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11.1

Learning Objectives

In this unit, the student is exposed to 
•	 waves and their types (transverse and longitudinal)
•	 basic terms like wavelength, frequency, time period and amplitude of a wave
•	 velocity of transverse waves and longitudinal waves
•	 velocity of sound waves
•	 reflection of sound waves from plane and curved surfaces and its applications
•	 progressive waves and their graphical representation 
•	 superposition principle, interference of waves, beats and standing waves
•	 characteristics of stationary waves, sonometer
•	 fundamental frequency, harmonics and overtones
•	 intensity and loudness
•	 vibration of air column – closed organ pipe, open organ pipe and resonance air column
•	 Doppler effect and its applications

INTRODUCTION

In the previous chapter, we have discussed the 
oscillation of a particle. Consider a medium 
which consists of a collection of particles. 
If the disturbance is created at one end, it 

U N I T

11 WAVES

We are slowed down sound and light waves, a walking bundle of frequencies tuned into the cosmos. 
We are souls dressed up in sacred biochemical garments and our bodies are the instruments through 

which our souls play their music – Albert Einstein

propagates and reaches the other end. That 
is, the disturbance produced at the first mass 
point is transmitted to the next neighbouring 
mass point, and so on. Notice that here, only 
the disturbance is transmitted, not the mass 
points. Similarly, the speech we deliver is due 
to the vibration of our vocal chord inside 
the throat. This leads to the vibration of the 
surrounding air molecules and hence, the 
effect of speech (information) is transmitted 
from one point in space to another point 
in space without the medium carrying the 
particles. Thus, the disturbance which carries 
energy and momentum from one point in space 
to another point in space without the transfer of 
the medium is known as a wave. 

Figure 11.1  Standing waves in a violin 
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225Unit 11  Waves

surface as shown in Figure 11.3. We find 
that this disturbance spreads out (diverges 
out) in the form of concentric circles of 
ever increasing radii (ripples) and strike 
the boundary of the trough. This is because 
some of the kinetic energy of the stone is 
transmitted to the water molecules on the 
surface. Actually the particles of the water 
(medium) themselves do not move outward 
with the disturbance. This can be observed 
by keeping a paper strip on the water 
surface. The strip moves up and down when 
the disturbance (wave) passes on the water 
surface. This shows that the water molecules 
only undergo vibratory motion about their 
mean positions.

11.1.2  Formation of waves 
on stretched string

Let us take a long string and tie one end of 
the string to the wall as shown in Figure 
11.4 (a). If we give a quick jerk, a bump (like 
pulse) is produced in the string as shown 
in Figure 11.4 (b). Such a disturbance is 
sudden and it lasts for a short duration, 
hence it is known as a wave pulse. If jerks 
are given continuously then the waves 
produced are standing waves. Similar 
waves are produced by a plucked string in 
a guitar.

Standing near a beach, one can observe waves 
in the ocean reaching the seashore with a 
similar wave pattern; hence they are called 
ocean waves. A rubber band when plucked 
vibrates like a wave which is an example of 
a standing wave. These are shown in Figure 
11.2. Other examples of waves are light 
waves (electromagnetic waves), through 
which we see and enjoy the beauty of nature 
and sound waves using which we hear and 
enjoy pleasant melodious songs. Day to day 
applications of waves are numerous, such 
as mobile phone communication, laser 
surgery, etc. 

11.1.1  Ripples and wave 
formation on the water 
surface

Figure 11.3  Ripples formed on the 
surface of water

Suppose we drop a stone in a trough of still 
water, we can see a disturbance produced at 
the place where the stone strikes the water 

Figure 11.2  Waves formed in (a) ocean, (b) standing waves in plucking rubber band and 
(c) ripples formed on water surface

(b) (c)(a)
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226 Unit 11  Waves

11.1.4  Characteristics of 
wave motion

•	 For the propagation of the waves, the 
medium must possess both inertia and 
elasticity, which decide the velocity of 
the wave in that medium.

•	 In a given medium, the velocity of a wave 
is a constant whereas the constituent 
particles in that medium move with 
different velocities at different positions. 
Velocity is maximum at their mean 
position and zero at extreme positions. 

•	 Waves undergo reflections, refraction, 
interference, diffraction and polarization.   

11.1.3  Formation of waves 
in a tuning fork

When we strike a tuning fork on a rubber 
pad, the prongs of the tuning fork vibrate 
about their mean positions. The prong 
vibrating about a mean position means 
moving outward and inward, as indicated 
in the Figure 11.5. When a prong moves 
outward, it pushes the layer of air in its 
neighbourhood which means there is more 
accumulation of air molecules in this region. 
Hence, the density and also the pressure 
increase. These regions are known as 
compressed regions or compressions. This 
compressed air layer moves forward and 
compresses the next neighbouring layer in a 
similar manner. Thus a wave of compression 
advances or passes through air. When the 
prong moves inwards, the particles of the 
medium are moved to the right. In this 
region both density and pressure are low. It 
is known as a rarefaction or elongation.

Figure 11.4:  Wave pulse created during 
jerk produced on one end of the string 

Figure 11.5  Waves due to strike of a 
tuning fork on a rubber pad

Compression

Rarefaction
Mean position

Compression

Compression
Expansion

Expansion

Mean position

Mean position

(a)

(b)

(c)

Point to ponder

The medium possesses both inertia and 
elasticity for propagation of waves.

Light is an electromagnetic wave. what is 
the medium for its transmission?
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227Unit 11  Waves

In transverse wave motion, the constituents 
of the medium oscillate or vibrate about their 
mean positions in a direction perpendicular 
to the direction of propagation (direction  
of energy transfer) of waves as shown in 
Figure 11.6.

Example: light (electromagnetic waves)

11.1.7  Longitudinal wave 
motion

In longitudinal wave motion, the constituents 
of the medium oscillate or vibrate about their 
mean positions in a direction parallel to the 
direction of propagation (direction of energy 
transfer) of waves as shown in Figure 11.7. 

Example: Sound waves travelling in air.

11.1.5  Mechanical wave 
motion and its types

Wave motion can be classified into two 
types

a.	 Mechanical wave – Waves which require 
a medium for propagation are known as 
mechanical waves. 

Examples:  sound waves, ripples formed 
on the surface of water, etc. 

b.	 Non mechanical wave – Waves which do 
not require any medium for propagation 
are known as non-mechanical waves. 

Example:  light waves, Infra red rays etc.

Further, waves can also be classified into 
two types

a.	 Transverse waves 

b.	 Longitudinal waves 

11.1.6  Transverse wave 
motion

Figure 11.6  Transverse wave

P

Discuss with your Teacher
• � Tsunami (pronounced soo-nah-mee 

in Japanese) means Harbour waves.
• � Tsunami is a series of huge and giant 

waves which come with great speed 
and huge force. What happened on  
26th December2004 in southern part 
of India? - Discuss

• � Gravitational waves and LIGO (Laser 
lnterferometer Gravitational wave 
Observatory) experiment. 

• � Nobel Prize winners in Physics 2017 are
Prof. Rainer Weiss, Prof. Barry 
C. Barish and Prof. Kip S. Thorne 
for decisive contributions to the 
LIGO detector and observation of 
gravitational forces.

MotionLongitudinal waves

StretchedStretched CompressedCompressed

Figure 11.7  Longitudinal waves
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228 Unit 11  Waves

11.2 If we are interested in counting the number 
of waves created, let us put a reference level 
(mean position) as shown in Figure 11.9. Here 
the mean position is the horizontal line shown.
The highest point in the shaded portion is 
called crest. With respect to the reference level, 
the lowest point on the un-shaded portion is 
called trough. This wave contains repetition of 
a section O to B and hence we define the length 
of the smallest section without repetition 
as one wavelength as shown in Figure 11.10. 
In Figure 11.10 the length OB or length BD 
is one wavelengh. A Greek letter lambda λ is 
used to denote one wavelength.

Figure 11.10  Defining wavelength

O AO A BB C D

Two wavelength = 2λOne wavelength = λ
λλ λ

For transverse waves (as shown in Figure 
11.11), the distance between two neighbouring 
crests or troughs is known as the wavelength.
For longitudinal waves, (as shown in 
Figure 11.12) the distance between two 
neighbouring compressions or rarefactions 
is known as the wavelength. The SI unit of 
wavelength is meter.

TERMS AND DEFINITIONS 
USED IN WAVE MOTION

Figure 11.8  Two different sinusoidal 
waves 

X

Y

O

Suppose we have two waves as shown in 
Figure 11.8. Are these two waves identical? No. 
Though, the two waves are both sinusoidal, there 
are many difference between them. Therefore, 
we have to define some basic terminologies to 
distinguish one wave from another. 

Consider a wave produced in a stretched 
string as shown in Figure 11.9. 

Figure 11.9  Crest and Trough of a wave 

O A B C D
Trough

Crest

Table 11.1:  Comparison of transverse and longitudinal waves

S.No. Transverse waves Longitudinal waves
1. The direction of vibration of particles 

of the medium is perpendicular to the 
direction of propagation of waves.

The direction of vibration of particles of 
the medium is parallel to the direction of 
propagation of waves.

2. The disturbances are in the form of crests 
and troughs.

The disturbances are in the form of 
compressions and rarefactions.

3. Transverse waves are possible in elastic 
medium.

Longitudinal waves are possible in all 
types of media (solid, liquid and gas).

NOTE:  
1. Absence of medium is also known as vacuum.  Only electromagnetic waves can travel through vacuum. 
2. Rayleigh waves are considered to be mixture of transverse and longitudinal.

UNIT-11(XI-Physics_Vol-2).indd   228UNIT-11(XI-Physics_Vol-2).indd   228 26-03-2022   17:24:1526-03-2022   17:24:15



229Unit 11  Waves

Figure 11.13  A wave consisting of three 
wavelengths passing a point A at time  
(a) t = 0 s and (b) after time t = 1 s

A

t = 0s
A

t = 1s

If two waves take one second (time) to cross 
the point A then the time taken by one wave 
to cross the point A is half a second. This 
defines the time period T as

	 T = =1

2
0 5.  s� (11.2)

From equation (11.1) and equation (11.2),  
frequency and time period are inversely 
related i.e., 

	 T
f

= 1
� (11.3)

Time period is defined as the time taken by 
one wave to cross a point.

EXAMPLE 11.2 

Three waves are shown in the figure below.

(c)

(b)

(a)

Write down 
(a)	 the frequency in ascending order
(b)	 the wavelength in ascending order 

Solution

(a)	 fc < fa < fb

(b)	 λb < λa < λc

EXAMPLE 11.1

Which of the following has longer 
wavelength?

y

0 x
1 2

y

0 1 3 42

y

0 x x
1

3 4
2

(a) (b) (c)

Answer is (c) 

In order to understand frequency and time 
period, let us consider waves (made of three 
wavelengths) as shown in Figure 11.13 (a). 
At time t = 0 s, the wave reaches the point A 
from left. After time t = 1 s (shown in figure 
11.13(b)), the number of waves which have 
crossed the point A is two. Therefore, the 
frequency is defined as the number of waves 
crossing a point per second. It is measured in 
hertz whose symbol is Hz. In this example,

 	 f = 2 Hz� (11.1)

Figure 11.11  Wavelength for transverse waves

Wavelength

λ
λ

λ

X

Y

Figure 11.12  Wavelength for 
longitudinal waves

StretchedStretched

CompressedCompressed λ

λ

ExpansionCompression

A

t = 0s
A

t = 1s

(a)

(b)
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230 Unit 11  Waves

EXAMPLE 11.3

The average range of frequencies at which 
human beings can hear sound waves 
varies from 20 Hz to 20 kHz. Calculate 
the wavelength of the sound wave in these 
limits. (Assume the speed of sound to be 
340 m s–1. 

Solution

	


1
= m
v
f
1

340

20
17 

	


2
= m
v
f

2

3

340

20 10
0 017


 .

Therefore, the audible wavelength region is 
from 0.017 m to 17 m when the velocity of 
sound in that region is 340 m s–1.

EXAMPLE 11.4

A man saw a toy duck on a wave in an 
ocean. He noticed that the duck moved 
up and down 15 times per minute. He 
roughly measured the wavelength of the 
ocean wave as 1.2 m. Calculate the time 
taken by the toy duck for going one time 
up and down and also the velocity of the 
ocean wave.

Solution
Given that the number of times the toy duck 
moves up and down is 15 times per minute. 
This information gives us frequency (the 
number of times the toy duck moves up 
and down)

From the example 11.2, we observe that 
the frequency is inversely related to the 
wavelength, f  1


. 

Then, f λ is equal to what? 

[(i.e) f f


1   ? ]
A simple dimensional argument will help 
us to determine this unknown physical 
quantity. 

Dimension of wavelength is,� [λ] = L

�Frequency f
Time period

=
1

, which implies 

that the dimension of frequency is, 

	 [ f ] = 
1 1

T
T[ ] = −  

	 ⇒ [λf] = [λ][f ]= LT–1 = [velocity]

Therefore, 

    Velocity,  λf = v� (11.4)

 �where v is known as the wave velocity or 
phase velocity. This is the velocity with 
which the wave propagates. Wave velocity 
is the distance travelled by a wave in one 
second. 

Note:

1.	 The number of cycles (or revolutions) 
per unit time is called angular frequency. 

Angular frequency, ω = 2π
T

 = 2πf (unit is 
radians/second)

2.	 The number of cycles per unit distance 
or number of waves per unit distance is 
called wave number. 

	 wave number, k = 2π
λ

 (unit is radians/
meter)

	 The velocity v, angular frequency ω and 
wave number k are related as:

	 velocity, v = λf = λ
π2

 (2πf ) = ( )
/

2
2

π
π λ

f  = ω
k
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231Unit 11  Waves

11.3

axis (for example in this case x-axis). Here, 
it is denoted by A. 

EXAMPLE 11.5

Consider a string whose one end is 
attached to a wall. Then compute the 
following in both situations given in figure 
(assume waves crosses the distance in one 
second)

12 m

12 m

(a)  Wavelength,  (b)  Frequency  and 
(c)  Velocity
Solution

First case Second case

(a)  Wavelength λ = 6 m λ = 2 m

(b)  Frequency f = 2 Hz f = 6 Hz

(c)  Velocity v = 6 × 2 
= 12 m s–1

v = 2 × 6  
= 12 m s–1

This means that the speed of the wave along 
a string is a constant. Higher the frequency, 
shorter the wavelength and vice versa, and 
their product is velocity which remains the 
same. 

f = 15times toy duck moves up and down

one minute

But one minute is 60 second, therefore, 
expressing time in terms of second

	
f = = =

15
60

1
4

0 25. Hz

The time taken by the toy duck for going 
one time up and down is time period which 
is inverse of frequency

	
T

f
= = =1 1

0 25
4

.
s

The velocity of ocean wave is 

v = λf = 1.2 ×0.25 = 0.3 m s–1. 

