Chapter : 7. FACTORISATION

Exercise : 7A

Question: 1

(i) 12x + 15

Taking 3 as common from the whole, we get,

12x + 15 = 3(4x + 5).

(ii) 14m - 21,

Taking 7 as common from the whole, we get,

14m - 21 = 7(2m - 3)

(iii) 9n - 12n²,

Taking 3n as common from the whole, we get,

 $9n - 12n^2 = 3n (3 - 4n).$

Question: 2

(i) Let's take HCF of $16a^2 - 24ab$

Taking 8a as common from the whole, we get,

 $16a^2 - 24ab = 8a(2a - 3b).$

(ii) $15ab^2 - 20a^2b$,

Taking 5ab as common from the whole, we get,

 $15ab^2 - 20a^2b = 5ab(3b - 4a)$

(iii) $12x^2y^3 - 21x^3y^2$,

Taking $3x^2y^2$ as common from the whole, we get,

 $12x^2y^3 - 21x^3y^2 = 3x^2y^2(4y - 7x)$

Question: 3

(i) $24x^3 - 36x^2y$,

Taking $12x^2 \mbox{ as common from the whole, we get,}$

$$24x^3 - 36x^2y = 12x^2(2x - 3y)$$

(ii) $10x^3 - 15x^2$

Taking $5x^2$ as common from the whole, we get,

$$10x^3 - 15x^2 = 5x^2(2x - 3)$$

(iii) $36x^3y - 60x^2y^3z$

Taking $12x^2y$ as common from the whole, we get,

$$36x^3y - 60x^2y^3z = 12x^2y(3x - 5y^2z)$$

Question: 4

(i) Let's find out the HCF of $9x^3$, $6x^2$, 12x

$$3x \quad 9x^3, 6x^2, 12x$$
$$3x^2, 2x, 4$$

3x is the highest common factor which divides $9x^3,\, 6x^2$ and 12x. So,

$$9x^3 - 6x^2 + 12x = 3x(3x^2 - 2x + 4)$$

(ii) Let's find out the HCF of $8x^3$, 72xy and 12x

4x is the highest common factor which divides $8x^3,\,72xy$ and 12x.

So,

 $8x^3 - 72xy + 12x = 4x(2x^2 - 18y + 3)$

(iii) Let's find out the HCF of $18a^3b^3$, $27a^2b^3$, $36a^3b^2$

 $9a^2b^2$ is the highest common factor which divides $18a^3b^3,\,27a^2b^3,\,36a^3b^2.$

So,

 $18a^{3}b^{3} - 27a^{2}b^{3} + 36a^{3}b^{2} = 9a^{2}b^{2}$ (2ab - 3b + 4a)

Question: 5

Factories:

Solution:

(i) Let's find out the HCF of $14x^3,\,21x^4y$ and $28x^2y^2$

 7x²
 14x³, 21x⁴y, 28x²y²

 2x, 3x²y, 4y²

 $7x^2$ is the highest common factor of $14x^3,\,21x^4y,\,28x^2y^2$ So,

 $14x^3 + 21x^4y - 28x^2y^2 = 7x^2(2x + 3x^2y - 4y^2)$

(ii) Let's find out the HCF of 5, 10t and $20t^2$,

Т

5 is the highest common factor of 5, 10t and $20t^2$.

So,

$$-5 - 10t + 20t^2 = -5(1 + 2t - 4t^2)$$

(Note: As we have learned in the previous chapter when we multiplied – sign with – sign it become +)

Question: 6

Factorise:<

Solution:

(i) x(x + 3) + 5(x + 3)

Taking x + 3 as common from the whole, we get,

(x + 3)(x + 5).

Hence, x(x + 3) + 5(x + 3) = (x + 3)(x + 5)

(ii) 5x(x - 4) - 7(x - 4)

Taking x - 4 as common from the whole, we get,

5x(x - 4) - 7(x - 4) = (x - 4)(5x - 7).

(iii) 2m(1 - n) + 3(1 - n)

Taking 1 - n as common from the whole, we get,

2m(1 - n) + 3(1 - n) = (1 - n)(2m + 3).

Question: 7

6a(a - 2b) + 5b(a - 2b)

Taking a - 2b as common from the whole, we get,

= (a - 2b)(6a + 5b).

Question: 8

 $x^{3}(2a - b) + x^{2}(2a - b)$

Taking 2a - b as common from the whole, we get,

 $= (2a - b)(x^3 + x^2).$

Question: 9

 $9a(3a - 5b) - 12a^2(3a - 5b)$

Taking 3a - 5b as common from the whole, we get,

 $= (3a - 5b)(9a - 12a^2).$

Question: 10

 $(x + 5)^2 - 4(x + 5)$

Taking (x + 5) as common from the whole, we get,

 $= (x + 5) \{ (x + 5) - 4 \}$ = (x + 5)(x + 5 - 4)= (x + 5)(x + 1)

So,

The factors of $(x + 5)^2 - 4(x + 5)$ are: (x + 5) and (x + 1)

Question: 11

```
3(a - 2b)^2 - 5(a - 2b)
= (a - 2b) \{3(a - 2b) - 5\}
= (a - 2b)\{(3a - 6b) - 5\}
= (a - 2b)(3a - 6b - 5)
So,
We get,
3(a - 2b)^2 - 5(a - 2b) = (a - 2b)(3a - 6b - 5)
Question: 12
Solution:
16(2p - 3q)^2 - 4(2p - 3q)
= (2p - 3q) \{ 16(2p - 3q) - 4 \}
= (2p - 3q) \{ (32p - 48q) - 4 \}
= (2p - 3q)(32p - 48q - 4)
= 4(2p - 3q)(8p - 12q - 1)
So,
We get,
16(2p - 3q)^2 - 4(2p - 3q) = 4(2p - 3q)(8p - 12q - 1)
Question: 14
x(a - 3) + y(3 - a)
= x(a - 3) - y(a - 3)
= (a - 3)(x - y)
Question: 15
```

