane; a particle slides down the tube from rest under the influence
of gravity; prove that in any position the reaction of the tube is

2w
h+a

ρ
, where w is the weight of the particle, ρ the radius of

curvature, 4a the latus rectum, and h the original vertical height of
the particle above the vertex.

11. From the lowest point of a smooth hollow cylinder whose cross-
section is an ellipse, of major axis 2a and minor axis 2b, and whose
minor axis is vertical, a particle is projected from the lowest point
in a vertical plane perpendicular to the axis of the cylinder; show
that it will leave the cylinder if the velocity of projection lie be-

tween
√

2gb and

√
g

a2 +4b2

b
.

12. A small bead, of mass m, moves on a smooth circular wire, being
acted upon by a central attraction

mµ
(distance)2 to a point within the

circle situated at a distance b from its centre. Show that, in order
that the bead may move completely round the circle, its velocity
at the point of the wire nearest the centre of force must not be less

than
√

4µb
a2−b2 .

13. A small bead moves on a thin elliptic wire under a force to the

focus equal to
µ
r2 +

λ
r3 . It is projected from a point on the wire

distant R from the focus with the velocity which would cause it
to describe the ellipse freely under a force

µ
r2 . Show that the re-

action of the wire is
λ
ρ

[
1
r2 −

1
ar

+
1

R2

]
, where ρ is the radius of

curvature.
14. If a particle is made to describe a curve in the form of the four-

cusped hypocycloid x2/3 + y2/3 = a2/3 under the action of an at-
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traction perpendicular to the axis and varying as the cube root of
the distance from it, show that the time of descent from any point
to the axis of x is the same, i.e., that the curve is a Tautochrone for
this law of force.

15. A small bead moves on a smooth wire in the form of an epicy-
cloid, being acted upon by a force, varying as the distance, toward
the centre of the epicycloid; show that its oscillations are always
isochronous. Show that the same is true if the curve be a hypocy-
cloid and the force always from, instead of towards, the centre.

16. A curve in a vertical plane is such that the time of describing any
arc, measured from a fixed point O, is equal to the time of sliding
down the chord of the arc; show that the curve is a lemniscate of
Bernouilli, whose node is at O and whose axis is inclined at 45o to
the vertical.

17. A particle is projected along the inner surface of a rough sphere
and is acted on by no forces; show that it will return to the point of
projection at the end of time

a
µV

(e2µπ −1), where a is the radius

of the sphere, V is the velocity of projection and µ is the coefficient
of friction.

18. A bead slides down a rough circular wire, which is in a vertical
plane, starting from rest at the end of a horizontal diameter. When
it has described an angle θ about the centre, show that the square
of its angular velocity is

2g
a(1+4µ2)

[(1−2µ2)sinθ +3µ(cosθ − e−2µθ)],

where µ is the coefficient of friction and a the radius of the rod.
19. A particle falls from a position of limiting equilibrium near the top

of a nearly smooth glass sphere. Show that it will leave the sphere
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at the point whose radius is inclined to the vertical at an angle

α + µ
(

2− 4
3

α
sinα

)
,

where cosα =
2
3

, and µ is the small coefficient of friction.
20. A particle is projected horizontally from the lowest point of a

rough sphere of radius a. After describing an arc less than a quad-
rant it returns and comes to rest at the lowest point. Show that the
initial velocity must be

sinα

√
2ga

1+ µ2

1−2µ2 ,

where µ is the coefficient of friction and aα is the arc through
which the particle moves.

21. The base of a rough cycloidal arc is horizontal and its vertex down-
wards; a bead slides along it starting from rest at the cusp and
coming to rest at the vertex. Show that

µ2eµπ = 1.

22. A particle slides in a vertical plane down a rough cycloidal arc
whose axis is vertical and vertex downwards, starting from a point
where the tangent makes an angle θ with the horizon and coming
to rest at the vertex. Show that

µeµθ = sinθ −µ cosθ .

23. A rough cycloid has its plane vertical and the line joining its cusps
horizontal. A heavy particle slides down the curve from rest at a
cusp and comes to rest again at the point on the other side of the
vertex where the tangent is inclined at 45o to the vertical. Show
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that the coefficient of friction satisfies the equation

3µπ +4loge(1+ µ) = 2loge 2.