Amplitude of a wave:

Figure 11.14  Waves of different 
amplitude

A2 x

y

-y

-y
λ

A1 x

y

λ

The waves shown in the Figure 11.14 have 
same wavelength, same frequency and 
same time period and also move with 
same velocity. The only difference between 
two waves is the height of either crest or 
trough. This means, the height of the crest 
or trough also signifies a wave character.  
So we define a quantity called an amplitude 
of the wave, as the maximum displacement 
of the medium with respect to a reference 

VELOCITY OF WAVES IN 
DIFFERENT MEDIA 

Suppose a hammer is struck on long rails at 
a distance and when a person keeps his ear 
near the rails at the other end he/she will hear 
two sounds, at different instants. The sound 
that is heard through the rails (solid medium)  
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232 Unit 11  Waves

	 µ =
dm
dl � (11.5)

	 dm = μ dl� (11.6)

The elemental string AB has a curvature 
which looks like an arc of a circle with centre 
at O, radius R and the arc subtending an angle 
θ at the origin O as shown in Figure 11.15(b). 
The angle θ can be written in terms of arc 

length and radius as θ = dl
R

. The centripetal 

acceleration supplied by the tension in the 
string is  

	 acp = v
R

2

� (11.7)

Then, centripetal force is

	 Fcp = ( )dm v
R

2

� (11.8)

From eqn 11.6,

	 (dm) dlv
R

v
R

2 2

=
µ � (11.9)

The tension T acts along the tangent of the 
elemental segment of the string at A and B. 
Since the arc length is very small, variation 

is faster than the sound we hear through 
the air (gaseous medium). This implies the 
velocity of sound is different in different 
media. 

In this section, we shall derive the velocity 
of waves in two different cases:

1.	 The velocity of a transverse waves along 
a stretched string. 

2.	 The velocity of a longitudinal waves in 
an elastic medium.

11.3.1  Velocity of transverse 
waves in a stretched string

Let us compute the velocity of transverse 
travelling waves on a string. When a jerk is 
given at one end (left end) of the rope, the wave 
pulses move towards right end with a velocity v 
with respect to an observer who is at rest frame. 

Consider an elemental segment in the string 
as shown in the Figure 11.15. Let A and B be 
two points on the string at an instant of time. 
Let dl and dm be the length and mass of the 
elemental string, respectively. By definition, 
linear mass density, μ is 

Figure 11.15  Elemental segment in a stretched string is zoomed and the pulse seen from an 
observer frame who moves with velocity v.

T cos (���θ�

T sin (���θ�T sin (���θ�

T cos (���θ�

θ
�

θ
�

θ
�

θ
�

θ
�

θ
�

θ
�

θ
�

� A B

O

O

V
∆x

∆x TT
R

R

F�

Note

v (pulse)

v (pulse)
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233Unit 11  Waves

EXAMPLE 11.6 

Calculate the velocity of the travelling 
pulse as shown in the figure below. The 
linear mass density of pulse is 0.25 kg m–1.  
Further, compute the time taken by the 
travelling pulse to cover a distance of  
30 cm on the string.

1.2 kg

Solution

The tension in the string is T = m g =  
1.2 × 9.8 = 11.76 N
The mass per unit length is μ = 0.25 kg m–1

Therefore, velocity of the wave pulse is 

v T m s m s= = = =− −

µ
11 76
0 25

6 858 6 81 1.
.

. .

The time taken by the pulse to cover the 
distance of 30 cm is 

t d s ms
v

    


30 10

6 8
0 044 44

2

.
.  where, 

ms = milli second. 

11.3.2  Velocity of 
longitudinal waves in an 
elastic medium

Consider an elastic medium (here we assume 
air) having a fixed mass contained in a long 
tube (cylinder) whose cross sectional area is 
A and maintained under a pressure P. One 
can generate longitudinal waves in the fluid 
either by displacing the fluid using a piston or 
by keeping a vibrating tuning fork at one end 
of the tube. Let us assume that the direction 
of propagation of waves coincides with the 
axis of the cylinder. Let ρ be the density of 

in the tension force can be ignored. We 
can resolve T into horizontal component 

T cos θ
2







  and vertical component T sin θ

2







 .  

The horizontal components at A and B 
are equal in magnitude but opposite in 
direction; therefore, they cancel each other. 
Since the elemental arc length AB is taken 
to be very small, the vertical components at 
A and B appears to acts vertical towards the 
centre of the arc and hence, they add up. The 
net radial force Fr is  

	 Fr   = 2T sin θ
2







 � (11.10)

Since the amplitude of the wave is very small 
when it is compared with the length of the 

string, sin θ θ
2 2







≈ . Hence,  

	 Fr   = 2T × θ
2

 = Tθ� (11.11)

But θ =
dl
R

, we get

	 Fr   = T dl
R

� (11.12)

Applying Newton’s second law to the 
elemental string in the radial direction, 
under equilibrium, the radial component 
of the force is equal to the centripetal 
force. Hence equating equation (11.9) and 
equation (11.12), we have

	 T dl
R

v dl
R

= µ 2

	 v T
=

µ
 � (11.13)

Observations: 
•	 The velocity of the string is 

a.	 directly proportional to the square 
root of the tension force

b.	 inversely proportional to the square 
root of linear mass density

c.	 independent of shape of the waves. 
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234 Unit 11  Waves

∆P K V
V

=
∆

where, V is original volume and K is known 
as bulk modulus of the elastic medium. 

But V = A ∆x = A v ∆t and 

∆V = A ∆d =A u ∆t

Therefore, 

	 ∆ =
∆
∆
=P K Au t

Av t
K u
v � (11.15)

Comparing equation (11.14) and equation 
(11.15), we get

	 ρv u K u
v

=  or v K2 =
ρ

	 ⇒ =v K
ρ

� (11.16)

In general, the velocity of a longitudinal 

wave in elastic medium is v E
=

ρ
, where E 

is the modulus of elasticity of the medium. 

Cases: For a solid :
(i) one dimensional rod (1D)

	 v Y
=

ρ
� (11.17)

where Y is the Young’s modulus of the 
material of the rod and ρ is the density of 
the rod. The 1D rod will have only Young’s 
modulus.

(ii) �Three dimensional rod (3D) The speed 
of longitudinal wave in a solid is 

	 v
K

=
+

4
3

η

ρ
� (11.18)

where η is the modulus of rigidity, K is the 
bulk modulus and ρ is the density of the rod. 

the fluid which is initially at rest. At t = 0, the 
piston at left end of the tube is set in motion 
toward the right with a speed u. 

Let u be the velocity of the piston and v 
be the velocity of the elastic wave. In time 
interval Δt, the distance moved by the piston  
Δd = u Δt. Now, the distance moved by the 
elastic disturbance is Δx = vΔt. Let Δm be the 
mass of the air that has attained a velocity v 
in a time Δt . Therefore, 

Δm = ρ A Δx = ρ A (v Δt)

Then, the momentum imparted due to 
motion of piston with velocity u is 

Δp = [ρ A (v Δt)]u

But the change in momentum is impulse. 

The net impulse is 

I = (ΔP A)Δt

  Or	 (ΔP A)Δt = [ρ A (v Δt)]u

	 ΔP = ρ v u� (11.14)

When the sound wave passes through 
air, the small volume element (ΔV) of the 
air undergoes regular compressions and 
rarefactions. So, the change in pressure can 
also be written as 

Air

V

AirF = PA ρ P

v∆tu∆t

F = (P+∆P) A PA

Figure 11.16  Longitudinal waves in the 
fluid by displacing the fluid using a piston
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235Unit 11  Waves

Cases: For liquids:

	 v K
=

ρ
� (11.19)

where, K (or) B is the bulk modulus and ρ is 
the density of the rod. 

EXAMPLE 11.7 

Calculate the speed of sound in a steel rod 
whose Young’s modulus Y = 2 × 1011 N m–2 
and ρ = 7800 kg m–3. 

Solution

v Y ms ms= =
×

= × = × = ×− −

ρ
2 10
7800

0 2564 10 0 506 10 5 10
11

8 4 1 3 1. .

v Y ms ms= =
×

= × = × = ×− −

ρ
2 10
7800

0 2564 10 0 506 10 5 10
11

8 4 1 3 1. .

Therefore, longitudinal waves travel faster 
in a solid than in a liquid or a gas. Now you 
may understand why a shepherd checks 
before crossing railway track by keeping 
his ears on the rails to safegaurd his cattle. 

EXAMPLE 11.8 

An increase in pressure of 100 kPa causes 
a certain volume of water to decrease by 
0.005% of its original volume.

(a) �Calculate the bulk modulus of 
water? 

(b) �Compute the speed of sound 
(compressional waves) in water? 

Solution

(a) Bulk modulus 
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, where  

   MPa is mega pascal

(b) Speed of sound in water is 

v K ms= =
×

= −

ρ
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1

The velocities of both 
transverse waves and 
longitudinal waves depend 

on elastic property (like string tension 
T or bulk modulus K) and inertial 
property (like density or mass per 

unit length) i.e., 

Note

Table 11.2: Speed of sound in 
various media

S.No. Medium Speed in m s–1

Solids
1. Rubber 1600
2. Gold 3240

3. Brass 4700
4. Copper 5010
5. Iron 5950
6. Aluminum 6420

Liquids at 25°C
1. Kerosene 1324
2. Mercury 1450
3. Water 1493
4. Sea Water 1533

Gas (at 0°C)
1. Oxygen 317
2. Air 331
3. Helium 972
4. Hydrogen 1286

Gas (at 20°C)
1. Air 343
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236 Unit 11  Waves

Since P is the pressure of air whose value at 
NTP (Normal Temperature and Pressure) is 
76 cm of mercury, we have P = hρg

	 P = (0.76 × 13.6 ×103 × 9.8) N m–2

	 ρ = 1.293 kg m–3. Here ρ is density of air

Then the speed of sound in air at Normal 
Temperature and Pressure (NTP) is 

	 vT = 0 76 13 6 10 9 8

1 293

3
. . .

.

× × ×( )

	� = 279.80 m s–1 ≈ 280 ms–1 (theoretical 
value)

But the speed of sound in air at 0°C is 
experimentally observed as 332 m s–1  
which is close upto 16% more than 
theoretical value (Percentage error is 

332 280

332
100 15 6

  % . % ). This error is 

not small

11.4.2  Laplace’s correction

In 1816, Laplace satisfactorily corrected 
this discrepancy by assuming that when 
the sound propagates through a medium, 
the particles oscillate very rapidly such that 
the compression and rarefaction occur very 
fast. Hence the exchange of heat produced 
due to compression and cooling effect due 
to rarefaction do not take place, because, 
air (medium) is a bad conductor of heat. 
Since, temperature is no longer considered 
as a constant here, sound propagation 
is an adiabatic process. By adiabatic 
considerations, the gas obeys Poisson’s 
law (not Boyle’s law as Newton assumed), 
which is 

	 PVγ = constant� (11.23)

11.4
PROPAGATION OF SOUND 
WAVES

We know that sound waves are longitudinal 
waves, and when they propagate 
compressions and rarefactions are formed. 
In the following section, we compute the 
speed of sound in air by Newton’s method 
and also discuss the Laplace correction and 
the factors affecting sound in air. 

11.4.1  Newton’s formula for 
speed of sound waves in air

Sir Isaac Newton assumed that when 
sound propagates in air, the formation of 
compression and rarefaction takes place 
in a very slow manner so that the process 
is isothermal in nature. That is, the heat 
produced during compression (pressure 
increases, volume decreases), and heat lost 
during rarefaction (pressure decreases, 
volume increases) occur over a period 
of time such that the temperature of the 
medium remains constant. Therefore, by 
treating the air molecules to form an ideal 
gas, the changes in pressure and volume 
obey Boyle’s law, Mathematically

	 PV = Constant� (11.20)

Differentiating equation (11.20), we get

	 PdV + VdP = 0

   or,	 P = − V dP
dV

 = KI� (11.21)

where, KI is an isothermal bulk modulus of 
air. Substituting equation (11.21) in equation 
(11.16), the speed of sound in air is

	 v K P
T

I= =
ρ ρ � (11.22)
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237Unit 11  Waves

	
P cT
ρ
= � (11.29)

where c is constant.  

The speed of sound in air given in equation 
(11.25) can be written as  

	 v P cT= =
γ
ρ

γ � (11.30)

From the above relation we observe the 
following

(a) Effect of pressure : 

For a fixed temperature, when the pressure 
varies, correspondingly density also varies 

such that the ratio P
ρ







  becomes constant. 

This means that the speed of sound 
is independent of pressure for a fixed 
temperature. If the temperature remains 
same at the top and the bottom of a mountain 
then the speed of sound will remain same 
at these two points. But, in practice, the 
temperatures are not same at top and bottom 
of a mountain; hence, the speed of sound is 
different at different points. 

(b) Effect of temperature :

Since  v ∝ T ,

the speed of sound varies directly to the 
square root of temperature in kelvin. 

Let v0 be the speed of sound at temperature 
at 0° C or 273 K and v be the speed of sound 
at any arbitrary temperature T (in kelvin), 
then

	

v
v

T t

0
273

273

273
= = +

	
v v t v t= + ≅ +



0 0

1
273

1
546   

	 (using binomial expansion)

where, γ = C
C
P

v

, which is the ratio between 

specific heat at constant pressure and 
specific heat at constant volume. 

Differentiating equation (11.23) on both the 
sides, we get

	 Vγ dP + P (γVγ–1 dV) = 0

  or,	 γP V dp
dV

K A = − = � (11.24)

where, KA is the adiabatic bulk modulus of 
air. Now, substituting equation (11.24) in 
equation (11.16), the speed of sound in air is

	 v
K P vA

A
T = ‡ ‡

ρ ρ
= = � (11.25)

Since air contains mainly, nitrogen, oxygen, 
hydrogen etc, (diatomic gas), we take  
γ = 1.4. Hence, speed of sound in air is  
vA = ( 1 4. )(280 m s–1)= 331.30 m s–1, which 
is very much closer to experimental data.

11.4.3  Factors affecting 
speed of sound in gases

Let us consider an ideal gas whose equation 
of state is 

	 PV = μ R T� (11.26)

where, P is pressure, V is volume, T is 
temperature, μ is number of mole and R is 
universal gas constant. For a given mass of a 
molecule, equation (11.26) can be written as

	
PV
T  = Constant� (11.27)

For a fixed mass m, density of the gas 
inversely varies with volume. i.e.,  

	 ρ
ρ

∝ =
1
V

V m, � (11.28)

Substituting equation (11.28) in equation 
(11.27), we get
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238 Unit 11  Waves

	
v p
=

γ
ρ

Let ρ1, v1 and ρ2, v2 be the density and 
speeds of sound in dry air and moist air, 
respectively. Then

	
v
v

P

P
1

2

1

1

2

2

2

1

= =

γ
ρ

γ
ρ

ρ
ρ   if  γ1 = γ2

Since P is the total atmospheric pressure, 
According to Dalton’s law of partial pressure, 
it can be shown that 

	
ρ
ρ

2

1 1 20 625
=

+
P

p p. �

where p1 and p2 are the partial pressures of 
dry air and water vapour respectively. Then

	 v v P
p p1 2

1 2
0 625

=
+ .

� (11.34)

(e) Effect of wind:

The speed of sound is also affected by 
blowing of wind. In the direction along the 
wind blowing, the speed of sound increases 
whereas in the direction opposite to wind 
blowing, the speed of sound decreases. 

EXAMPLE 11.9

The ratio of the densities of oxygen and 
nitrogen is 16:14. Calculate the temperature 
when the speed of sound in nitrogen gas 
at 17°C is equal to the speed of sound in 
oxygen gas.