Solution:

(x + y)(2x + 5) - (x + y)(x + 3)= $(x + y)\{(2x + 5) - (x + 3)\}$ = (x + y)(2x + 5 - x - 3)= (x + y)(2x - x + 5 - 3)= (x + y)(x + 2)So, We get, (x + y)(2x + 5) - (x + y)(x + 3) = (x + y)(x + 2)Question: 17

ar + br + at + bt

First group the terms together;

= (ar + br) + (at + bt)

= r(a + b) + t(a + b)

= (a + b)(r + t)

So,

We get,

ar + br + at + bt = (a + b)(r + t)

Question: 18

 x^2 – ax – bx + ab

Let's arrange the terms in a suitable form;

```
x^{2} - ax - bx + ab
= x^{2} - bx - ax + ab
= (x^{2} - bx) - (ax - ab)
= x(x - b) - a(x - b)
= (x - b)(x - a)
So we get,
x^{2} - ax - bx + ab = (x - b)(x - a)
```

Question: 19

 $ab^2 - bc^2 - ab + c^2$

Let's first arrange the terms in a suitable form;

```
ab^{2} - bc^{2} - ab + c^{2}
= ab^{2} - ab - bc^{2} + c^{2}
= (ab^{2} - ab) - (bc^{2} - c^{2})
= ab(b - 1) - c^{2}(b - 1)
= (b - 1)(ab - c^{2})
So we get,
ab^{2} - bc^{2} - ab + c^{2} = (b - 1)(ab - c^{2})
```

Question: 20

Let's first arrange the terms in a suitable form;

 $x^2 - xz + xy - yz$ $= x^2 + xy - xz - yz$ $= (x^{2} + xy) - (xz + yz)$ = x(x + y) - z(x + y)= (x + y)(x - z)So we get, $x^{2} - xz + xy - yz = (x + y)(x - z)$ **Question: 21** $6ab - b^2 + 12ac - 2bc$ $= 6ab + 12ac - b^2 - 2bc$ $= (6ab + 12ac) - (b^2 + 2bc)$ = 6a(b + 2c) - b(b + 2c)= (b + 2c)(6a - b)So we get, $6ab - b^2 + 12ac - 2bc = (b + 2c)(6a - b)$ **Question: 22** $(x - 2y)^2 + 4x - 8y$ $= (x - 2y)^2 + 4(x - 2y)$ = (x - 2y)(x - 2y) + 4(x - 2y) $= (x - 2y) \{ (x - 2y) + 4 \}$ = (x - 2y)(x - 2y + 4)So we get, $(x - 2y)^{2} + 4x - 8y = = (x - 2y)(x - 2y + 4)$ **Question: 23** $y^2 - xy(1 - x) - x^3$ $= y^2 - xy + x^2y - x^3$ $= (y^2 - xy) + (x^2y - x^3)$ $= y(y - x) + x^{2}(y - x)$ $= (y - x)(y + x^2)$ So we get, $y^2 - xy(1 - x) - x^3 = (y - x)(y + x^2)$ **Question: 24**

 $(ax + by)^2 + (bx - ay)^2$

By using the formulas;

 $(a + b)^2 = a^2 + b^2 + 2ab$ and

$$(a - b)^{2} = a^{2} + b^{2} - 2ab$$

= $(a^{2}x^{2} + b^{2}y^{2} + 2axby) + (b^{2}x^{2} + a^{2}y^{2} - 2bxay)$
= $a^{2}x^{2} + a^{2}y^{2} + b^{2}y^{2} + b^{2}x^{2} + 2axby - 2bxay$
= $a^{2}(x^{2} + y^{2}) + b^{2}x^{2} + b^{2}y^{2} + 2axby - 2axby$
= $a^{2}(x^{2} + y^{2}) + b^{2}(x^{2} + y^{2})$
= $(x^{2} + y^{2})(a^{2} + b^{2})$
So we get,
 $(ax + by)^{2} + (bx - ay)^{2} = (x^{2} + y^{2})(a^{2} + b^{2})$

Question: 25

 $ab^{2} + (a - 1)b - 1$ = $ab^{2} + ba - b - 1$ = $(ab^{2} + ba) - (b + 1)$ = ab (b + 1) - 1(b + 1)= (b + 1)(ab - 1)So we get,

 $ab^{2} + (a - 1)b - 1 = (b + 1)(ab - 1)$

Question: 26

 $x^{3} - 3x^{2} + x - 3$ = $(x^{3} - 3x^{2}) + (x - 3)$ = $x^{2}(x - 3) + 1(x - 3)$ = $(x - 3)(x^{2} + 1)$

 $x^3 - 3x^2 + x - 3 = (x - 3)(x^2 + 1)$

Question: 27

$$ab(x^{2} + y^{2}) - xy(a^{2} + b^{2})$$

$$= abx^{2} + aby^{2} - a^{2}xy - b^{2}xy$$

$$= abx^{2} - a^{2}xy + aby^{2} - b^{2}xy$$

$$= ax(bx - ay) + by(ay - bx)$$

$$= ax(bx - ay) - by(bx - ay)$$

$$= (bx - ay)(ax - by)$$
So we get,

 $ab(x^2 + y^2) - xy(a^2 + b^2) = (bx - ay)(ax - by)$

Question: 28

$$x^{2} - x(a + 2b) + 2ab$$

= $x^{2} - ax - 2bx + 2ab$
= $x^{2} - 2bx - ax + 2ab$
= $(x^{2} - 2bx) - (ax - 2ab)$

= x(x - 2b) - a(x - 2b)= (x - 2b)(x - a)So we get, $x^{2} - x(a + 2b) + 2ab = (x - 2b)(x - a)$