24. A bead moves along a rough curved wire which is such that it
changes its direction of motion with constant angular velocity.
Show that the wire is in the form of an equiangular spiral.

25. A particle is held at the lowest point of a catenary, whose axis is
vertical, and is attached to a string which lies along the catenary
but is free to unwind from it. If the particle be released, show that
the time that elapses before it is moving at an angle φ to the verti-
cal is

√
c

2g
log




1+
√

2sin
φ
2

1−√2sin
φ
2


 ,

and that its velocity then is 2
√

gcsin
φ
2
, where c is the parameter

of the catenary. Find also the tension of the string in terms of φ .

At time t, let the string PQ be inclined at an angle φ to the hor-
izontal, where P is the particle and Q the point where the string
touches the catenary. A being the lowest point, let

s = arc AQ = line PQ.

The velocity of P along QP = vel. of Q along the tangent + the vel.
of P relative to Q

= (− .
s)+

.
s = 0 ...(1)

The velocity of P perpendicular to QP similarly

= s.
.

φ ...(2).

The acceleration of P along QP (by Arts. 4 and 49)
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= acc. of Q along the tangent QP + the acc. of P relative to Q

=− ..
s+(

..
s−s

.
φ 2) =−s

.
φ 2 ...(3)

The acceleration of P perpendicular to QP

= acceleration of Q in this direction + acceleration of P relative to Q

=−
.
s2

ρ
+

1
s

d
dt

(s2
.

φ) =− .
s

.
φ +[s

..
φ +2

.
s

.
φ ] = s

..
φ +

.
s

.
φ ...(4).

These are the component velocities and accelerations for any
curve, whether a catenary or not.
The equation of energy gives for the catenary

1
2

m.(c tanφ
.

φ)2 = mg(c− ccosφ) ...(5).

Resolving along the line PQ, we have

mc tanφ
.

φ 2 = T −mgsinφ ...(6).

(5) and (6) give the results required.
26. A particle is attached to the end of a light string wrapped round

a vertical circular hoop and is initially at rest on the outside of
the hoop at its lowest point. When a length aθ of the string has
become unwound, show that the velocity v of the particle then
is

√
2ag(θ sinθ + cosθ −1), and that the tension of the string is(

3sinθ +
2cosθ

θ
− 2

θ

)
times the weight of the particle.

27. A particle is attached to the end of a fine thread which just winds
round the circumference of a circle from the centre of which acts
a repulsive force mµ(distance); show that the time of unwinding is
2π√µ

, and that the tension of the thread at any time t is 2µ3/2.a.t,

where a is the radius of the circle.
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28. A particle is suspended by a light string from the circumference of
a cylinder, of radius a, whose axis is horizontal, the string being
tangential to the cylinder and its unwound length being aβ . The
particle is projected horizontally in a plane perpendicular to the
axis of the cylinder so as to pass cylinder it; show that the least
velocity it can have so that the string may wind itself completely
up is

√
2ga(β − sinβ ).

29. From the lowest point of a smooth hollow cylinder whose cross-
section is one-half of the lemniscate r2 = a2 cos2θ , with axis ver-
tical and node downwards, a particle is projected with velocity V
along the inner surface in the plane of a cross-section; show that it
will make a complete revolution if 3V 2 > 7ag.

30. If a particle can describe a certain plane curve freely under one
set of forces and can also describe it freely under a second set,
then it can describe it freely when both sets act, provided that the
initial kinetic energy in the last case is equal to the sum of the
initial kinetic energies in the first two cases.
Let the arc s be measured from the point of projection, and let the
initial velocities of projection in the first two cases be U1 and U2.
Let the tangential and normal forces in the first case be T1 and
N1 when an arc s has been described, and T2 and N2 similarly in
the second case; let the velocities at this point be v1 and v2. Then

mv1
dv1

ds
= T1; m

v2
1

ρ
= N1; mv2

dv2

ds
= T2; and m

v2
2

ρ
= N2.

∴ 1
2

mv2
1 =

∫ s

0
T1ds+

1
2

mU2
1 , and

1
2

mv2
2 =

∫ s

0
T2ds+

1
2

mU2
2

∴ 1
2

m(v2
1 + v2

2) =
∫ s

0
T1ds+

∫ s

0
T2ds+

1
2

mU2
1 +

1
2

mU2
2 ...(1),
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and m
v2

1 + v2
2

ρ
= N1 +N2 ...(2).