Solution

From equation (11.25), we have 

	 v P
=

γ
ρ

Since v0 = 331m s–1 at 0°C, v at any 
temperature in t°C is

	 v = (331 + 0.61t) m s–1

Thus the speed of sound in air increases 
by 0.61 m s–1 per degree celcius rise in 
temperature. Note that when the temperature 
is increased, the molecules will vibrate faster 
due to gain in thermal energy and hence, 
speed of sound increases. 

(c) Effect of density :  
Let us consider two gases with different 
densities having same temperature and 
pressure. Then the speed of sound in the two 
gases are 

	 v P
1

1

1

=
γ
ρ

� (11.31)

and 

	 v P
2

2

2

=
γ
ρ

� (11.32)

Taking ratio of equation (11.31) and 
equation (11.32), we get

	
v
v

P

P
1

2

1

1

2

2

1 2

2 1

= =

γ
ρ

γ
ρ

γ ρ
γ ρ

For gases having same value of γ, 

	
v
v

1

2

2

1

=
ρ
ρ � (11.33)       

Thus the velocity of sound in a gas is 
inversely proportional to the square root of 
the density of the gas.

(d) Effect of moisture (humidity): 

We know that density of moist air is 0.625 of that  
of dry air, which means the presence of 
moisture in air (increase in humidity) decreases 
its density. Therefore, speed of sound increases 
with rise in humidity. From equation (11.30)
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239Unit 11  Waves

11.5

But ρ=
M
V

Therefore, 

	
v PV

M
=

γ

Using equation (11.26)

	
v RT

M
=

γ

Where, R is the universal gas constant and  
M is the molecular mass of the gas. The 
speed of sound in nitrogen gas at 17°C is 

	 v R K K
MN

N

=
+γ ( )273 17

	 =
γR K

MN

( )290
� (1)

Similarly, the speed of sound in oxygen gas 
at temperature t 

	 v
R K t

M0
0

273
=

+γ ( )
� (2) 

Given that the value of γ is same for 
both the gases, the two speeds must be 
equal. Hence, equating equation (1) and  
(2), we get

vO  = vN

γ γR t
M

R
MN

( ) ( )273 290

0

+
=

Squaring on both sides and cancelling γ R 
term and rearranging, we get

	
M
M

t

N

0
273

290
= +

� (3)

Since the densities of oxygen and nitrogen 
is 16:14, 

	 ρ
ρ

0 16
14N

= � (4)

	
ρ
ρ

0 0 0 16
14N

O

N N N

M
V

M
V

M
M

M
M

= = ⇒ = � (5)

Substituting equation (5) in equation (3), 
we get

273

290

16

14
3822 14 4640

+ = ⇒ + =t t

⇒  t = 58.4 °C

REFLECTION OF SOUND 
WAVES

When sound wave passes from one medium 
to another medium, the following things 
can happen

(a) � Reflection of sound: If the medium is 
highly dense (highly rigid), the sound 
can be reflected completely (bounced 
back) to the original medium. 

(b) � Refraction of sound: When the sound 
waves propagate from one medium to 
another medium such that there can be 
some energy loss due to absorption by 
the second medium.

In this section, we will consider only the 
reflection of sound waves in a medium 
when it experiences a harder surface. Sound 
can also obey the laws of reflection, which 
state that 

Figure 11.17  Reflection of sound in 
different surfaces

A smooth 
plane 

surface

A convex 
surface

A concave
surface

A corner
surface
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240 Unit 11  Waves

(i)	� The angle of incidence of sound is equal 
to the angle of reflection.

(ii)	� When the sound wave is reflected by a 
surface then the incident wave, reflected 
wave and the normal at the point of 
incidence all lie in the same plane. 

Similar to reflection of light from a mirror, 
sound also reflects from a harder flat surface, 
This is called as specular reflection. 

Specular reflection is observed only when 
the wavelength of the source is smaller than 
dimensions of the reflecting surface, as well 
as smaller than surface irregularities. 

11.5.1  �Reflection of sound 
through the plane 
surface 

Figure 11.18  Reflection of sound 
through the plane surface

Wave front

Sound
source

Flat reflector

Wall

Listener

Sound source

Virtual 
source

Reflected 
spherical wave

Incident 
spherical wave

Paper tube Paper tube

EarClock

Insulation
board

WALL

When the sound waves hit the plane wall, 
they bounce off in a manner similar to 

that of light. Suppose a loudspeaker is kept 
at an angle with respect to a wall (plane 
surface), then the waves coming from the 
source (assumed to be a point source) can 
be treated as spherical wave fronts (say, 
compressions moving like a spherical wave 
front). Therefore, the reflected wave front 
from the plane surface is also spherical, such 
that its centre of curvature (which lies on the 
other side of plane surface) can be treated 
as the image of the sound source (virtual or 
imaginary loud speaker). These are shown 
in Figures 11.18, 11.19.

Reflected sound     

Reflected 
sound     

Direct sound 

Figure 11.19  Common examples for 
reflection of sound in real situation

11.5.2  Reflection of sound 
through the curved surface 

The behaviour of sound is different when 
it is reflected from different surfaces like 
convex or concave or plane. The sound 
reflected from a convex surface is spread 
out and so it is easily attenuated and 
weakened. Whereas, if it is reflected from 
the concave surface it will converge at a 
point and this can be easily amplified. 
The parabolic reflector (curved reflector) 
which is used to focus the sound precisely 
to a point is used in designing the parabolic 
mics which are known as high directional 
microphones. 
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241Unit 11  Waves

Concave SurfaceDais

Figure 11.21  Sound in a big auditorium

11.5.3  Applications of 
reflection of sound waves 

(a) � Stethoscope: It works on the principle 
of multiple reflections. 

Multiple reflections of sound
in the tube of stethescope

Stethescope

Figure 11.22  Stethoscope and multiple 
reflection of signal in a rubber tube

We know that any surface (smooth or 
rough) can absorb sound. For example, the 
sound produced in a big hall or auditorium 
or theatre is absorbed by the walls, ceilings, 
floor, seats etc. To avoid such losses, a curved 
sound board (concave board) is kept in front 
of the speaker, so that the board reflects the 
sound waves of the speaker towards the 
audience. This method will minimize the 
spreading of sound waves in all possible 
directions in that hall and also enhances the 
uniform distribution of sound throughout 
the hall. That is why a person sitting at any 
position in that hall can hear the sound 
without any disturbance. 

Wave Front

Sound 
Source

Convex 
Reflector

Concave Reflector

Wave Front

Sound Source

Concave Reflector

Figure 11.20  Reflection of sound 
through the curved surface
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242 Unit 11  Waves

at 344 m away, then the sound will take 1 
second to reach the wall. After reflection, 
the sound will take one more second to 
reach us. Therefore, we hear the echo after 
two seconds.

(c)  SONAR: SOund NAvigation and 
Ranging.  Sonar systems make use of 
reflections of sound waves in water 
to locate the position or motion of an 
object.  Similarly, dolphins and bats use 
the sonar principle to find their way in 
the darkness. 

(d)  Reverberation: In a closed room the 
sound is repeatedly reflected from the walls 
and it is even heard long after the sound 
source ceases to function. The residual 
sound remaining in an enclosure and the 
phenomenon of multiple reflections of 
sound is called reverberation. The duration 
for which the sound persists is called 
reverberation time.  It should be noted that 
the reverberation time greatly affects the 
quality of sound heard in a hall. Therefore, 
halls are constructed with some optimum 
reverberation time.  

EXAMPLE 11.10
Suppose a man stands at a distance from 
a cliff and claps his hands. He receives 
an echo from the cliff after 4 second. 
Calculate the distance between the man 
and the cliff. Assume the speed of sound 
to be 343 m s–1.  

Solution
The time taken by the sound to come back as 
echo is 2t = 4 ⇒ t = 2 s
∴The distance is d = vt =(343 m s–1)(2 s)  
= 686 m.

It consists of three main parts:
	 (i)	 Chest piece
	 (ii)	 Ear piece
	 (iii)	Rubber tube

	 (i)	 Chest piece: It consists of a small 
disc-shaped resonator (diaphragm) which 
is very sensitive to sound and amplifies the 
sound it detects. 

	 (ii)	 Ear piece: It is made up of metal 
tubes which are used to hear sounds detected 
by the chest piece.

	 (iii)	Rubber tube: This tube connects 
both chest piece and ear piece. It is used to 
transmit the sound signal detected by the 
diaphragm, to the ear piece. The sound of 
heart beats (or lungs) or any sound produced 
by internal organs can be detected, and it 
reaches the ear piece through this tube by 
multiple reflections.

Scientists have estimated 
that we can hear two 
sounds properly if the 

time gap or time interval between 

each sound is 
1

10









th

 of a second  
(persistence of hearing) i.e., 0.1 s. Then, 

velocity =
Distance travelled

time taken
= 2d
t

	 2d = 344 × 0.1 = 34.4 m
	 d = 17.2 m
The minimum distance from a sound 
reflecting wall to hear an echo at 20°C 
is 17.2 meter.

Note

(b)  Echo: An echo is a repetition of sound 
produced by the reflection of sound waves 
from a wall, mountain or other obstructing 
surfaces. The speed of sound in air at 20°C 
is 344 m s–1. If we shout at a wall which is 
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243Unit 11  Waves

11.6

Note: Classification of sound waves: 
Sound waves can be classified in three 
groups according to their range of 
frequencies: 

(1)  �Infrasonic waves:
	� Sound waves having frequencies below 

20 Hz are called infrasonic waves. 
These waves are produced during 
earthquakes. Human beings cannot 
hear these frequencies. Snakes can 
hear these frequencies.

(2)  �Audible waves:
	� Sound waves having frequencies 

between 20 Hz to 20,000 Hz (20kHz) 
are called audible waves. Human 
beings can hear these frequencies.

(3)  �Ultrasonic waves:
	� Sound waves having frequencies 

greater than 20 kHz are known as 
ultrasonic waves. Human beings 
cannot hear these frequencies. Bats can 
produce and hear these frequencies.

(1.)  Supersonic speed:
	 An object moving 
with a speed greater 
than the speed of sound 
is said to move with a 
supersonic speed.

(2.)  Mach number:
	� It is the ratio of the velocity of 

source to the velocity of sound.

PROGRESSIVE WAVES 
(OR) TRAVELLING WAVES

If a wave that propagates in a medium is 
continuous then it is known as progressive 
wave or travelling wave. 

11.6.1  �Characteristics of 
progressive waves

1.	 Particles in the medium vibrate about 
their mean positions with the same 
amplitude. 

2.	 The phase of every particle ranges from  
0 to 2π. 

3.	 No particle remains at rest permanently. 
During wave propagation, particles 
come to the rest position only twice at 
the extreme points.

4.	 Transverse progressive waves are 
characterized by crests and troughs 
whereas longitudinal progressive waves 
are characterized by compressions and 
rarefactions. 

5.	 When the particles pass through the 
mean position they always move with 
the same maximum velocity.

6.	 The displacement, velocity and 
acceleration of particles separated from 
each other by nλ are the same, where n is 
an integer, and λ is the wavelength.

11.6.2  �Equation of a plane 
progressive wave 

(b) Pulse at time t 

vt
P

P
OO

(a)  Pulse at t = 0 

Y Y

X X

A
V V

Figure 11.23  Wave pulse moving with velocity 
v at two instants at t = 0 and at time t

Suppose we give a jerk on a stretched string 
at time t = 0 s. Let us assume that the wave 
pulse created during this disturbance moves 
along positive x direction with constant 
speed v as shown in Figure 11.23 (a). 

We can represent the shape of the wave 
pulse mathematically as y = y(x, 0) = f(x) at time  
t = 0 s. Assume that the shape of the wave pulse 
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244 Unit 11  Waves

a = vt, y = x − vt satisfies the differential 
equation. Though this function satisfies 
the differential equation, it is not finite 
for all values of x and t. Hence, it does not 
represent a wave. 

y

x

a=0
a=1

a=3
a=2

o

y=x-a
where, a = vt
lines moves towards right

a
(Increases)

1 2 3

EXAMPLE 11.12

How does the wave y = sin(x − a) for a = 0,  
a = π

4
, a = π

2
, a = 3

2
π  and a = π look like?. 

Sketch this wave.

Solution
y
0

0

0

0

0

x

x

x

x

x

π
2π

π
2π

π
2π

π
2π

π 2π

π
4

π
2

3π
4

π
4

π
2

3π
4

π
4

π
2

3π
4

π
4

π
2

3π
4

π
4

π
2

3π
4

sin x

π
4sin(x-  )

π
2sin(x-  )

3π
4sin(x-  )

sin(x-π  )

From the above picture we observe that  
y = sin (x−a) for a = 0, a = π

4
, a = π

2
,  

a = 3
2
π  and a = π, the function y = sin (x−a)

shifts towards right. Further, we can take  
a = vt and v = π

4
, and sketching for different 

remains the same during the propagation. 
After some time t, the pulse moving 
towards the right and any point on it can 
be represented by x' (read it as x prime) as 
shown in Figure 11.23 (b). Then,

	 y(x, t) = f(x´) = f(x − vt)� (11.35) 

Similarly, if the wave pulse moves towards left 
with constant speed v, then y = f(x + vt). Both 
waves y = f(x + vt) and y = f(x − vt) will satisfy 
the following one dimensional differential 
equation known as the wave equation

	
∂
∂

= ∂
∂

2

2 2

2

2

1y
x v

y
t � (11.36)    

where the symbol ∂ represents partial 
derivative (read ¶

¶
y
x

 as partial y by partial 
x). Not all the solutions satisfying this 
differential equation can represent waves, 
because any physical acceptable wave must 
take finite values for all values of x and t. But 
if the function represents a wave then it must 
satisfy the differential equation. Since, in one 
dimension (one independent variable), the 
partial derivative with respect to x is the same 
as total derivative in coordinate x, we write 

	
d y
dx v

d y
dt

2

2 2

2

2

1
= � (11.37)

This can be extended to more than one 
dimension (two, three, etc.). Here, for 
simplicity, we focus only on the one 
dimensional wave equation. 

EXAMPLE 11.11

Sketch y = x −a for different values of a. 

Solution

This implies, when increasing the value 
of a, the line shifts towards right side. For 
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245Unit 11  Waves

11.6.3  Graphical 
representation of the wave

Let us graphically represent the two forms 
of the wave variation

(a)  Space (or Spatial) variation graph
(b)  Time (or Temporal) variation graph

(a)  Space variation graph

x+λ

2π

λ

π

o

x

x

       y 

Figure 11.24  Graph of sinusoidal function 
y = A sin(kx) 

By keeping the time fixed, the change in 
displacement with respect to x is plotted. Let 
us consider a sinusoidal graph, y = A sin(kx)
as shown in the Figure 11.24, where k is a 
constant. Since the wavelength λ denotes 
the distance between any two points in the 
same state of motion, the displacement y is 
the same at both the ends 
y = x and y = x + λ, i.e.,

  y = A sin(kx) = A sin(k(x + λ))
	 = A sin(kx + k λ)� (11.38)

The sine function is a periodic function with 
period 2π. Hence, 

  y = A sin(kx + 2π) = A sin(kx)� (11.39)

Comparing equation (11.38) and equation 
(11.39), we get

	 kx + k λ = kx + 2π

This implies 

	 k =
2π
λ

 rad m–1� (11.40)

where k is called wave number. This measures 
how many wavelengths are present in 2π 
radians. 

times t = 0s, t = 1s, t = 2s etc., we once again 
observe that y = sin(x−vt) moves towards 
the right. Hence, y = sin(x−vt) is a travelling 
(or progressive) wave moving towards the 
right. If y = sin(x+vt) then the travelling 
(or progressive) wave moves towards the 
left. Thus, any arbitrary function of type  
y = f(x−vt) characterising the wave must 
move towards right and similarly, any 
arbitrary function of type y = f(x+vt) 
characterizing the wave must move towards 
left.