Exercise : 7B

Question: 1

We have,

 $x^2 - 36$

Which is,

 $= (x)^2 - (6)^2$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

 $\mathbf{x}^2 - 36 = (\mathbf{x})^2 - (6)^2$

= (x + 6)(x - 6)

Question: 2

We have,

4a² - 9

 $= (2a)^2 - (3)^2$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

 $4a^{2} - 9 = (2a)^{2} - (3)^{2}$ = (2a + 3)(2a - 3)

Question: 3

We have,

 $81 - 49x^2$

 $= (9)^2 - (7x)^2$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

 $81 - 49x^2 = (9)^2 - (7x)^2$

= (9 + 7x)(9 - 7x)

Question: 4

We have,

 $4x^2 - 9y^2$

$$= (2x)^2 - (3y)^2$$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

 $4x^2 - 9y^2 = (2x)^2 - (3y)^2$

= (2x + 3y)(2x - 3y)**Question: 5** We have, $16a^2 - 225b^2$ $= (4a)^2 - (15b)^2$ By using the formula $a^2 - b^2 = (a + b)(a - b)$ We get, $16a^2 - 225b^2 = (4a)^2 - (15b)^2$ = (4a + 15b)(4a - 15b)**Question: 6** We have, $9a^2b^2 - 25$ $= (3ab)^2 - (5)^2$ By using the formula $a^2 - b^2 = (a + b)(a - b)$ We get, $9a^{2}b^{2} - 25 = (3ab)^{2} - (5)^{2}$ = (3ab + 5)(3ab - 5)**Question:** 7 We have, $16a^2 - 144$ $= (4a)^2 - (12)^2$ By using the formula $a^2 - b^2 = (a + b)(a - b)$ We get, $16a^2 - 144 = (4a)^2 - (12)^2$ = (4a + 12)(4a - 12)= 4(a + 3) 4(a - 3)= 16(a + 3)(a - 3)**Question: 8** We have, $63a^2 - 112b^2$ $= 7(9a^2 - 16b^2)$ By using the formula $a^2 - b^2 = (a + b)(a - b)$ We get, $63a^2 - 112b^2 = 7(9a^2 - 16b^2)$ $= 7{(3a)^2 - (4b)^2}$ = 7(3a + 4b)(3a - 4b)**Question: 9**

We have,

 $20a^{2} - 45b^{2}$ $= 5(4a^{2} - 9b^{2})$ By using the formula $a^{2} - b^{2} = (a + b)(a - b)$ We get, $20a^{2} - 45b^{2} = 5(4a^{2} - 9b^{2})$ $= 5\{(2a)^{2} - (3b)^{2}\}$ = 5(2a + 3b)(2a - 3b)Question: 10

We have,

 $12x^2 - 27$

 $= 3(4x^2 - 9)$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

 $12x^{2} - 27 = 3(4x^{2} - 9)$ $= 3\{(2x)^{2} - (3)^{2}\}$ = 3(2x + 3)(2x - 3)

Question: 11

We have,

 $x^3 - 64x$

 $= x(x^2 - 64)$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

 $x^3 - 64x = x(x^2 - 64)$

 $= x\{(x)^2 - (8)^2\}$

= x(x + 8)(x - 8)

Question: 12

We have,

 $16x^5 - 144x^3$

 $= 3x^{3}(x^{2} - 9)$

By using the formula $a^2 - b^2 = (a + b)(a - b)$ We get, $16x^5 - 144x^3 = 3x^3(x^2 - 9)$

$$= 16x^{3}\{(x)^{2} - (3)^{2}\}$$

 $= 16x^{3}(x + 3)(x - 3)$

Question: 13

We have,

 $3x^5 - 48x^3$

 $= 3x^3(x^2 - 16)$ By using the formula $a^2 - b^2 = (a + b)(a - b)$ We get, $3x^5 - 48x^3 = 3x^3(x^2 - 16)$ $= 3x^{3}\{(x)^{2} - (4)^{2}\}$ $= 3x^{3}(x + 4)(x - 4)$ **Question: 14** We have, 16p³ - 4p $= 4p(4p^2 - 1)$ By using the formula $a^2 - b^2 = (a + b)(a - b)$ We get, $16p^3 - 4p = 4p(4p^2 - 1)$ $= 4p\{(2p)^2 - (1)^2\}$ = 4p(2p + 1)(2p - 1)**Question: 15** We have, $63a^2b^2 - 7$ $= 7(9a^2b^2 - 1)$ By using the formula $a^2 - b^2 = (a + b)(a - b)$ We get, $63a^2b^2 - 7 = 7(9a^2b^2 - 1)$ $= 7\{(3ab)^2 - (1)^2\}$ = 7(3ab + 1)(3ab - 1)**Question: 16** We have, $1 - (b - c)^2$ $= (1)^2 - (b - c)^2$ By using the formula $a^2 - b^2 = (a + b)(a - b)$ We get, $1 - (b - c)^2 = (1)^2 - (b - c)^2$ $= \{1 + (b - c)\}\{1 - (b - c)\}\$ = (1 + b - c)(1 - b + c)**Question: 17** Given, $(2a + 3b)^2 - 16c^2$

 $(2a + 3b)^2 - 16c^2$ = $(2a + 3b)^2 - (4c)^2$ By using the formula $a^2 - b^2 = (a + b)(a - b)$ We get, $(2a + 3b)^2 - 16c^2 = (2a + 3b)^2 - (4c)^2$ $= \{(2a + 3b) + 4c\}\{(2a + 3b) - 4c\}$ = (2a + 3b + 4c)(2a + 3b - 4c)Question: 18 Factories: Solution: We have, $(1 + m)^2 - (1 - m)^2$ By using the formula $a^2 - b^2 = (a + b)(a - b)$ Here, a = (1 + m) and b = (1 - m) $= (1 + m)^2 - (1 - m)^2 = \{(1 + m) + (1 - m)\}\{(1 + m) - (1 - m)\}$ = (1 + m + 1 - m)(1 + m - 1 + m)(2m)