If the same curve be described freely when both sets of forces are
acting, and the velocity be v at arcual distance s, and U be the
initial velocity, we must have similarly

1
2

mv2 =
∫ s

0
(T1 +T2)ds+

1
2

mU2 ...(3),

and m
v2

ρ
= N1 +N2 ...(4)

Provided that
1
2

mU2 =
1
2

mU2
1 +

1
2

mU2
2 equations (1) and (3) give

v2 = v2
1 + v2

2 and then (4) is the same as (2), which is true.
Hence the conditions of motion are satisfied for the last case, if
the initial kinetic energy for it is equal to the sum of the kinetic
energies in the first two cases.
The same proof would clearly hold for more than two sets of
forces.

COR. The theorem may be extended as follows.
If particles of masses m1,m2,m3, . . . all describe one path under
forces F1,F2,F3, . . .; then the same path can be described by a par-
ticle of mass M under all the forces acting simultaneously, pro-
vided its kinetic energy at the point of projection is equal to the
sum of the kinetic energies of the particles m1,m2,m3, . . . at the
same point of projection.

31. A particle moves under the influence of two forces
µ
r5 to one point

and
µ
r′5

to another point; show that it is possible for the particle to
describe a circle, and find the circle.
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32. Show that a particle can be made to describe an ellipse freely under

the action of forces λ r +
µ
r2 ,λ r′+

µ ′

r′2
directed towards its foci.

33. A circle, of radius a, is described by a particle under a force
µ

(distance)5 to a point on its circumference. If, in addition, there be

a constant normal repulsive force
µ ′

a5 show that the circle will still
be described freely if the particle start from rest at a point where

r = a 4

√
µ

2µ ′
.

34. Show that a particle can describe a circle under two forces
u f 2

r5
1

and
u f ′2

r5
2

directed to two centres of force, which are inverse points

for the circle at distances f and f ′ from the centre, and that the
velocity at any point is

√
u f

r2
1

(
or
√

u f ′

r2
2

)

35. A ring, of mass m, is strung on a smooth circular wire, of mass M
and radius a; if the system rests on a smooth table, and the ring be
started with velocity v in the direction of the tangent to the wire,
show that the reaction of the wire is always

Mm
M +m

v2

a
.

36. O, A and B are three collinear points on a smooth table, such that
OA = a and AB = b. A string is laid along AB and to B is attached
a particle. If the end A be made to describe a circle, whose centre
is O, with uniform velocity v, show that the motion of the string
relative to the revolving radius OA is the same as that of a pendu-
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lum of length
gab
v2 , and further that the string will not remain taut

unless a > 4b.
37. A particle slides under gravity down a rough cycloid, whose axis

is vertical and vertex downwards, starting from rest at the cusp.
Show that it will come to rest before reaching the lowest point if
µeµπ/2 > 1, where µ is the coefficient of friction.

Prove that this inequality is satisfied if µ =
1
2
.

38. A smooth parabolic tube is fixed in a vertical plane with its ver-
tex downwards. A particle starts from rest at the extremity of the
latus rectum and slides down the tube; express as a definite inte-
gral the time taken to reach the vertex, and show that this time is

approximately 2.7×
√

a
g

seconds, where 4a is length of the latus

rectum.

ANSWERS WITH HINTS

Art. 90 EXAMPLES
1. 2C2s = A(ψ2−2ψγ) where γ is arbitrary.

3. s =
A
ω

eψ +B

4. −(b+ac2)e2as,
1√
ab

(
sin−1

√
b

b+aV 2 − sin−1

√
b

b+ac2

)

7.
v2

a
+ f sinθ , f − f cosθ

Art. 103 EXAMPLES
31. Draw a circle through the two centres of force, O and O′, and
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the starting point A. This will be described with an acceleration µ/r5

towards O if the velocity at any point is
√

µ
2r4 . So for the other

centre. Hence the circle will be described with both accelerations if
the velocity V at the point of projection A is given by V 2 =

µ
2.OA4 +

µ ′

2.O′A4 .
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