EXAMPLE 11.13

Check the dimensional of the wave  
y = sin(x−vt). If it is dimensionally wrong, 
write the above equation in the correct 
form.

Solution
Dimensionally it is not correct. we know 
that y = sin(x−vt) must be a dimensionless 
quantity but x−vt has dimension. The 
correct equation is y = sin (k x−ωt), where 
k and ω have the dimensions of inverse 
of length and inverse of time respectively. 
The sine functions and cosine functions 
are periodic functions with period 2π. 
Therefore, the correct expression is  

y = sin 2 2π
λ

πx
T

t−








  where λ and T are 

wavelength and time period, respectively. 
In general, y(x,t)=A sin(k x−ωt). 

Amplitude

y(x,t) = A sin(kx -ωt)
Phase 

Oscillating 
term

Displacement

Angular 
wave number Position Angular 

frequency

Time
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246 Unit 11  Waves

per second. Since inverse of frequency is 
time period, we have,

	 T
f

= 1  in seconds

This is the time taken by a medium particle 
to complete one oscillation. Hence, we can 
define the speed of a wave (wave speed, v) as 
the distance traversed by the wave per second  

	 v
T

f= =
λ λ  in m s-1�  

which is the same relation as we obtained in 
equation (11.4). 

11.6.4  Particle velocity and 
wave velocity

In a plane progressive harmonic wave, 
the constituent particles in the medium 
oscillate simple harmonically about their 
equilibrium positions. When a particle is in 
motion, the rate of change of displacement 
at any instant of time is defined as velocity 
of the particle at that instant of time. This is 
known as particle velocity. 

	 v dy
dtP =  m s-1� (11.41)

But 	 y(x, t)= A sin(k x - ω t)� (11.42)

Therefore, dy
dt

 = − ω A cos(k x− ω t)�(11.43)

Similarly, we can define velocity (here speed) 
for the travelling wave (or progressive 
wave). In order to determine the velocity 
of a progressive wave, let us consider 
a progressive wave (shown in Figure 
11.23) moving towards right. This can be 
mathematically represented as a sinusoidal 
wave. Let P be any point on the phase of the 
wave and yP be its displacement with respect 

The spatial periodicity of the wave is

λ π
=

2
k

 in m
Then,
At t = 0 s	 y(x, 0) = y(x + λ, 0)  

and
At any time t,	y(x, t) = y(x + λ, t)

EXAMPLE 11.14

The wavelength of two sine waves are  
λ1 = 1m and λ2 = 6m. Calculate the 
corresponding wave numbers. 

Solution

	 k1 = 2
1
π  = 6.28 rad m-1

	 k2 = 2
6
π  = 1.05 rad m-1

(b)	Time variation graph

2π

2π
π t

y

o

2π―tT ))

sin

Figure 11.25  Graph of sinusoidal 
function y =A sin(ωt)

By keeping the position fixed, the change 
in displacement with respect to time is 
plotted. Let us consider a sinusoidal graph,  
y =A sin(ωt) as shown in the Figure 11.25, 
where  ω is angular frequency of the wave 
which measures how quickly wave oscillates 
in time or number of cycles per second. 

The temporal periodicity or time period is

	
T

T
= ⇒ =

2 2π
ω

ω π

The angular frequency is related to frequency 
f  by the expression ω = 2 πf, where the 
frequency f is defined as the number of 
oscillations made by the medium particle 
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247Unit 11  Waves

11.7

EXAMPLE 11.15

A mobile phone tower transmits a wave 
signal of frequency 900MHz. Calculate the 
length of the waves transmitted from the 
mobile phone tower.

Solution

Frequency, f MHz Hz= = ×900 900 10
6

The speed of wave is c = 3 × 108m s−1

	
λ= =

×
×

=
v
f

m3 10
900 10

0 33
8

6 .

SUPERPOSITION 
PRINCIPLE

When a jerk is given to a stretched string 
which is tied at one end, a wave pulse is 
produced and the pulse travels along the 
string. Suppose two persons holding the 
stretched string on either side give a jerk 
simultaneously, then these two wave pulses 
move towards each other, meet at some 
point and move away from each other with 
their original identity. Their behaviour is 
very different only at the crossing/meeting 
points; this behaviour depends on whether 
the two pulses have the same or different 
shape as shown in Figure 11.26.

Figure 11.26  Superposition of two waves

to the mean position. The displacement of 
the wave at an instant t is 

y = y(x,t) = A sin(k x− ω t)

At the next instant of time tʹ = t + ∆t the 
position of the point P is xʹ = x + ∆x. Hence, 
the displacement of the wave at this instant 
is 

  y = y(xʹ, tʹ) = y(x + ∆x, t + ∆t )

  = A sin[k (x + ∆x)- ω (t + ∆t)]� (11.44)

Since the shape of the wave remains the 
same, this means that the phase of the wave 
remains constant (i.e., the y- displacement of 
the point  is a constant). Therefore, equating 
equation (11.42) and equation (11.44), we get

	 y(x',t') = y(x,t), which implies

A sin[k (x + ∆x)− ω (t + ∆t)]= A sin(k x− ω t)

Or 

k(x + ∆x) − ω(t + ∆t) = kx − ωt = constant
� (11.45)

On simplification of equation (11.45), we 
get 

	 v x
t k

vp=
∆
∆
= =

ω � (11.46)

where vp is called wave velocity or phase 
velocity. 

By expressing the angular frequency and 
wave number in terms of frequency and 
wave length, we obtain

	 ω =2 π f = 2π
T

	
k =

2π
λ

	
v

k
f= =

ω λ
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248 Unit 11  Waves

multiply y1 and y2 with some constant then 
their amplitude is scaled by that constant 
Further, if C1 and C2 are used to multiply the 
displacements y1 and y2, respectively, then, 
their net displacement y is 
	 y = C1 y1 + C2 y2 �

This can be generalized to any number of 
waves. In the case of n such waves in more 
than one dimension the displacements are 
written using vector notation. 

Here, the net displacement y
��

 is

y C yi i
i

n�� ���





1

The principle of superposition can explain 
the following :  

	 (a)	� Space (or spatial) Interference (also 
known as Interference)

	 (b)	� Time (or Temporal) Interference 
(also known as Beats)

	 (c)	� Concept of stationary waves

Waves that obey principle of superposition 
are called linear waves (amplitude is much 
smaller than their wavelengths). In general, 
if the amplitude of the wave is not small 
then they are called non-linear waves. These 
violate the linear superposition principle, 
e.g. laser. In this chapter, we will focus our 
attention only on linear waves.

We will discuss the following in different 
subsections:

11.7.1  Interference of waves

Figure 11.27  Interference of waves

When the pulses have the same shape, 
at the crossing, the total displacement 
is the algebraic sum of their individual 
displacements and hence its net amplitude is 
higher than the amplitudes of the individual 
pulses. Whereas, if the two pulses have same 
amplitude but shapes are 180° out of phase 
at the crossing point, the net amplitude 
vanishes at that point and the pulses will 
recover their identities after crossing. Only 
waves can possess such a peculiar property 
and it is called superposition of waves. This 
means that the principle of superposition 
explains the net behaviour of the waves 
when they overlap. 

Generalizing to any number of waves i.e, 
if two or more waves in a medium move 
simultaneously, when they overlap, their 
total displacement is the vector sum of the 
individual displacements. We know that 
the waves satisfy the wave equation which 
is a linear second order homogeneous 
partial differential equation in both 
space coordinates and time. Hence, their 
linear combination (often called as linear 
superposition of waves) will also satisfy the 
same differential equation. 

To understand mathematically, let us 
consider two functions which characterize 
the displacement of the waves, for example, 

	 y1 = A1 sin(kx − ωt)�

and 
	 y2 = A2 cos(kx − ωt)�

Since, both y1 and y2 satisfy the wave 
equation (solutions of wave equation) then 
their algebraic sum

	 y = y1 + y2�

also satisfies the wave equation. This means, 
the displacements are additive. Suppose we 
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249Unit 11  Waves

y = A (sin(kx−ωt) cosθ + sinθ cos(kx−ωt))

y = A sin(kx−ωt + θ)� (11.53)

By squaring and adding equation (11.51) 
and equation (11.52), we get

A2 = A1
2 + A2

2 + 2A1 A2 cosφ� (11.54)

Since, intensity is square of the amplitude  
(I = A2), we have

	 I I I I I= + +
1 2 1 2

2 cos φ� (11.55)

This means the resultant intensity at any 
point depends on the phase difference at 
that point. 

(a)  For constructive interference:

�When crests of one wave overlap with 
crests of another wave, their amplitudes 
will add up and we get constructive 
interference. The resultant wave has a 
larger amplitude than the individual 
waves as shown in Figure 11.29 (a). 
�The constructive interference at a point  
occurs if there is maximum intensity at 
that point, which means that 

cosφ = + 1 ⇒ φ = 0, 2π,4π,… = 2nπ, 
where n = 0,1,2,... 

This is the phase difference in which 
two waves overlap to give constructive 
interference.

Therefore, for this resultant wave,

I I I A A
maximum

     1 2

2

1 2

2

Hence, the resultant amplitude 
	 A = A1 + A2�  

Figure 11.29  (a) Constructive 
interference  (b) Destructive interference

Interference is a phenomenon in which two 
waves superimpose to form a resultant wave 
of greater, lower or the same amplitude.

Figure 11.28  Interference of two 
sinusoidal waves

ϕ = 60º

y2

X

y1yy

Consider two harmonic waves having identical 
frequencies, constant phase difference φ and 
same wave form (can be treated as coherent 
source), but having amplitudes A1 and A2, then

	 y1 = A1 sin(kx − ωt)� (11.47)

 	 y2 = A2 sin(kx − ωt+φ)� (11.48)

Suppose they move simultaneously in a 
particular direction, then interference occurs 
(i.e., overlap of these two waves). Mathematically 

	 y = y1 + y2� (11.49)

Therefore, substituting equation (11.47) and 
equation (11.48) in equation (11.49), we get

y = A1 sin(kx − ωt) + A2 sin(kx − ωt + φ) 

Using trigonometric identity sin (α+β) = 
(sin α cosβ + cosα sinβ ), we get 

y = A1 sin(kx − ωt)+A2 [sin(kx − ωt) cosφ + 
cos(kx − ωt) sinφ]

y = sin(kx − ωt)(A1 +A2 cosφ) +  
A2 sinφ cos(kx − ωt)� (11.50)

Let us re-define	

A cosθ =(A1 + A2 cosφ)� (11.51)

and A sinθ = A2 sinφ� (11.52)

then equation (11.50) can be rewritten as 

y = A sin(kx−ωt) cosθ + A cos(kx−ωt) sinθ

Wave 1

Wave 2
+ =

      Constructive interference
(a) (b)

Destructive interference

+
wave 1

wave 2 =
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250 Unit 11  Waves

path length  is fixed but the upper path 
length can be varied by sliding the upper 
tube i.e.,  is varied. The difference in path 
length is known as path difference, 

∆r = |r2 − r1|

Suppose the path difference is allowed to 
be either zero or some integer (or integral) 
multiple of wavelength λ. Mathematically, 
we have

	 ∆r = nλ� where, n = 0, 1, 2, 3,....       

Then the two waves arriving from the paths  
r1 and r2 reach the receiver at any instant are 
in phase (the phase difference is 0° or 2π) and 
interfere constructively as shown in Figure 11.31. 

ϕ = 0º

y1 and y2   are  identicalyy

x

Figure 11.31  Maximum intensity when 
the phase difference is 0°

Therefore, in this case, maximum sound 
intensity is detected by the receiver. If the 
path difference is some half-odd-integer 
(or half-integral) multiple of wavelength λ, 

mathematically,  Δ r = n λ
2

	 where, n = 1,3,...� (n is odd)

then the two waves arriving from the paths r1 
and r2 and reaching the receiver at any instant 
are out of phase (phase difference of π or 
180°). They interfere destructively as shown 
in Figure 11.32. They will cancel each other.

Figure 11.32  Minimum intensity when the 
phase difference is 180°

y y

x

y
1

y
2

(b)  For destructive interference:  
�When the trough of one wave overlaps 
with the crest of another wave, their 
amplitudes “cancel” each other and we 
get destructive interference as shown 
in Figure 11.29 (b). The resultant 
amplitude is nearly zero. The destructive 
interference occurs if there is minimum 
intensity at that point, which means 
cosφ = − 1 ⇒ φ = π,3π,5π,… = (2 n-1) π, 
where n = 0,1,2,…. i.e. This is the phase 
difference in which two waves overlap to 
give destructive interference. Therefore,  

I I I A Aminimum = −( ) = −( )1 2

2

1 2
2

Hence, the resultant amplitude 

A=|A1−A2|

Let us consider a simple instrument to 
demonstrate the interference of sound 
waves as shown in Figure 11.30. 

Figure 11.30  Simple instrument to 
demonstrate interference of sound waves

P R
R�������

S

S������

Sliding tube

A sound wave from a loudspeaker S is 
sent through the tube P. This looks like a 
T-shaped junction. In this case, half of the 
sound energy is sent in one direction and 
the remaining half is sent in the opposite 
direction. Therefore, the sound waves that 
reach the receiver R can travel along either 
of two paths. The distance covered by the 
sound wave along any path from the speaker 
to receiver is called the path length . From 
the Figure 11.30, we notice that the lower 

UNIT-11(XI-Physics_Vol-2).indd   250UNIT-11(XI-Physics_Vol-2).indd   250 26-03-2022   17:24:5326-03-2022   17:24:53



251Unit 11  Waves

Therefore, at the point Y, the two waves 
from A and B are in phase, hence, the 
intensity will be maximum. 
Consider a point X, and let the path 

difference the between two waves be λ
2

. 
Then the phase difference at X is 

∆ϕ π
λ

λ π= =
2

2
Therefore, at the point X, the waves meet 
and are in out of phase, Hence, due to 
destructive interference, the intensity will 
be minimum.

EXAMPLE 11.17

Two speakers C and E are placed 5 m apart 
and are driven by the same source. Let a 
man stand at A which is 10 m away from 
the mid point O of C and E. The man walks 
towards the point O which is at 1 m (parallel 
to OC) as shown in the figure. He receives 
the first minimum in sound intensity at B. 
Then calculate the frequency of the source. 
(Assume speed of sound = 343 m s–1)

5m 1 m
X1

X2

Solution

1 m
B

A

F     

   10 m 
E

 5m D

C

O

X�

X�

The first minimum occurs when the two 
waves reaching the point B are 180° (out of 

phase). The path difference ∆ =x λ
2

. 