= 4lm

Question: 19

Given,

 $(2x + 5y)^{2} - (1)^{2}$ = $(2x + 5y)^{2} - (1)^{2}$ By using the formula $a^{2} - b^{2} = (a + b)(a - b)$ We get, $(2x + 5y)^{2} - (1)^{2} = (2x + 5y)^{2} - (1)^{2}$ = $\{(2x + 5y) + 1\}\{(2x + 5y) - 1\}$ = (2x + 5y + 1)(2x + 5y - 1)

Question: 20

Given,

 $36c^2 - (5a + b)^2$

 $= (6c)^2 - (5a + b)^2$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

 $36c^2 - (5a + b)^2 = (6c)^2 - (5a + b)^2$

 $= \{(6c) + (5a + b)\}\{(6c) - (5a + b)\}$

= (6c + 5a + b)(6c - 5a - b)

Question: 21

Given,

 $(3x - 4y)^2 - 25z^2$ = $(3x - 4y)^2 - (5z)^2$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

 $(3x - 4y)^{2} - 25z^{2} = (3x - 4y)^{2} - (5z)^{2}$ $= \{(3x - 4y) + 5z\}\{(3x - 4y) - 5z\}$ = (3x - 4y + 5z)(3x - 4y - 5z)

Question: 22

Given,

 $x^{2} - y^{2} - 2y - 1$ = x² - (y² + 2y + 1) By using the formula a² - b² = (a + b)(a - b) We get, x² - y² - 2y - 1 = x² - (y² + 2y + 1) = (x)² - (y + 1)² = {x + (y + 1)}{x - (y + 1)}

= (x + y + 1)(x - y - 1)

Question: 23

Given,

25 - a² - b² - 2ab

 $= 25 - (a^2 + b^2 + 2ab)$

By using the formula $a^2 - b^2 = (a + b)(a - b)$

We get,

 $25 - a^{2} - b^{2} - 2ab = 25 - (a^{2} + b^{2} + 2ab)$ = 25 - (a + b)² =(5)² - (a + b)² = {5 + (a + b)}{5 - (a + b)} = (5 + a + b)(5 - a - b)

Question: 24

Given, $25a^2 - 4b^2 + 28bc - 49c^2$ $= 25a^2 - (4b^2 - 28bc + 49c^2)$ By using the formula $a^2 - b^2 = (a + b)(a - b)$ We get, $25a^2 - 4b^2 + 28bc - 49c^2 = 25a^2 - (4b^2 - 28bc + 49c^2)$ $= (5a)^2 - (2b - 7c)^2$ $= \{5a + (2b - 7c)\}\{5a - (2b - 7c)\}$ = (5a + 2b - 7c)(5a - 2b + 7c)Question: 25

Given,

 $9a^2 - b^2 + 4b - 4$

= $9a^{2} - (b^{2} - 4b + 4)$ By using the formula $a^{2} - b^{2} = (a + b)(a - b)$ We get, $9a^{2} - b^{2} + 4b - 4 = 9a^{2} - (b^{2} - 4b + 4)$ = $(3a)^{2} - (b - 2)^{2}$ = $\{3a + (b - 2)\}\{3a - (b - 2)\}$ = (3a + b - 2)(3a - b + 2)

Question: 26

Given,

 $100 - (x - 5)^2$

By using the formula $a^2 - b^2 = (a + b)(a - b)$ We get,

 $100 - (x - 5)^{2} = (10)^{2} - (x - 5)^{2}$ $= \{10 + (x - 5)\}\{10 - (x - 5)\}$ = (10 + x - 5)(10 - x + 5)= (5 + x)(15 - x)

Question: 27

Given,

 $\{(405)^2 - (395)^2\}$

By using the formula $a^2 - b^2 = (a + b)(a - b)$ We get, $\{(405)^2 - (395)^2\} = (405 + 395)(405 - 395)$ $= (800 \times 10)$ = 8000

Question: 28

We have,

 ${(7.8)^2 - (2.2)^2}$ By using the formula $a^2 - b^2 = (a + b)(a - b)$ We get, ${(7.8)^2 - (2.2)^2} = (7.8 + 2.2)(7.8 - 2.2)$ $= (10 \times 5.6)$ = 56So, ${(7.8)^2 - (2.2)^2} = 56$

Exercise : 7C

Question: 1

Factorize:

Solution:

Given,

 $x^2 + 8x + 16$

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

 $= x^{2} + 2 \times (x) \times 4 + (4)^{2}$

 $= (x+4)^2$

Question: 2

Given;

 $x^2 + 14x + 49$

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

 $= x^{2} + 2 \times (x) \times 7 + (7)^{2}$

 $= (x + 7)^2$

Question: 3

Solution:

Given,

 $9 + 6z + z^2 = z^2 + 6z + 9$

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

 $= z^{2} + 2 \times z \times 3 + (3)^{2}$

 $= (3 + z)^2$

Question: 5

Factorize:

Solution:

Given;

 $x^2 + 6ax + 9a^2$

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

 $= x^{2} + 2 \times (x) \times 3a + (3a)^{2}$

 $= (x + 3a)^2$

Question: 6

Given;