In order to calculate the path difference, we 
have to find the path lengths x1 and x2. 
In a right triangle BDC,

Therefore, the amplitude is minimum or zero 
amplitude which means no sound. No sound 
intensity is detected by the receiver in this case. 
The relation between path difference and phase 
difference is

  phase difference = 2π
λ

 (path difference)
� (11.56)

i.e.,	 ∆ ∆ϕ π
λ

=
2 r   or  ∆ ∆r = λ

π
ϕ

2

EXAMPLE 11.16

Consider two sources A and B as shown in the 
figure below. Let the two sources emit simple 
harmonic waves of same frequency but of 
different amplitudes, and both are in phase 
(same phase). Let O be any point equidistant 
from A and B as shown in the figure. Calculate 
the intensity at points O, Y and X. (X and Y 
are not equidistant from A & B)

A

B
O

X

Y

Solution

The distance between OA and OB are the 
same and hence, the waves starting from A 
and B reach O after covering equal distances 
(equal path lengths). Thus, the path difference 
between two waves at O is zero. 

	 OA − OB = 0

Since the waves are in the same phase, at the 
point O, the phase difference between two 
waves is also zero. Thus, the resultant intensity 
at the point O is maximum. 
Consider a point Y, such that the path 
difference between two waves is λ. Then the 
phase difference at Y is 

∆ ∆ϕ π
λ

π
λ

λ π= × = × =
2 2 2r
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252 Unit 11  Waves

11.7.2  Formation of beats

When two or more waves superimpose each 
other with slightly different frequencies, then 
a sound of periodically varying amplitude 
at a point is observed. This phenomenon is 
known as beats. The number of amplitude 
maxima per second is called beat frequency. 
If we have two sources, then their difference 
in frequency gives the beat frequency. 
Number of beats per second

n = | f1 - f2| per second

DB = 10m and OC = 1

2
 (5) = 2.5 m

CD = OC −1 = (2.5 m)−1 m = 1.5 m

x m
1

2 2

10 1 5 100 2 25 102 25 10 1= ( ) + ( ) = + = =. . . .

x m
1

2 2

10 1 5 100 2 25 102 25 10 1= ( ) + ( ) = + = =. . . .

In a right triangle EFB,

DB = 10m and OE = 1

2
 (5) = 2.5m = FA

FB = FA + AB = (2.5 m) + 1 m = 3.5 m

x m
2

2 2

10 3 5 100 12 25 112 25 10 6= ( ) + ( ) = + = =. . . .

x m
2

2 2

10 3 5 100 12 25 112 25 10 6= ( ) + ( ) = + = =. . . .

The path difference ∆x = x2 − x1 = 10.6 
m−10.1 m = 0.5 m. Required that this 
path difference 

∆x = λ
2

 =0.5 ⇒ λ=1.0 m

To obtain the frequency of source, we use 

v = λf ⇒ f = v
λ

 = 343

1
 =343 Hz 

=0.3 kHz 

If the speakers were 
connected such that already 
the path difference is .  

Now, the path difference combines 
with a path difference of . This gives a 
total path difference of λ which means, 
the waves are in phase and there is a 
maximum intensity at point B. 

Note

Figure 11.33:  Two waves superimpose 
with different frequencies such that there 
is a time alternation in constructive and 
destructive interference i.e., they are 
periodically in and out of phase

A

B
B

D
C

A

r = 0.05r = 0 r =0.10 r = 0.15
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253Unit 11  Waves

Case (A):

The resultant amplitude is maximum when yp 

is maximum. Since y f f tp ∝
−



















cos 2
2

1 2π ,  

this means maximum amplitude occurs only 
when cosine takes ±1, 

cos 2
2

11 2π f f
t

−


















=±

⇒  2
2

1 2π πf f
t n

−







 = ,

or,  (f1− f2 )t = n

	 or, t
n

f f
=

−( )1 2

	 n = 0,1,2,3, ....

Hence, the time interval between two successive 
maxima is 
t2−t1 = t3−t2=...= 1

1 2
f f−( )

;
  n=| f1 − f2|= 1

1 2t t-
Therefore, the number of beats produced per 
second is equal to the reciprocal of the time 
interval between two consecutive maxima i.e., 
|f1 - f2|.

Case (B):

The resultant amplitude is minimum i.e., it 
is equal to zero when yp is minimum. Since 

y f f tp ∝
−



















cos 2
2

1 2π , this means, minimum 

occurs only when cosine takes 0, 

	 cos 2
2

01 2π f f t−


















= ,

	  2
2

2 1
2

1 2π πf f t n−







 = +( ) ,

	  f f t n1 2
1
2

2 1−( ) = +( )

	 or, t
n

f f
=

+
−











1
2

2 1

1 2

, where f1 ≠ f2  n = 0,1,2,3,.....

Hence, the time interval between two successive 
minima is 

t2−t1 = t3−t2=...= 
1

1 2
f f−( ) ;

  n=| f1 − f2|= 1

1 2t t-
Therefore, the number of beats produced per 
second is equal to the reciprocal of the time 
interval between two consecutive minima i.e., 
|f1 – f2|.

For mathematical treatment, let us consider two 
sound waves having same amplitude and slightly 
different frequencies f1 and f2, superimposed on 
each other.

Since the sound wave (pressure wave) is a 
longitudinal wave, let us consider y1 = A sin(ω1t) 
and y2 = A sin(ω2t) to be displacements of the 
two waves at a point x = 0 with same amplitude 
(region having high pressures) and different 
angular frequencies ω1 and ω2, respectively. 
Then when they are allowed to superimpose we 
get the net displacement 

	 y = y1 + y2

	 y = A sin(ω1 t) + A sin(ω2 t)

But 
	 ω1 = 2πf1 and ω2 = 2πf2 

Then
	 y = A sin(2πf1t) + A sin(2πf2t)

Using trigonometry formula 

sin sin cos sinC D C D C D
+ =

−









+







2

2 2

y A f f t f f
=

−



















+







2 2

2
2

2
1 2 1 2cos sinπ π 











t

Let	 y A f f tp =
−



















2 2
2

1 2cos π � (11.57)

and if f1 is slightly higher value than f2 then,   

f f f f
1 2 1 2

2 2

−





+






 means yp in equation 

(11.57) varies very slowly when compared to 
f f
1 2

2

+





. Therefore

	 y = yP sin(2πfavgt)� (11.58)

This represents a simple harmonic wave of 
frequency which is an arithmetic average 
of frequencies of the individual waves,  

favg= 
f f
1 2

2

+



  and amplitude yp varies with 

time t.  

Additional information (Not for examination): Mathematical treatment of beats
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254 Unit 11  Waves

11.8EXAMPLE 11.18

Consider two sound waves with wavelengths 
5 m and 6 m. If these two waves propagate 
in a gas with velocity 330 ms-1. Calculate 
the number of beats per second. 

Solution 

Given λ1 = 5m and λ2 = 6m
Velocity of sound waves in a gas is  
v = 330 ms-1

The relation between wavelength and 

velocity is v = λf ⇒ f = v
λ

The frequency corresponding to wavelength  

λ1 is f v Hz1
1

330
5

66= = =
λ

The frequency corresponding to wavelength  

λ2 is f v Hz2
2

330
6

55= = =
λ

The number of beats per second is 

| f1 − f2| = |66 − 55| = 11 beats per sec

EXAMPLE 11.19

Two vibrating tuning forks produce waves 
whose equation is given by y1 = 5 sin(240π t)  
and y2 = 4 sin(244πt). Compute the number 
of beats per second. 

Solution

Given y1 = 5 sin(240π t) and y2 = 4 sin(244πt)

Comparing with y = A sin(2π f1t), we get 

	 2πf1 = 240π ⇒ f1 = 120Hz

	 2πf2 = 244π ⇒ f2 = 122Hz

The number of beats produced is |  f1 − f2|  
= |120 − 122| = |− 2|=2 beats per sec

STANDING WAVES

11.8.1  Explanation of 
stationary waves

When the wave hits the rigid boundary 
it bounces back to the original medium 
and can interfere with the original waves. 
A pattern is formed, which are known 
as standing waves or stationary waves. 
Consider two harmonic progressive waves 
(formed by strings) that have the same 
amplitude and same velocity but move in 
opposite directions. Then the displacement 
of the first wave (incident wave) is 

	 y1 = A sin(kx − ωt)� (11.59)

(waves move toward right)

and the displacement of the second wave 
(reflected wave) is 

	 y2 = A sin(kx + ωt)� (11.60)

(waves move toward left)

both will interfere with each other by 
the principle of superposition, the net 
displacement is

	 y = y1 + y2� (11.61)

Substituting equation (11.59) and equation 
(11.60) in equation (11.61), we get

  y = A sin(kx − ωt)+A sin(kx + ωt)� (11.62)

Using trigonometric identity, we rewrite 
equation (11.62) as 

  y (x, t) = 2A cos(ωt) sin(kx)�  (11.63)
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255Unit 11  Waves

where n takes integer or integral values. 
Note that the elements at these points do not 
vibrate (not move), and the points are called 
nodes. The  nthnodal positions is given by,

	 x nn =
λ
2

 where, n = 0,1,2,...� (11.65)

For n = 0 we have minimum at 

x0 = 0

For n = 1 we have minimum at 

x1 2
=

λ

For n = 2 we have maximum at 
x2 = λ

and so on. 

The distance between any two successive 
nodes can be calculated as

	 xn − xn−1 = n nλ λ λ
2

1
2 2

− −( ) = .

EXAMPLE 11.20

Compute the distance between anti-node 
and neighbouring node. 

Solution

For nth mode, the distance between anti-
node and neighbouring node is  

	 Δxn = 
2 1

2 2 2 4
n n+







 − =

λ λ λ

11.8.2  Characteristics of 
stationary waves

(1) �Stationary waves are characterised by 
the confinement of a wave disturbance 
between two rigid boundaries. This 
means, the wave does not move forward 
or backward in a medium (does not 
advance), it remains steady at its place. 
Therefore, they are called “stationary 
waves or standing waves”.  

This represents a stationary wave or standing 
wave, which means that this wave does 
not move either forward or backward, 
whereas progressive or travelling waves will 
move forward or backward.  Further, the 
displacement of the particle in equation 
(11.63) can be written in more compact form,

y(x,t) = A  ʹcos(ωt)

where, Aʹ = 2Asin(kx), implying that the 
particular element of the string executes 
simple harmonic motion with amplitude 
equals to Aʹ. The maximum of this amplitude 
occurs at positions for which

sin(kx) =1 ⇒ kx = π π π
2

3
2

5
2

, , , ... = mπ

where m takes half integer or half integral 
values. The position of maximum amplitude 
is known as antinode. Expressing wave 
number in terms of wavelength, we can 
represent the anti-nodal positions as 

 x m
m =

+









2 1
2 2

λ , where, m = 0,1,2...�(11.64)

For m = 0 we have maximum at

x0 4
=

λ

For m = 1 we have maximum at 

x1
3
4

=
λ

For m = 2 we have maximum at

x2
5
4

=
λ

and so on. 

The distance between two successive anti-
nodes can be computed by 

xm − xm−1 = 2 1
2 2

2 1 1
2 2 2

m m+







 −

+( )+








=

λ λ λ

Similarly, the minimum of the amplitude A' 
also occurs at some points in the space, and 
these points can be determined by setting 

	 sin(kx)= 0 ⇒ k x = 0,π,2π,3π,… = n π
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256 Unit 11  Waves

11.8.3  Stationary waves in 
sonometer

Sono means sound related, and sonometer 
implies sound-related measurements. It is 
a device for demonstrating the relationship 
between the frequency of the sound 
produced in the transverse standing wave in 
a string, and the tension, length and mass 
per unit length of the string. Therefore, using 
this device, we can determine the following 
quantities: 

(2) �Certain points in the region in which the 
wave exists have maximum amplitude, 
called as anti-nodes and at certain points 
the amplitude is minimum or zero, called 
as nodes.

(3) �The distance between two consecutive 

nodes (or) anti-nodes is λ
2

.

(4) �The distance between a node and its 

neighbouring anti-node is λ
4

.

(5) �The transfer of energy along the standing 
wave is zero. 

Table 11.3:  Comparison between progressive and stationary waves
S.No. Progressive waves Stationary waves

1. Crests and troughs are formed in 
transverse progressive waves, and 
compression and rarefaction are formed 
in longitudinal progressive waves. 
These waves move forward or backward 
in a medium i.e., they will advance in a 
medium with a definite velocity. 

Crests and troughs are formed in 
transverse stationary waves, and 
compression and rarefaction are formed 
in longitudinal stationary waves. 
These waves neither move forward nor 
backward in a medium i.e., they will 
not advance in a medium.

2. All the particles in the medium vibrate 
such that the amplitude of the vibration 
for all particles is same.  

Except at nodes, all other particles of 
the medium vibrate such that amplitude 
of vibration is different for different 
particles. The amplitude is minimum 
or zero at nodes and maximum at anti-
nodes.

3. These wave carry energy while 
propagating.

These waves do not transport energy.

Load

P Q

Figure 11.34  Sonometer
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257Unit 11  Waves

frequency f v
l

T
d

= =
λ π ρ

1
2

4

2

	 ∴	 f
ld

T
=

1
πρ

� (11.67)

EXAMPLE 11.21

Let f be the fundamental frequency of 
the string. If the string is divided into 
three segments l1, l2 and l3 such that the 
fundamental frequencies of each segments 
be  f1, f2 and f3, respectively. Show that 

1 1 1 1

1 2 3
f f f f
= + +

Solution

For a fixed tension T and mass density µ, 
frequency is inversely proportional to the 
string length i.e.

f
l

f v
l

l v
f

∝ ⇒ = ⇒ =
1

2 2

For the first length segment  

f v
l

l v
f1

1

1

1
2 2

= ⇒ =

For the second length segment 

f v
l

l v
f2

2
2

22 2
= ⇒ =

For the third length segment 

f v
l

l v
f3

3

3

3
2 2

= ⇒ =

Therefore, the total length 

	 l=l1 +l2+l3

v
f

v
f

v
f

v
f f f f f2 2 2 2

1 1 1 1

1 2 1 2 3

= + + ⇒ = + +

(a)		 the frequency of the tuning fork or  
frequency of alternating current 

(b)		 the tension in the string

(c)		 the unknown hanging mass  

Construction: 

The sonometer is made up of a hollow box 
which is one meter long with a uniform 
metallic thin string attached to it. One end 
of the string is connected to a hook and the 
other end is connected to a weight hanger 
through a pulley as shown in Figure 11.34. 
Since only one string is used, it is also known 
as monochord. The weights are added to the 
free end of the wire to increase the tension 
of the wire. Two adjustable wooden knives 
are put over the board, and their positions 
are adjusted to change the vibrating length 
of the stretched wire.

Working : 

A transverse stationary or standing wave 
is produced and hence, at the knife edges 
P and Q, nodes are formed. In between the 
knife edges, anti-nodes are formed.  

If the length of the vibrating element is l then 

l l= ⇒ =
λ λ
2

2

Let f be the frequency of the vibrating 
element, T the tension of in the string and μ 
the mass per unit length of the string. Then 
using equation (11.13), we get 

	 f v
l

T
= =

λ µ
1
2  in Hertz � (11.66)

Let ρ be the density of the material of the 
string and d be the diameter of the string. 
Then the mass per unit length μ,

μ = Area × density = πr2ρ = πρd2

4
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We have, 

	 f v n v
Ln

n

= =







λ 2

� (11.70)

The lowest natural frequency is called the 
fundamental frequency. 

	 f v v
L1

1 2
= =








λ

� (11.71)

The second natural frequency is called the 
first over tone.

	 f v
L L

T
2 2

2
1

=







= µ �

The third natural frequency is called the 
second over tone.

	 f v
L L

T
3 3

2
3 1

2
=







=








µ

and so on. 