 $4y^2 + 20y + 25$

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

 $= (2y)^2 + 2 \times 2y \times 5 + (5)^2$

 $= (2y + 5)^2$

Question: 7

Given,

 $36a^2 + 36a + 9$

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

 $= (6a)^2 + 2 \times 6a \times 3 + (3)^2$

 $= (6a + 3)^2$

Question: 8

Given,

 $9m^2 + 24m + 16$

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

 $= (3m)^2 + 2 \times 3m \times 4 + (4)^2$

 $= (3m + 4)^2$

Question: 9

Given,

$$z^2 + z + \frac{1}{4}$$

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$ We get, $= z^2 + 2 \times z \times \frac{1}{2} + \left(\frac{1}{2}\right)^2$

$$= z^{2} + 2 \times z \times \frac{1}{2} + \left(\frac{1}{2}\right)$$
$$= \left(z + \frac{1}{2}\right)$$

Question: 10

Given,

 $49a^2 + 84ab + 36b^2$

By using the formula $(a + b)^2 = a^2 + 2ab + b^2$

We get,

 $= (7a)^2 + 2 \times 7a \times 6b + (6b)^2$

 $= (7a + 6b)^2$

Question: 11

Factorize:

Solution:

Given,

 $P^2 - 10p + 25$

By using the formula $(a - b)^2 = a^2 - 2ab + b^2$

We get,

 $= p^2 - 2 \times p \times 5 + (5)^2$

$= (p - 5)^2$

Question: 12

Factorize:

Solution:

Given,

 $121a^2 - 88ab + 16b^2$

By using the formula $(a - b)^2 = a^2 - 2ab + b^2$

We get,

 $= (11a)^2 - 2 \times 11a \times 4b + (4b)^2$

 $= (11a - 4b)^2$

Question: 13

Given,

 $1 - 6x + 9x^2 = 9x^2 - 6x + 1$

By using the formula $(a - b)^2 = a^2 - 2ab + b^2$

We get,

 $= (3x)^2 - 2 \times (3x) \times 1 + (1)^2$

 $= (3x - 1)^2$

Question: 14

Given,

 $9y^2 - 12y + 4$

By using the formula $(a - b)^2 = a^2 - 2ab + b^2$

We get,

 $= (3y)^2 - 2 \times 3y \times 2 + (2)^2$

 $= (3y - z)^2$

Question: 15

Given,

 $16x^2 - 24x + 9$

By using the formula $(a - b)^2 = a^2 - 2ab + b^2$ = $(4x)^2 - 2 \times (4x) \times 3 + (3)^2$

$$= (4x - 3)^2$$

Question: 16

Given,

 $m^{2} - 4mn + 4n^{2}$ By using the formula $(a - b)^{2} = a^{2} - 2ab + b^{2}$ $= m^{2} - 2 \times m \times 2n + (2n)^{2}$ $= (m - 2n)^2$

Question: 17

Given,

 $a^2b^2 - 6ab + 9c^2$

By using the formula $(a - b)^2 = a^2 + b^2 - 2ab$

We get,

 $= (ab)^2 - 2 \times ab \times 3c + (3c)^2$

 $= (ab - 3c)^2$

Question: 18

Given,

 $m^4 + 2m^2n^2 + n^4$

By using the formula $(a + b)^2 = a^2 + b^2 + 2ab$

We get,

 $= (m^2)^2 + 2 \times m^2 \times n^2 + (n^2)^2$ $= (m^2 + n^2)$

Question: 19

Factorize:

Solution:

Given,

 $(l + m)^2 - 4lm$ By using the formula $(a + b)^2 = a^2 + b^2 + 2ab$ We get, $(l + m)^2 - 4lm = (l^2 + m^2 + 2lm) - 4lm$ $= l^2 + m^2 + 2lm - 4lm$ $= l^2 + m^2 - 2lm$ $= (l)^2 + (m)^2 - 2 \times l \times m$ $= (l - m)^2$

Exercise : 7D

Question: 1

Factorize:

Solution:

Given,

 $x^2 + 5x + 6$

Now first find the numbers whose-

Sum = 5 and

Product = 6

Required numbers are 2 and 3,

So we get;

 $x^{2} + 5x + 6$ = $x^{2} + 2x + 3x + 6$ = x(x + 2) + 3(x + 2)= (x + 2)(x + 3)

Question: 2

Given,

 $y^2 + 10y + 24$

Now first find the numbers whose-

Sum = 10 and

Product = 24

Required numbers are 6 and 4,

So we get;

 $y^2 + 10y + 24 = y^2 + 6y + 4y + 24$

= y(y + 6) + 4(y + 6)

= (y + 6)(y + 4)

Question: 3

 $z^2 + 12z + 27$

Now first find the numbers whose-

Sum = 12 and

Product = 27

Required numbers are 9 and 3,

So we get;

 $z^2 + 12z + 27$

 $= z^{2} + 9z + 3z + 27$ = z(z + 9) + 3(z + 9)

= (z + 9)(z + 3)

Question: 4

Given,

 $p^2 + 6p + 8$

Now first find the numbers whose-Sum = 6 and Product = 8 Required numbers are 4 and 2, So we get; $p^2 + 6p + 8$ = $p^2 + 4p + 2p + 8$

= p(p + 4) + 2(p + 4)

= (p + 4)(p + 2)

Question: 5

Given,

 $x^2 + 15x + 56$

Now first find the numbers whose-

Sum = 15 and

Product = 56

Required numbers are 7 and 8,

So we get;

 $x^2 + 15x + 56$

 $= x^2 + 7x + 8x + 56$

= x(x + 7) + 8(x + 7)

= (x + 7)(x + 8)

Question: 6

 $y^2 + 19y + 60$

Now first find the numbers whose-

Sum = 19 and

Product = 60

Required numbers are 15 and 4,

So we get;

 $y^2 + 19y + 60$

$$= y^2 + 15y + 4y + 60$$

$$= y(y + 15) + 4(y + 15)$$

= (y + 15)(y + 4)

Question: 7

Given,

 $x^2 + 13x + 40$

Now first find the numbers whose-

Sum = 13 and

Product = 40

Required numbers are 8 and 5,

So we get;

 $x^2 + 13x + 40$

 $= x^2 + 8x + 5x + 40$

= x(x + 8) + 5(x + 8)

= (x + 8)(x + 5)

Question: 8

Given,

 $q^2 - 10q + 21$

Now first find the numbers whose-

Sum = -10 and

Product = 21

Required numbers are 7 and 3, $% \left({{{\rm{T}}_{{\rm{T}}}}_{{\rm{T}}}} \right)$

So we get;

 $q^2 - 10q + 21$

 $= q^{2} - 7q - 3q + 21$ = q(q - 7) - 3(q - 7)

= (q - 7)(q - 3)

Question: 9

Given,

 $p^2 + 6p - 16$

Now first find the numbers whose-

Sum = 6 and

Product = -16

Required numbers are 8 and 2,

So we get;

 $p^2 + 6p - 16$

 $= p^2 + 8p - 2p - 16$

= p(p + 8) - 2(p + 8)

= (p + 8)(p - 2)

Question: 10

Factorize:

Solution:

Given,

 $x^2 - 10x + 24$

Now first find the numbers whose-

Sum = -10 and

Product = 24

Required numbers are 6 and 4,

So we get;

 $x^2 - 10x + 24$

 $= x^2 - 6x - 4x + 24$

= x(x - 6) - 4(x - 6)

= (x - 6)(x - 4)

Question: 11

Factorize:

Solution:

Given,

 $x^2 - 23x + 42$

Now, first we have to find out the numbers whose-

Sum = -23 and

Product = 42

The numbers are 21 and 2,

So,

 $x^2 - 23x + 42 = x^2 - 21x - 2x + 42$

= x(x - 21) - 2(x - 21)

= (x - 21)(x - 2)

Question: 12

Given,

 $x^2 - 17x + 16$

Now, first we have to find out the numbers whose-

Sum = -17 and

Product = 16

The numbers are 16 and 1,

```
So,
```

```
x^2 - 17x + 16 = x^2 - 16x - 1x + 16
```

= x(x - 16) - 1(x - 16)

= (x - 16)(x - 1)

Question: 13

Given,

 $y^2 - 21y + 90$

Now, first we have to find out the numbers whose-

Sum = -21 and

Product = 90

The numbers are 15 and 6,

```
So,
```

 $y^{2} - 21y + 90 = y^{2} - 15y - 6y + 90$ = y(y - 15) - 6(y - 15)= (y - 15)(y - 6)

Question: 14

Given,

 $x^2 - 22x + 117$

Now, first we have to find out the numbers whose-

Sum = -22 and

Product = 117 The numbers are 13 and 9, So, $x^2 - 22x + 117 = x^2 - 13x - 9x + 117$ = x(x - 13) - 9(x - 13) = (x - 13)(x - 9)Question: 15

 $x^2 - 9x + 20$

Now, first we have to find out the numbers whose-

Sum = -9 and

Product = 20

The numbers are 5 and 4,

So,

 $x^{2} - 9x + 20 = x^{2} - 5x - 4x + 20$ = x(x - 5) - 4(x - 5)

$$= (x - 5)(x - 4)$$

Question: 16

 $x^2 + x - 132$

Now, first we have to find out the numbers whose-

Sum = 1 and

Product = -132

The numbers are 12 and 11,

```
So,
```

 $x^{2} + x - 132 = x^{2} + 12x - 11x - 132$ = x(x + 12) - 11(x + 12)

= (x + 12)(x - 11)

Question: 17

Factorize:

Solution:

 $x^2 + 5x - 104$

Now, first we have to find out the numbers whose-

Sum = 5 and

Product = -104

The numbers are 13 and 8,

So,

 $x^{2} + 5x - 104 = x^{2} + 13x - 8x - 104$ = x(x + 13) - 8(x + 13)

= (x + 13)(x - 8)

Question: 18

 $y^2 + 7y - 144$

Now, first we have to find out the numbers whose-

Sum = 7 and

Product = -144

The numbers are 16 and - 9,

So,

 $y^{2} + 7y - 144$ = y² + 16y - 9y - 144 = y(y + 16) - 9(y + 16) = (y + 16)(y - 9)

Question: 19

Given,

 $z^2 + 19z - 150$

Now, first we have to find out the numbers whose-

Sum = 19 and

Product = -150

The numbers are 25 and 6,

So,

 $z^2 + 19z - 150$

 $= z^2 + 25z - 6z - 150$

= z(z + 25) - 6(z + 25)

= (z + 25)(z - 6)

Question: 20

Given,

 $y^2 + y - 72$

Now, first we have to find out the numbers whose-

Sum = 1 and

Product = -72

The numbers are 9 and 8,

So,

$$y^{2} + y - 72$$

= y² + 9y - 9y - 72
= y(y + 9) - 9(y + 9)

$$= (y + 9)(y - 9)$$

Question: 21

 $a^2 + 6a - 91$

Now, first we have to find out the numbers whose-

Sum = 6 and Product = - 91 The numbers are 13 and 7, So, $a^{2} + 6a - 91$ = $a^{2} + 13a - 7a - 91$ = a(a + 13) - 7(a + 13)= (a + 13) (a - 7)

Question: 22

p² - 4p - 77

Now, first we have to find out the numbers whose-

Sum = -4 and

Product = -77

The numbers are 11 and 7,

So,

$$p^{2} - 4p - 77$$

= p² - 11p + 7p - 77
= p(p - 11) + 7(p - 11)
= (p - 11)(p + 7)

Question: 23

x² - 7x - 30

Now, first we have to find out the numbers whose-

Sum = -7 and

Product = -30

The numbers are 10 and 3,

So,

x² - 7x - 30

 $= x^2 - 10x + 3x - 30$

= x(x - 10) + 3(x - 10)