Therefore, the nth natural frequency can be 
computed as integral (or integer ) multiple 
of fundamental frequency, i.e., 

fn = nf1,  where n is an integer� (11.72)

If natural frequencies are written as integral 
multiple of fundamental frequencies, then the 
frequencies are called harmonics. Thus, the 
first harmonic is f1 = f1 (the fundamental 
frequency is called first harmonic), the 
second harmonic is f2 = 2f1 , the third 
harmonic is f3 = 3f1 etc. 

EXAMPLE 11.22

Consider a string in a guitar whose length is 
80 cm and a mass of 0.32 g with tension 80 N 
is plucked. Compute the first four lowest 
frequencies produced when it is plucked. 

Solution

The velocity of the wave

v T
=

µ

11.8.4  Fundamental 
frequency and overtones

Let us now keep the rigid boundaries at  
x = 0 and  x = L and produce a standing 
waves by wiggling the string (as in plucking 
strings in a guitar). Standing waves with a 
specific wavelength are produced. Since, the 
amplitude must vanish at the boundaries, 
therefore, the displacement at the boundary 
must satisfy the following conditions  

y(x = 0, t) = 0 and y(x = L, t) = 0� (11.68)

Since the nodes formed are at a distance 
λn

2
 apart, we have n Lnλ

2







= ,  where n is 

an integer, L is the length between the two 
boundaries and λn is the specific wavelength 
that satisfy the specified boundary 
conditions. Hence, 

	 ln
L
n

=







2
� (11.69)

What will happen to  wavelength if n is 
taken as zero? Why is this not permitted?

Therefore, not all wavelengths are allowed. 
The (allowed) wavelengths should fit with 
the specified boundary conditions, i.e., for n 
= 1, the first mode of vibration has specific 
wavelength  λl = 2L. Similarly for n = 2, 
the second mode of vibration has specific 
wavelength 

λ2
2
2

=







=

L L

For n = 3, the third mode of vibration has 
specific wavelength 

λ3
2
3

=









L

and so on.
The frequency of each mode of vibration 
(called natural frequency) can be calculated.
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259Unit 11  Waves

11.9

(ii)  The law of tension:

For a given vibrating length l (fixed) and 
mass per unit length μ (fixed) the frequency 
varies directly with the square root of the 
tension T,

f Tµ

⇒ =f A T ,  where A is a constant

(iii)		 The law of mass:

For a given vibrating length l (fixed) and 
tension T (fixed) the frequency varies 
inversely with the square root of the mass 
per unit length μ,

f µ 1
µ

⇒ =f B
µ

, where B is a constant

The length of the string, L = 80 cm = 0.8 m 
The mass of the string, m = 0.32 g  
= 0.32 × 10–3 kg
Therefore, the linear mass density,

µ= ×
= ×

−
− −0 32 10

0 8
0 4 10

3
3 1.

.
. kg m

The tension in the string, T = 80 N

v=
× −

80
0 4 10 3.

= 447.2 m s-1

The wavelength corresponding to the 
fundamental frequency f1  is λ1 = 2L = 2 × 
0.8 = 1.6 m
The fundamental frequency f1 
corresponding to the wavelength λ1 

f v Hz1
1

447 2
1 6

279 5= = =
λ

.
.

.

Similarly, the frequency corresponding to 
the second harmonics, third harmonics 
and fourth harmonics are 

f2 = 2f1 = 559 Hz

f3 = 3f1 = 838.5 Hz

f4 = 4f1 = 1118 Hz

11.8.5  Laws of transverse 
vibrations in stretched  
strings

There are three laws of transverse vibrations 
of stretched strings which are given as 
follows:

(i)  The law of length : 

For a given wire with tension T (which is 
fixed) and mass per unit length μ (fixed) the 
frequency varies inversely with the vibrating 
length. Therefore,

f
l

f C
l

∝ ⇒ =
1

⇒l×f = C, where C is a constant 

INTENSITY AND 
LOUDNESS

Consider a source and two observers 
(listeners). The source emits sound waves 
which carry energy. The sound energy 
emitted by the source is same regardless of 
whoever measures it, i.e., it is independent 
of any observer standing in that region. But 
the sound received by the two observers 
may be different; this is due to some factors 
like sensitivity of ears, etc. To quantify such 
thing, we define two different quantities 
known as intensity and loudness of sound.  

11.9.1  Intensity of sound

When a sound wave is emitted by a source, the 
energy is carried to all possible surrounding 
points. The average sound energy emitted or 
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and since, I
r

µ
1

2

the power output does not depend on 
the observer and depends on the baby. 
Therefore,

I
I

r
r

1

2

2
2

1
2=

I I r
r2 1
1
2

2
2=

I2 = 0.25 × 10–2 W m–2

11.9.2  Loudness of sound

Two sounds with same intensities need not 
have the same loudness. For example, the 
sound heard during the explosion of balloons 
in a silent closed room is very loud when 
compared to the same explosion happening 
in a noisy market. Though the intensity of 
the sound is the same, the loudness is not. 
If the intensity of sound is increased then 
loudness also increases. But additionally, not 
only does intensity matter, the internal and 
subjective experience of “how loud a sound 
is” i.e., the sensitivity of the listener also 
matters here. This is often called loudness. 
That is, loudness depends on both intensity 
of sound wave and sensitivity of the ear (It is 
purely observer dependent quantity which 
varies from person to person) whereas the 
intensity of sound does not depend on the 
observer. The loudness of sound is defined 
as “the degree of sensation of sound produced 
in the ear or the perception of sound by the 
listener”. 

11.9.3  Intensity and 
loudness of sound

Our ear can detect the sound with intensity 
level ranges from 10-2 Wm-2 to 20 W m-2.  

transmitted per unit time or per second is 
called sound power.  Therefore, the intensity 
of sound is defined as “the sound power 
transmitted per unit area taken normal to the 
propagation of the sound wave ”.  

Source
I

I = P
4�r2

I
4

I
9

Area 2

Area 3

Area 1

Sound
Source

Distance 3

Distance 2

Distance 1
Area 3ea 3r

r
2r

3r

Source
I

I = P
4�r2

I
4

I
9

Area 2

Area 3

Area 1

Sound
Source

Distance 3

Distance 2

Distance 1
Area 3ea 3r

r
2r

3r

Figure 11.35  Intensity of sound waves

For a particular source (fixed source), the 
sound intensity is inversely proportional to 
the square of the distance from the source. 

I
power of the source

r
I

r
= ⇒ ∝

4
1

2 2π

This is known as inverse square law of sound 
intensity.  

EXAMPLE 11.23

A baby cries on seeing a dog and the cry 
is detected at a distance of 3.0 m such that 
the intensity of sound at this distance is  
10–2 W m–2. Calculate the intensity of the 
baby’s cry at a distance 6.0 m. 

Solution
I1 is the intensity of sound detected at a 
distance 3.0 m and it is given as 10-2 W m-2.

Let I2 be the intensity of sound detected at 
a distance 6.0 m. Then,

  r1 = 3.0 m,  r2 = 6.0 m
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Solution

ΔL =10 log10 L I
I

dB=









=10 5010

1

0

log

log10
1

0

5I
I

dB









=

I
I

1

0

= 105⇒ I1= 105 I0 = 105 × 10–12 Wm–2

I1 = 10–7 Wm–2

Since three musical instruments are played, 
therefore, Itotal = 3I1 = 3 × 10–7 Wm–2. 

11.10

According to Weber-Fechner’s law, “loudness 
(L) is proportional to the logarithm of the 
actual intensity (I) measured with an accurate  
non-human instrument”. This means that

L ∝ ln I
L = k ln I

where k is a constant, which depends on 
the  unit of measurement. The difference 
between two loudnesses, L1 and L0 measures 
the relative loudness between two precisely 
measured intensities and is called as sound 
intensity level. Mathematically, sound 
intensity level is 

∆L = L1−L0 = k ln I1− k lnI0 = k ln
I
I

1

0













If k = 1 bel, k = 10 decibel, then sound 
intensity level is measured in bel, in honour 
of Alexander Graham Bell. Therefore,

	  












L I
I

ln
1

0

 bel

However, this is practically a bigger unit, 
so we use a convenient smaller unit, called 
decibel. Thus, decibel = 1

10
 bel. Therefore, 

by multiplying and dividing by 10, we get

L I
I

=





















10
1

10

1

0

ln  bel

L I
I

=









10

1

0

ln  decibel with k = 10

For practical purposes, we use logarithm to 
base 10 instead of natural logarithm,

  ΔL =10 log10 L I
I

=









10 10

1

0

log  decibel � (11.73)

EXAMPLE 11.24
The sound level from a musical instrument 
playing is 50 dB. If three identical musical 
instruments are played together then 
compute the total intensity. Calculate the 
intensity of the sound from each instrument 
as the threshold of hearing is 10–12 W m–2.

VIBRATIONS OF AIR 
COLUMN

Musical instruments like flute, clarinet, 
nathaswaram, etc are known as wind 
instruments. They work on the principle of 
vibrations of air columns. The simplest form 
of a wind instrument is the organ pipe. It is 
made up of a wooden or metal pipe which 
produces the musical sound. For example, 
flute, clarinet and nathaswaram are organ 
pipe instruments. Organ pipe instruments 
are classified into two types:

(a) Closed organ pipes:

Figure 11.36:  Clarinet is an example of 
a closed organ pipe

Look at the picture of a clarinet, shown 
in Figure 11.36. It is a pipe with one end 
closed and the other end open. If one end 
of a pipe is closed, the wave reflected at 
this closed end is 180° out of phase with 
the incoming wave. Thus there is no 
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nodes, for which we have, from example 
11.20.

λ2
2

3
4

1
2

λ2
2

λ2
4

λ2
4

λ2+ =

=

N

L

A A

AA

A

A

λ2
1
2

λ2
2=

Figure 11.38  second mode of vibration 
having two nodes and two anti-nodes

4L = 3λ2

	 L=
3

4

2
l   or  l2

4

3
=

L

The frequency for this,

	 f v v
L

f
2

2

1

3

4
3= = =

l

is called first over tone, since  here, the 
frequency is three times the fundamental 
frequency it is called third harmonic.

The Figure 11.39 shows third mode of 
vibration having three nodes and three anti-
nodes.

displacement of the particles at the closed 
end. Therefore, nodes are formed at the 
closed end and anti-nodes are formed at 
open end.

Let us consider the simplest mode 
of vibration of the air column called the 
fundamental mode. Anti-node is formed 
at the open end and node at closed end.  
From the Figure 11.37, let L be the length 
of the tube and the wavelength of the wave 
produced. For the fundamental mode of 
vibration, we have,

	 L or L= =
l

l1

1

4
4  � (11.74)

The frequency of the note emitted is 

	 f v v
L1

1
4

= =
l � (11.75)

which is called the fundamental note. 

The frequencies higher than fundamental 
frequency can be produced by blowing air 
strongly at open end. Such frequencies are 
called overtones. 

The Figure 11.38 shows the second mode of 
vibration having two nodes and two anti-

Figure 11.37  No motion of particles which leads to nodes at closed end and antinodes at 
open end (fundamental mode) (N-node, A-antinode)
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263Unit 11  Waves

both open ends, anti-nodes are formed. Let us 
consider the simplest mode of vibration of the 
air column called fundamental mode. Since 
anti-nodes are formed at the open end, a node 
is formed at the mid-point of the pipe.  

Figure 11.41  Antinodes are formed at 
the open end and a node is formed at 
the middle of the pipe. 

λ1
4

λ1
4

λ1
4

λ1
4

λ1
2+ =

N

L

A A

AA

From Figure 11.41, if L be the length of the 
tube, the wavelength of the wave produced 
is given by

 	 L or L= =
l

l1

1

2
2 � (11.77)

The frequency of the note emitted is

	 f v v
L1

1
2

= =
l

� (11.78)

which is called the fundamental note. 

The frequencies higher than fundamental 
frequency can be produced by blowing 
air strongly at one of the open ends. Such 
frequencies are called overtones. 

A A

A
AA

A

NN

λ2
4

λ2
4

λ2
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λ2
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2

λ2
4

+ + =

Figure 11.42  Second mode of 
vibration in open pipes having two 
nodes and three anti-nodes
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Figure 11.39  Third mode of vibration 
having three nodes and three anti-nodes

We have,  4L = 5λ3

L=
5

4

3
l  or l

3

4

5
=

L

The frequency

	
f v v

L
f3

3
1

5
4

5= = =
λ

is called second over tone, and since n = 5 
here, this is called fifth harmonic. Hence, the 
closed organ pipe has only odd harmonics and 
frequency of the nth harmonic is fn = (2n+1)f1. 
Therefore, the frequencies of harmonics are 
in the ratio 

  f1 : f2 : f3 : f4 :…= 1 : 3 : 5 : 7 : …� (11.76)

(b) Open organ pipes:

Figure 11.40  Flute is an example of 
open organ pipe

Consider the picture of a flute, shown in Figure 
11.40. It is a pipe with both the ends open. At 
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264 Unit 11  Waves

  f1 : f2 : f3 : f4 :…= 1 : 2 : 3 : 4 : …� (11.79)

EXAMPLE 11.25

If a flute sounds a note with 450Hz, what 
are the frequencies of the second, third, 
and fourth harmonics of this pitch?. If the 
clarinet sounds with a same note as 450Hz, 
then what are the frequencies of the lowest 
three harmonics produced ?.

Solution

For a flute which is an open pipe, we have
Second harmonics� f2 = 2 f1 = 900 Hz
Third harmonics� f3 = 3 f1 = 1350 Hz
Fourth harmonics� f4 = 4 f1 = 1800 Hz
For a clarinet which is a closed pipe, we 
have
Second harmonics� f2 = 3 f1 = 1350 Hz
Third harmonics� f3 = 5 f1 = 2250 Hz
Fourth harmonics� f4 = 7 f1 = 3150 Hz

EXAMPLE 11.26

If the third harmonics of a closed organ 
pipe is equal to the fundamental frequency 
of an open organ pipe, compute the length 
of the open organ pipe if the length of the 
closed organ pipe is 30 cm. 

Solution

Let l2 be the length of the open organ pipe, 
with l1 =30 cm the length of the closed 
organ pipe. 
It is given that the third harmonic of closed 
organ pipe is equal to the fundamental 
frequency of open organ pipe.
The third harmonic of a closed organ pipe 
is

f v v
l

f2
2 1

1
3
4

3= = =
λ

The Figure 11.42 shows the second mode 
of vibration in open pipes. It has two nodes 
and three anti-nodes, and therefore,

L =λ2 or λ2 = L

The frequency 

f v v
L

v
L

f
2

2

1
2

2
2= = = × =

l

is called first over tone. Since n = 2 here, it is 
called the second harmonic.

λ3

λ3λ3

λ3
2

λ3
2

λ3
4

λ3
4

λ3
4

λ3
4

3
2

L

+ + =

Figure 11.43  Third mode of vibration 
having three nodes and four anti-nodes

The Figure 11.43 above shows the third 
mode of vibration having three nodes and 
four anti-nodes

L or L
= =

3

2

2

3
3 3

l l

The frequency 

f v v
L

f3
3

1

3
2

3= = =
λ

is called second over tone. Since n = 3 here, it 
is called the third harmonic.

Hence, the open organ pipe has all the 
harmonics and frequency of nth harmonic 
is fn = nf1. Therefore, the frequencies of 
harmonics are in the ratio 
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  f1 : f2 : f3 : f4 :…= 1 : 2 : 3 : 4 : …� (11.79)

EXAMPLE 11.25

If a flute sounds a note with 450Hz, what 
are the frequencies of the second, third, 
and fourth harmonics of this pitch?. If the 
clarinet sounds with a same note as 450Hz, 
then what are the frequencies of the lowest 
three harmonics produced ?.

Solution

For a flute which is an open pipe, we have
Second harmonics� f2 = 2 f1 = 900 Hz
Third harmonics� f3 = 3 f1 = 1350 Hz
Fourth harmonics� f4 = 4 f1 = 1800 Hz
For a clarinet which is a closed pipe, we 
have
Second harmonics� f2 = 3 f1 = 1350 Hz
Third harmonics� f3 = 5 f1 = 2250 Hz
Fourth harmonics� f4 = 7 f1 = 3150 Hz

EXAMPLE 11.26

If the third harmonics of a closed organ 
pipe is equal to the fundamental frequency 
of an open organ pipe, compute the length 
of the open organ pipe if the length of the 
closed organ pipe is 30 cm. 

Solution

Let l2 be the length of the open organ pipe, 
with l1 =30 cm the length of the closed 
organ pipe. 
It is given that the third harmonic of closed 
organ pipe is equal to the fundamental 
frequency of open organ pipe.
The third harmonic of a closed organ pipe 
is

f v v
l

f2
2 1

1
3
4

3= = =
λ

by raising or lowering the water in the 
reservoir R. The surface of the water will act 
as a closed end and other as the open end. 
Therefore, it behaves like a closed organ pipe, 
forming nodes at the surface of water and 
antinodes at the open end. When a vibrating 
tuning fork is brought near the open end 
of the tube, longitudinal waves are formed 
inside the air column. These waves move 
downward as shown in Figure 11.44, and 
reach the surfaces of water and get reflected 
and produce standing waves. The length of 
the air column is varied by changing the 
water level until a loud sound is produced 
in the air column. At this particular length 
the frequency of waves in the air column 
resonates with the frequency of the tuning 
fork (natural frequency of the tuning fork).  
At resonance, the frequency of sound waves 
produced is equal to the frequency of the 
tuning fork. This will occur only when 
the length of air column is proportional to 

1
4









th

 of the wavelength of the sound waves 
produced.

Let the first resonance occur at length L1, 
then 

	 1

4
λ = L1� (11.80)

But since the antinodes are not exactly 
formed at the open end, we have to include 
a correction, called end correction e, by 
assuming that the antinode is formed at some 
small distance above the open end. Including 
this end correction, the first resonance is 

	 1

4
λ = L1 + e� (11.81)

Now the length of the air column is 
increased to get the second resonance. Let L2 
be the length at which the second resonance 
occurs. Again taking end correction into 
account, we have

The fundamental frequency of open organ 

pipe is f v v
l1

1 2
2

= =
l

Therefore, 
v
l

v
l

l l cm
2

3

4

2

3
20

2 1

2

1= ⇒ = =

11.10.1  Resonance air 
column apparatus
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Figure 11.44:  The resonance air 
column apparatus and first, second and 
third resonance

The resonance air column apparatus is one 
of the simplest techniques to measure the 
speed of sound in air at room temperature. 
It consists of a cylindrical glass tube of one 
meter length whose one end A is open and 
another end B is connected to the water 
reservoir R through a rubber tube as shown 
in Figure 11.44. This cylindrical glass tube 
is mounted on a vertical stand with a scale 
attached to it. The tube is partially filled with 
water and the water level can be adjusted 
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	 3

4
λ = L2 + e� (11.82)

In order to avoid end correction, let us 
take the difference of equation (11.82) and 
equation (11.81), we get 

	
3

4
λ − 

1

4
λ = (L2 + e) − (L1 + e)

	 ⇒ 1

2
 λ = L2−L1 = ΔL

	 ⇒ λ = 2ΔL

The speed of the sound in air at room 
temperature can be computed by using the 
formula
	 v = f λ = 2f ΔL

Further, to compute the end correction, we 
use equation (11.81) and equation (11.82), 
we get

e
L L
=
−2 13
2

EXAMPLE 11.27

A frequency generator with fixed frequency 
of 343 Hz is allowed to vibrate above a  
1.0 m high tube. A pump is switched on to 
fill the water slowly in the tube. In order to 
get resonance, what must be the minimum 
height of the water?. (speed of sound in air 
is 343 m s−1)

Solution

The wavelength, λ = c
f

λ =
343
343

1ms
Hz

-

 =1.0 m

Let the length of the resonant columns be 
L1, L2 and L3. The first resonance occurs at 
length L1

L1 = λ
4

 = 1

4
 = 0.25 m

The second resonance occurs at length L2

L2 = 3

4

l  = 3

4
 = 0.75 m

The third resonance occurs at length  

L3 = 5

4

l  = 5

4
 = 1.25 m

and so on. 
Since total length of the tube is 1.0 m the 
third and other higher resonances do not 
occur. Therefore, the minimum height of 
water Hmin for resonance is, 

Hmin = 1.0 m − 0.75 m = 0.25 m

EXAMPLE 11.28

A student performed an experiment to 
determine the speed of sound in air using 
the resonance column method. The length 
of the air column that resonates in the 
fundamental mode with a tuning fork 
is 0.2 m. If the length is varied such that 
the same tuning fork resonates with the 
first overtone at 0.7 m. Calculate the end 
correction. 

Solution

End correction 

e
L L

=
−

=
−

=2 13
2

0 7 3 0 2
2

0 05. ( . ) . m

EXAMPLE 11.29

Consider a tuning fork which is used to 
produce resonance in an air column. A 
resonance air column is a glass tube whose 
length can be adjusted by a variable piston. 
At room temperature, the two successive 
resonances observed are at 20 cm and 85 cm 
of the column length. If the frequency of the 
length is 256 Hz, compute the velocity of the 
sound in air at room temperature. 
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267Unit 11  Waves

i) � Observed frequency: Stationary source 
and Moving listener

Consider a point source S of sound at rest 
with respect to the medium (air) in which it is 
kept. The medium is assumed to be uniform 
and is also at rest. The source emits sound 
waves of frequency f and wavelength λ. 

L

Compressions
of sound waves

v

v

v

vvL
S

Figure 11.45  Listener moves toward the 
stationary source

Sound waves travel with the same speed 
v in all directions radially away from the 
source in the form of spherical waves. The 
compressions (or wavefronts) of sound 
waves are represented by concentric circles 
in the Figure 11.45. The distance between 
two successive compressions is equal to its 
wavelength λ and the frequency of the wave 
is given by 

	 f = v
l

� (11.83) 

When the listener L is stationary, there 
is no relative motion between the source 
and the listener. Since v and l  remain 
unchanged, the frequency of sound 
observed by the listener is the same as the 
source frequency f. 

Solution

Given two successive length (resonance)  
to be   L1 = 20 cm and L2  = 85 cm

The frequency is  f = 256 Hz

v = f λ = 2f ΔL = 2f (L2 − L1)

= 2 × 256 × (85 − 20) × 10 −2 m s−1

v = 332.8 m s−1

11.11

DOPPLER EFFECT

Imagine that you are standing on a railway 
platform and listening to the blowing 
whistle of a train moving past you, the 
pitch (or frequency) of the sound you listen 
as the train approaches you is higher than 
the pitch you listen as it moves away from 
you. This is an example of Doppler effect.    

This effect occurs due to the relative motion 
between the source of sound and its listener. 
This motion−related frequency change 
was first observed and studied by Johann 
Christian Doppler (1803–1853), an Austrian 
Mathematician and Physicist. 

Whenever there is a relative motion 
between the source of sound and the 
listener, the frequency of the sound 
observed by the listener is different from 
the frequency produced by the source. 
This is known as Doppler effect. 

The Doppler effect is a wave phenomenon. 
Therefore, it occurs not only for sound 
waves but for any wave such as light and 
other electromagnetic waves.  Here, we will 
discuss different cases of Doppler effect for 
sound and derive the expression for the 
frequency observed by the listener. 

Stationary observer and stationary 
source means the observer and source 
are both at rest with respect to medium 
respectively
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268 Unit 11  Waves

also shown and are represented by two 
concentric circles. The second compression 
has just been emitted and is still near the 
source. The distance between two successive 
compressions is the wavelength l of the 
sound. Since f  is the frequency of the 
source, then the time between emissions of 
compressions is 

T
f

= =
1 l

v

L

Compressions

(a) Source at rest

S vv λ

L

Compression emitted
when S was at A

Compression emitted
when S is at B

vsT

vs

(b) Source moving

S
λ′

SSS
B

A

Figure 11.46  Source moves toward the 
stationary listener

Now the listener is stationary and the source 
moves directly toward the listener (Figure 
11.46(b)). Let the speed of the source be vS  
which is less than the speed of sound v. 

In a time T, the first compression travels 
a distance v T =l and the source moves 
a distance vST . As a result, the distance 
between two successive compressions 
is decreased from l  to ′ = −l l vST .
Therefore, the wavelength observed by the 
listener is given by 

Now the listener moves directly toward the 
stationary source (Figure 11.45). If vL  is 
the speed of the listener, then the relative 
speed of sound with respect to the listener 
becomes ′ = +v v vL . Since the wavelength 
remains unchanged (because the source is 
stationary), the frequency of sound observed 
by the listener is changed and the observed 
frequency ¢f is given by

′ =
′
=
+f Lv v v

l l

Using the equation (11.83),

	 ′ =
+







f fLv v

v
� (11.84)

(listener moving toward the source)

Thus, the observed frequency is greater 
than the source frequency when the listener 
moves toward the stationary source. 

If the listener is moving away from the 
stationary source, the observed frequency 
can be obtained from equation (11.84) by 
taking negative value for vL . It is given by

′ =
+









−( )
f fLv v

v

	 ′ =










−f fLv v
v

� (11.85)

(listener moving away from the source)

Thus, the observed frequency is less than 
the source frequency when the listener is 
moving away from the stationary source.

ii) � Observed frequency: Moving source 
and stationary listener

Assume that both the source S and the 
listener L are at rest as shown in Figure 
11.46a. Two successive compressions are 
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	 ′ =
+







−

f fL

S

v v
v v �

(11.88)

The sign convention we used here is that both 
vS  and vL take positive values if the source or 
the listener moves toward the other. Likewise, 
they are negative when the source or the 
listener moves away from the other.

The observed frequency for different situations 
of relative motion between the source and the 
listener is consolidated in Table 11.4.

′ = =− −










l l lv v
S

ST
f

The observed frequency is then given by

′ =
′
=
−









f

f
S

v v
vl

l

=








−









v
vv

f f
S

	 ′ =








−

f f
S

v
v v �

(11.86)

(source moving toward the listener)

Thus, whenever the source moves toward the 
stationary listener, the observed frequency 
is greater than the source frequency. 

If the source is moving away from the 
stationary listener, the observed frequency 
can be obtained from equation (11.86) by 
taking negative value for vS . It is given by

′ =








− −( )

f f
S

v
v v

	 ′ =
+











f f
S

v
v v

� (11.87)

(source moving away from the listener)

Thus, the observed frequency is less than 
the source frequency when the source is 
moving away from the stationary listener.

iii) � Observed frequency: Both source and 
listener moving

When both source and listener are moving, 
the observed frequency is obtained by 
combining equations (11.84) and (11.86).

It is important to note that 
the change in frequency oc-
curs either due to the change 

in speed of sound (when the listener 
moves and source at rest) or due to the 
change in wavelength of sound (when 
the source moves and observer at rest).

If both source and listener move, the 
change in frequency occurs due to 
both the change in speed of sound and 
the change in wavelength of sound 
wave. 

Note

Suppose the source 
moves faster than 
sound (that is, the 
source is supersonic), 

the equations (11.84) and (11.86) for 
observed frequency will become invalid 
and a stationary listener in front of the 
source hears no sound as the sound 
waves are at the rear of the source. 
At such speeds, the newly produced 
waves and the old waves interfere 
constructively which leads to very large 
amplitude of sound, called a ‘sonic 
boom’ or ‘shock wave’.
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Table 11.4:  Observed frequency for different situations
S.No. Situation Observed frequency

1 L moves toward the stationary S ′ =
+







f fLv v

v

2 L moves away from the stationary S ′ =










−f fLv v
v

3 S moves toward the stationary L ′ =








−

f f
S

v
v v

4 S moves away from the stationary L ′ =
+











f f
S

v
v v

5 S and L move toward each other ′ =
+







−

f fL

S

v v
v v

6 S and L recede from each other ′ =
+











−f fL

S

v v
v v

7 S chases the L ′ =










−
−

f fL

S

v v
v v

8 L chases the S ′ =
+
+











f fL

S

v v
v v

9
S and L move toward each other and 
the medium also moves in the direction 
of sound with speed vm

′ =
+( )+
+( )









−

f fm L

m S

v v v
v v v

Doppler effect in sound is 
asymmetric while that in light 
is symmetric.

The observed frequency of sound when 
the source moves toward stationary 
listener and the observed frequency when 
the listener moves toward stationary 
source with the same speed are not equal. 
Although the relative speed is same 
in both the cases, observed frequency 
is different. Hence, we say that the 

Doppler  effect in sound is asymmetric. 
The reason is that sound wave requires a 
medium for its propagation and it has its 
speed with respect to that medium.

But in the case of light and other 
electromagnetic radiations, the observed 
frequency is the same in both abovesaid 
cases. Therefore, Doppler effect in light 
and other electromagnetic waves is 
symmetric because the propagation of 
light is independent of the medium.

Note
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EXAMPLE 11.31

An observer observes two moving trains, 
one reaching the station and other leaving 
the station with equal speeds of 8 m s−1. 
If each train sounds its whistles with 
frequency 240 Hz, then calculate the 
number of beats heard by the observer. 

Solution: 

Observer is stationary 
	 (i)	 Source (train) is moving towards an 

observer:
The observed frequency due to train 
arriving station is  

f fin
s

=
−











 = −












× =

v
v v

330
330 8

240 246Hz

	(ii)	 Source (train) is moving away from an 
observer:
The observed frequency due to train 
leaving station is 

f fout
s

=
+











 = +












× =

v
v v

330
330 8

240 234Hz

So the number of beats = |  fin–fout| =  
(246–234) = 12

EXAMPLE 11.30  

A sound of frequency 1500 Hz is emitted by a 
source which moves away from an observer 
and moves towards a cliff at a speed of  
6 ms–1. 

	 (a)	 Calculate the frequency of the sound 
which is coming directly from the 
source. 

	 (b)	 Compute the frequency of sound 
heard by the observer reflected off the 
cliff. Assume the speed of sound in air 
is 330 m s–1.

Solution

	 (a)	 Source is moving away and observer 
is stationary, therefore, the frequency 
of sound heard directly from source 
is 

′ =
+











 = +












× =f f

s

v
v v

330
330 6

1500 1473Hz

	 (b)	 Sound is reflected from the cliff and 
reaches observer, therefore, 

′ =
−











 = −












× =f f

s

v
v v

330
330 6

1500 1528Hz
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272 Unit 11  Waves

	� A disturbance which carries energy and momentum from one point in space to 
another point in space without the transfer of medium is known as a wave. 