= (x - 10)(x + 3)

Question: 24

 $x^2 - 11x - 42$

Now, first we have to find out the numbers whose-

Sum = -11 and

Product = -42

The numbers are 14 and 3, $% \left(1+\frac{1}{2}\right) =0$

So,

 $x^2 - 11x - 42$

= x² - 14x + 3x - 42= x(x - 14) + 3(x + 14)

= (x - 14)(x + 3)

Question: 25

 $x^2 - 5x - 24$

Now, first we have to find out the numbers whose-

Sum = -5 and

Product = -24

The numbers are - 8 and 3,

So,

x² - 5x - 24

 $= x^2 - 8x + 3x - 24$

= x(x - 8) + 3(x - 8)

= (x - 8)(x + 3)

Question: 26

Given;

 $y^2 - 6y - 135$

Now first find the numbers whose-

Sum = -6 and

Product = -135

Required numbers are 15 and 9,

So we get;

y² - 6y - 135

 $= y^{2} - 15y + 9y - 135$ = y(y - 15) + 9(y - 15)

= (y - 15)(y + 9)

Question: 27

Given

z² - 12z - 45

Now first find the numbers whose-

Sum = -12 and

Product = -45

Required numbers are 15 and 3,

So we get;

 $z^2 - 12z - 45$

 $= z^2 - 15z + 3z - 45$

= z(z - 15) + 3(z - 15)

= (z - 15)(z + 3)

Question: 28

Given,

x² - 4x - 12

Now first find the numbers whose-

Sum = -4 and

Product = -12

Required numbers are 6 and 2,

So we get;

 $x^2 - 4x - 12$

 $= x^2 - 6x + 2x - 12$

= x(x - 6) + 2(x - 6)

= (x - 6)(x + 2)

Question: 29

Given,

 $3x^2 + 10x + 8$

Now first find the numbers whose-

Sum = 10 and

Product = $3 \times 8 = 24$

Required numbers are 6 and 4,

So we get;

 $3x^2 + 10x + 8$

 $= 3x^2 + 6x + 4x + 8$

$$= 3x(x + 2) + 4(x + 2)$$

= (x + 2)(3x + 4)

Question: 30

Factorize:

Solution:

Given,

 $3y^2 + 14y + 8$

Now first find the numbers whose-

Sum = 14 and

Product = $3 \times 8 = 24$

Required numbers are 12 and 2,

So we get;

 $3y^2 + 14y + 8 = 3y^2 + 12y + 2y + 8$

= 3y(y + 4) + 2(y + 4)

= (y + 4)(3y + 2)

Question: 31

Factorize:

Solution:

Given,

 $3z^2 - 10z + 8$

Now, first we have to find out the numbers whose-

Sum = -10 and

Product = $3 \times 8 = 24$

The numbers are 6 and 4,

So,

 $3z^2 - 10z + 8$

 $= 3z^2 - 6z - 4z + 8$

= 3z(z - 2) - 4(z - 2)

= (z - 2)(3z - 4)

Question: 32

Factorize:

Solution:

Given,

 $2x^2 + x - 45$

Now first find the numbers whose-

Sum = 1 and

 $Product = -45 \times 2 = -90$

Required numbers are 10 and 9,

So we get;

 $2x^2 + x - 45$

 $= 2x^2 + 10x - 9x - 45$

= 2x(x + 5) - 9(x + 5)

= (x + 5)(2x - 9)

Question: 33

Factorize:

Solution:

Given,

 $6p^2 + 11p - 10$

Now first find the numbers whose-

Sum = 11 and

 $Product = -10 \times 6 = -60$

Required numbers are 15 and 4,

So we get;

 $= 6p^2 + 15p - 4p - 10$

= 3p(2p + 5) - 2(2p + 5)

= (2p + 5)(3p - 2)

Question: 34

Given,

 $2x^2 - 17x - 30$

Now first find the numbers whose-

Sum = -17 and

 $Product = -30 \times 2 = -60$

Required numbers are 20 and 3,

So we get;

 $2x^2 - 17x - 30$

 $= 2x^2 - 20x + 3x - 30$

= 2x(x - 10) + 3(x - 10)

= (x - 10)(2x + 3)

Question: 35

Factorize:

Solution:

Given,

 $7y^2 - 19y - 6$

Now first find the numbers whose-

Sum = -19 and

Product = $-6 \times 7 = -42$

Required numbers are 21 and 2,

So we get;

7y² - 19y - 6

```
= 7y^2 - 21y + 2y - 6
```

```
= 7y(y - 3) + 2(y - 3)
```

= (y - 3)(7y + 2)

Question: 36

Factorize:

Solution:

Given,

 $28 - 31x - 5x^2$

Now first find the numbers whose-

Sum = -31 and

 $Product = -5 \times 28 = 140$

Required numbers are 35 and 4,

So we get;

 $28 - 31x - 5x^{2}$ = 28 + 4x - 35x - 5x² = 4(7 + x) - 5x(7 + x) = (7 + x)(4 - 5x)

Question: 37

Given,

 $3 + 23z - 8z^2$

Now first find the numbers whose-

Sum = 23 and

 $Product = -8 \times 3 = 24$

Required numbers are 24 and 1,

So we get;

 $3 + 23z - 8z^2$

$$= 3 + 24z - z - 8z^2$$

$$= 3(1 + 8z) - z(1 + 8z)$$

= (1 + 8z)(3 - z)

Question: 38

Factorize:

Solution:

Given,

 $6x^2 - 5x - 6$

Now first find the numbers whose-

Sum = -5 and

 $Product = -6 \times 6 = -36$

Required numbers are 9 and 4,

So we get;

 $= 6x^2 - 9x + 4x - 6$

$$= 3x(2x - 3) + 2(2x - 3)$$

= (2x - 3)(3x + 2)