	� The waves which require medium for their propagation are known as mechanical waves.
	� The waves which do not require medium for their propagation are known as  

non-mechanical waves.
	� For a transverse wave, the vibration of particles in a medium is perpendicular to the 

direction of propagation of the wave.
	� For a longitudinal wave, the vibration of particles in a medium is parallel to the 

direction of propagation of the wave.
	� Elasticity and inertia are necessary properties of the medium for wave propagation.
	� Waves formed in still water (ripples) are transverse and wave formed due to vibration 

of tuning fork is longitudinal.
	� The distance between two consecutive crests or troughs is known as wavelength, λ.
	� The number of waves which crossed a point per second is known as frequency, f.
	� The time taken by one wave to cross a point is known as time period, T.
	� Velocity of the wave is v = λf.
	� Frequency is source dependent and wave velocity is medium dependent.
	� The velocity of a transverse wave produce in a stretched string depends on tension 

in the string and mass per unit length. It does not depend on shape of the wave form.

	� Velocity of transverse wave on a string is v T ms= −

µ
1 .

	� Velocity of longitudinal wave in an elastic medium is v E ms= −

ρ
1 .

	� The minimum distance from a sound reflecting wall to hear an echo at 20°C is  
17.2 meters.

	� The wave equation is ∂
∂
=

∂
∂

2

2 2

2

2

1y
x v

y
t

 in one dimension.

	� Wave number is given by k rad m= −2 1π
λ

.

	� During interference the resultant intensity is I I I I I= + +
1 2 1 2

2 cos ,j  where the 

intensity is square of the amplitude I A= 2 .

	 For constructive interference, I
maximum

= +( ) = +( )I I A A
1 2

2

1 2

2

.

	 For destructive interference, I I I
minimum

(A A )= −( ) = −
1 2

2

1 2

2 .

	� When we superimpose two or more waves with slightly different frequencies then 

a sound of periodically varying amplitude at a point is observed. This phenomenon 
is known as beats. The number of amplitude maxima per second is called beat 
frequency.

S U M M A R Y 
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273Unit 11  Waves

	� If natural frequencies are written as integral multiples of fundamental frequency, 
then the frequencies are said to be in harmonics. Thus, the first harmonic is v1 = v1,  
(the fundamental frequency is called first harmonics), the second harmonics is  
v2 = 2 v1, the third harmonics is v3 = 3 v1, and so on.

	� Loudness of sound is defined as “the degree of sensation of sound produced in the ear 
or the perception of sound by the listener”.

	� The intensity of sound is defined as “the sound power transmitted per unit area placed 
normal to the propagation of sound wave ”.

	� Sound intensity level, ∆ =L I
I
decibel10

10

1

0

log .

	� A closed organ pipe has only odd harmonics and the corresponding frequency of 

the nth harmonic is fn  =  (2n + 1) f1.
	� In a closed organ pipe the frequencies of harmonics are in the ratio

	 f1 : f2 : f3 : f4 :... = 1 : 3 : 5 : 7 :...

	� The open organ pipe has all harmonics and frequency of the nth harmonic is fn  = n f1.
	� In the open organ pipe the frequencies of harmonics are in the ratio

	 f1 : f2 : f3 : f4 :... = 1 : 2 : 3 : 4 :...

	� Whenever there is a relative motion between the source of sound and the listener, 
the frequency of the sound observed by the listener is different from the frequency 
produced by the source. This is known as Doppler effect.

S U M M A R Y  (cont .)

UNIT-11(XI-Physics_Vol-2).indd   273UNIT-11(XI-Physics_Vol-2).indd   273 26-03-2022   17:25:4626-03-2022   17:25:46



274 Unit 11  Waves

C
O

N
C

E
P

T
 M

A
P

UNIT-11(XI-Physics_Vol-2).indd   274UNIT-11(XI-Physics_Vol-2).indd   274 26-03-2022   17:25:4726-03-2022   17:25:47



275Unit 11  Waves

EVALUATION 

I. Multiple Choice Questions:

	 1.	 A student tunes his guitar by striking 
a 120 Hertz with a tuning fork, and 
simultaneously plays the 4th  string 
on his guitar. By keen observation, he 
hears the amplitude of the combined 
sound oscillating thrice per second.  
Which of the following frequencies is 
the most likely the frequency of the 4th 
string on his guitar?.

	 a) 130	 b) 117
	 c) 110	 d) 120

	 2.	 A transverse wave moves from a 
medium A to a medium B. In medium 
A, the velocity of the transverse wave is 
500 ms-1 and the wavelength is 5 m. The 
frequency and the wavelength of the 
wave in medium B when its velocity is 
600 ms-1, respectively are
a) 120 Hz and 5 m 
b) 100 Hz and 5 m
c) 120 Hz and 6 m
d) 100 Hz and 6 m

	 3.	 For a particular tube, among six 
harmonic frequencies below 1000 Hz, 
only four harmonic frequencies are 
given : 300 Hz, 600 Hz, 750 Hz and 900 
Hz. What are the two other frequencies 
missing from this list?. 
a) 100 Hz, 150 Hz
b) 150 Hz, 450 Hz
c) 450 Hz, 700 Hz 
d) 700 Hz, 800 Hz 

	 4.	 Which of the following options is 
correct?. 

A B
(1) Quality (A) Intensity
(2) Pitch (B) Waveform
(3) Loudness (C) Frequency

Options for (1), (2) and (3), 
respectively are 

a) (B),(C) and (A)
b) (C), (A) and (B)
c) (A), (B) and (C)
d) (B), (A) and (C) 

	 5.	 Eqution of travelling wave on a 
stretched string of linear density 5 
g/m is y = 0.03 sin(450t – 9x), where 
distance and time are measured  in  
SI units. The tension in the string is 
a) 5 N
b) 12.5 N
c) 7.5 N
d) 10 N

	 6.	 A sound wave whose frequency is 
5000 Hz travels in air and then hits 
the water surface. The ratio of its 
wavelengths in water and air is 

	 a) 4.30	 b) 0.23

	 c) 5.30	 d) 1.23

	 7.	 A person standing between two parallel 
hills fires a gun and hears the first echo  
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276 Unit 11  Waves

after t1 sec and the second echo after 
t2 sec. The distance between the two 
hills is 

a) v(t t )
1 2

2

- 	 b) 
v t t
t t

1 2

1 22
( )
+( )

c) v t t
1 2
+( ) 	 d) v(t t )1 2

2
+

	 8.	 An air column in a pipe which is closed 
at one end, will be in resonance with 
the vibrating body of frequency 83Hz. 
Then the length of the air column is 
a) 1.5 m	 (b) 0.5 m
(c) 1.0 m	 (d) 2.0 m

	 9.	 The displacement y of a wave 
travelling in the x direction is given by 

y t x= − +−
( x )sin ( )2 10 300 2

4

3 p , where  

x and y are measured in metres and t in 
second. The speed of the wave is 
(a) 150 ms-1	 (b) 300 ms-1

(c) 450 ms-1	 (d) 600 ms-1

10.	 Consider two uniform wires vibrating 
simultaneously in their fundamental 
notes. The tensions, densities, lengths 
and diameter of the two wires are 
in the ratio 8 : 1, 1 : 2, x : y and 4 : 1 
respectively. If the note of the higher 
pitch has a frequency of 360 Hz and the 
number of beats produced per second 
is 10, then the value of x : y is 
(a) 36 : 35
(b) 35 : 36
(c) 1 : 1
(d) 1 : 2

11.		 Which of the following represents a 
wave
(a) (x  - vt)3	 (b) x(x+vt)

(c) 1

(x vt)+
	 (d) sin(x+vt)

12.	 A man sitting on a swing which is 
moving to an angle of 60° from the 
vertical is blowing a whistle which has a 
frequency of 2.0 k Hz. The whistle is 2.0 
m from the fixed support point of the 
swing. A sound detector which detects 
the whistle sound is kept in front of the 
swing. The maximum frequency the 
sound detector detected is 
(a) 2.027 kHz	 (b) 1.974 kHz
(c) 9.74 kHz	 (d) 1.011 kHz

13.	 Let y
x

=
+
1

1
2

 at   t = 0 s  be the amplitude 

of the wave propagating in the positive  
x-direction. At t = 2 s, the amplitude 
of the wave propagating becomes 

y
x

=
+ −

1
1 2 2( )

. Assume that the shape 

of the wave does not change during 
propagation. The velocity of the wave is 
(a) 0.5m s-1	 (b) 1.0m s-1

(c) 1.5m s-1	 (d) 2.0m s-1

14.	 A uniform rope having mass m hangs 
vertically from a rigid support. A 
transverse wave pulse is produced at 
the lower end. Which of the following 
plots shows the correct variation of 
speed v with height h from the lower 
end? 

v v v v

o o o oh hh h
       (d)                  (c)                  (b)                  (a)           

v v v v

o o o oh hh h
       (d)                  (c)                  (b)                  (a)           
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277Unit 11  Waves

	13.	 Sketch the function y = x + a.  
Explain your sketch.

	14.	 Write down the factors affecting 
velocity of sound in gases.

	15.	 What is meant by an echo?. Explain. 

III.  Long Answer Questions

	 1.	 Discuss how ripples are formed in still 
water.

	 2.	 Briefly explain the difference between 
travelling waves and standing waves.

	 3.	 Show that the velocity of a travelling 

wave produced in a string is v T
=

µ
 

	 4.	 Describe Newton’s formula for velocity 
of sound waves in air and also discuss 
the Laplace’s correction.

	 5.	 Write short notes on reflection of sound 
waves from plane and curved surfaces. 

	 6.	 Briefly explain the concept of 
superposition principle. 

	 7.	 Explain how the interference of waves 
is formed.

	 8.	 Describe the formation of beats.
	 9.	 What are stationary waves?. Explain 

the formation of stationary waves and 
also write down the characteristics of 
stationary waves.

10.	 Discuss the law of transverse vibrations 
in stretched strings.

11.	 Explain the concepts of fundamental 
frequency, harmonics and overtones in 
detail.

12.	 What is a sonometer?. Give its 
construction and working. Explain 
how to determine the frequency of 
tuning fork using sonometer. 

15.		 An organ pipe A closed at one end is 
allowed to vibrate in its first harmonic 
and another pipe B open at both ends is 
allowed to vibrate in its third harmonic. 
Both A and B are in resonance with a 
given tuning fork. The ratio of the length 
of A and B is

(a) 8

3
	 (b) 3

8

(c) 1

6
	 (d) 1

3

Answers:

  1) b	   2) d	   3) b	   4) a
  5) b	   6) a	   7) d	   8) c
  9) a	 10) a	 11) d	 12) a
13) b	 14) d	 15) c

II. Short Answer Questions

	 1.	 What is meant by waves?. 
	 2.	 Write down the types of waves.
	 3.	 What are transverse waves?. Give one 

example.
	 4.	 What are longitudinal waves?. Give 

one example.
	 5.	 Define wavelength.
	 6.	 Write down the relation between 

frequency, wavelength and velocity of 
a wave.

	 7.	 What is meant by interference of 
waves?.

	 8.	 Explain the beat phenomenon.
	 9.	 Define intensity of sound and loudness 

of sound. 
	10.	 Explain Doppler Effect.
	11.	 Explain red shift and blue shift in 

Doppler Effect.
	12.	 What is meant by end correction in 

resonance air column apparatus?
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278 Unit 11  Waves

	 2.	 Consider a mixture of 2 mol of helium 
and 4 mol of oxygen. Compute the 
speed of sound in this gas mixture at 
300 K.  � Answer : 400.9 ms-1

	 3.	 A ship in a sea sends SONAR waves 
straight down into the seawater from 
the bottom of the ship. The signal 
reflects from the deep bottom bed 
rock and returns to the ship after 
3.5 s. After the ship moves to 100 km 
it sends another signal which returns 
back after 2s. Calculate the depth of the 
sea in each case and also compute the 
difference in height between two cases. 
� Answer : Δd = 1149.75 m

	 4.	 A sound wave is transmitted into a 
tube as shown in figure. The sound 
wave splits into two waves at the point 
A which recombine at point B. Let R 
be the radius of the semi-circle which 
is varied until the first minimum. 
Calculate the radius of the semi-circle if 
the wavelength of the sound is 50.0 m.  
� Answer : R = 21.9 m

Source Detector

R

BA

	 5.	 N tuning forks are arranged in order 
of increasing frequency and any two 
successive tuning forks give n beats per 
second when sounded together. If the 
last fork gives double the frequency of 
the first (called as octave), Show that 
the frequency of the first tuning fork is 
f = (N−1)n. 

	 6.	 Let the source propagate a sound wave 
whose intensity at a point (initially) 
be I. Suppose we consider a case when 
the amplitude of the sound wave is 

13.	 Write short notes on intensity and 
loudness.

14.	 Explain how overtones are produced in a 

(a) Closed organ pipe

(b) Open organ pipe
15.	 How will you determine the velocity 

of sound using resonance air column 
apparatus?

16.	 What is meant by Doppler effect?. 
Discuss the following cases
(1) �Source in motion and Observer at 

rest 

	 (a) Source moves towards observer

	 (b) �Source moves away from the 

observer
(2) �Observer in motion and Source at 

rest.

	 (a) Observer moves towards Source

	 (b) �Observer resides away from the 

Source
(3) �Both are in motion
	 (a) �Source and Observer approach 

each other

	 (b) �Source and Observer resides 

from each other

	 (c) �Source chases Observer

	 (d) Observer chases Source

IV. Exercises

		  1.	The speed of a wave in a certain 
medium is 900 m/s. If 3000 waves 
passes over a certain point of the 
medium in 2 minutes, then compute 
its wavelength?.� Answer : λ = 36 m
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279Unit 11  Waves

doubled and the frequency is reduced 
to one-fourth. Calculate now the new 

intensity of sound at the same point ?.

� Answer: Inew ∝ 1

4
 Iold. 

	 7.	 Consider two organ pipes of same 
length in which one organ pipe is closed 
and another organ pipe is open. If the 
fundamental frequency of closed pipe 
is 250 Hz. Calculate the fundamental 
frequency of the open pipe. 
� Answer: 500Hz

	 8.	 A police in a siren car moving with 
a velocity 20 ms-1 chases a thief who 
is moving in a car with a velocity  
v0ms-1. The police car sounds at 
frequency 300Hz, and both of them 
move towards a stationary siren of 
frequency 400Hz. Calculate the speed 
in which thief is moving. (Assume 
the thief does not observe any beat)  
� Answer: vthief = 10 m s-1

	 9.	 Consider the following function 

(a) y = x2 + 2 α t x

(b) y = (x + vt)2

which among the above function can be 
characterized as a wave ?. 

Answer: �(a) function is not describing wave 
(b) satisfies wave equation.   
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280 Unit 11  Waves

Waves

Through this activity you will be able to 
learn about the wave motion.

STEPS:
• �Use  the URL or scan the QR code to open  ‘PhET’ simulation on ‘waves on a string’. Click 

the play button.

• �In the activity window a diagram of string is given. Click the play icon to see the motion 
of wave.

• �We can see the ‘oscillations’ and ‘pulse’ by selecting  on the table given in the left side 
window and by changing the ‘amplitude’ and ‘frequency’ is given below.

• �By selecting the ‘end types’ on the right side window and repeat the same as before. 

URL:
https://phet.colorado.edu/en/simulation/wave-on-a-string

* Pictures are indicative only.
*� If browser requires, allow Flash Player or Java Script to load the page.

ICT CORNER

Step4

Step2Step1

Step3
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