Question: 39

Factorize:

Solution:

Given,

 $3m^2 + 24m + 36$

Now first find the numbers whose-

Sum = 24 and

 $Product = 36 \times 3 = 108$

Required numbers are 18 and 6,

So we get; $3m^2 + 24m + 36$ $= 3m^2 + 18m + 6m + 36$ = 3m(m + 6) + 6(m + 6)= (m + 6)(3m + 6)**Question: 40** Factorize: Solution: Given, $4n^2 - 8n + 3$ Now first find the numbers whose-Sum = -8 and Product = $4 \times 3 = 12$ Required numbers are 6 and 2, So we get; $4n^2 - 8n + 3$ $=4n^2 - 2n - 6n + 3$

 $= 4n^{2} - 2n - 6n + 3$

= 2n(2n - 1) - 3(2n - 3)

= (2n - 1)(2n - 3)

Question: 41

Factorize:

Solution:

Given,

 $6x^2 - 17x - 3$

Now, first we have to find out the numbers whose-

Sum = -17 and

 $Product = 6 \times - 3 = -18$

The numbers are 18 and 1,

So,

 $6x^2 - 17x - 3$

 $= 6x^2 - 18x + 1x - 3$

= 6x(x - 3) + 1(x - 3)

= (x - 3)(6x + 1)

Question: 42

Given,

 $7x^2 - 19x - 6$

Now, first we have to find out the numbers whose-

Sum = -19 and

Product = $7 \times -6 = -42$ The numbers are 21 and 2, So, $7x^2 - 19x - 6$ = $7x^2 - 21x + 2x - 6$ = 7x(x - 3) + 2(x - 3)= (x - 3)(7x + 2)

Exercise : 7E

Question: 1

 $(7a^2 - 63b^2) = 7(a^2 - 9b^2)$ (taking 7 as common from whole) = $7(a - 3b)(a + 3b) = a^2 - b^2 = (a - b)(a + b)$

Question: 2

 $(2x - 32x^3) = 2x(1 - 16x^2)$ (taking 2x as common from whole) = $2x(1 - 4x)(1 + 4x) = a^2 - b^2 = (a - b)(a + b)$

Question: 3

 $X^3 - 144x = x(x^2 - 144)$ (taking x as common from whole)

 $= x(x - 12)(x + 12) = a^2 - b^2 = (a - b)(a + b)$

Question: 4

2 - $50x^2 = 2(1 - 25x^2)$ (taking 2 as common from whole) = $2(1 - 5x)(1 + 5x) = a^2 - b^2 = (a - b)(a + b)$

Question: 5

 $a^2+bc+ab+ac = a^2+ab + bc + ac$

Rearranging the terms and taking a and c as common respectively.

= a(a + b) + c(a + b)

= (a + c)(a + b).

Question: 6

 $pq^{2} + q(p - 1) - 1 = pq^{2} + qp - q - 1$ = pq(q + 1) - 1(q + 1)= (pq - 1)(q + 1)

Question: 7

= ab - mn + an - bm = ab + an - mn - bm

= a(b + n) - m(n + b)

= (a - m)(b + n).

Question: 8

ab - a - b + 1= a(b - 1) - 1(b - 1) (taking a and - 1 as common) = (a - 1)(b - 1).

Question: 9

= x² - xz + xy - yz= x(x - z) +y(x - z) (taking x and y as common resp.)

 $= (\mathbf{x} + \mathbf{y})(\mathbf{x} - \mathbf{z}).$

Question: 10

 $12m^2 - 27 = 3(4m^2 - 9)$ (taking 3 as common from whole)

 $= 3(2m - 3)(2m + 3) = a^2 - b^2 = (a - b)(a + b)$

Question: 11

 $x^{3} - x = x(x^{2} - 1)$ (taking x as common from whole) = $x(x - 1)(x + 1) = a^{2} - b^{2} = (a - b)(a + b)$

Question: 12

 $1 - 2ab - (a^{2} + b^{2}) = 1 - 2ab - a^{2} - b^{2}$ = 1 - (2ab + a^{2} + b^{2}) = 1 - (a + b)^{2} = (1 - a - b)(1 + a + b) = a^{2} - b^{2} = (a - b)(a + b)

Question: 13

 $x^2 + 6x + 8$

Factorizing the equation and taking x and 2 as common,

$$= x^{2} + 4x + 2x + 8$$
$$= x(x + 4) + 2(x + 4)$$
$$= (x + 2)(x + 4).$$

Question: 14

 $x^2 + 4x - 21$

Factorizing the equation and taking x and - 3 as common,

$$= x2 + 7x - 3x - 21$$
$$= x(x + 7) - 3(x + 7)$$

= (x - 3)(x + 7).

Question: 15

 $y^2 + 2y - 3$

Factorizing the equation and taking y and - 1 as common,

$$= y^2 + 3y - y - 3$$

$$= y(y + 3) - 1(y + 3)$$

= (y + 3)(y - 1).

Question: 16

 $40 + 3x - x^2$

Factorizing the equation and taking 8 and – \boldsymbol{x} as common,

 $= 40 + 8x - 3x - x^2$

= 8(5 + x) - x(5 + x)

= (8 - x)(5 + x).

Question: 17

 $2x^2 + 5x + 3$

Factorizing the equation and taking 2x and 3 as common,

 $= 2x^2 + 2x + 3x + 3$

= 2x(x + 1) + 3(x + 1)

= (2x + 3)(x + 1).

Question: 18

 $6a^2 - 13a + 6$

Factorizing the equation and taking 3a and - 2 as common,

$$= 6a^2 - 9a - 4a + 6$$

= (3a - 2)(2a - 3).

Question: 19

 $4z^2 - 8z + 3$

Factorizing the equation and taking 2z and - 1 as common,

$$= 4z^2 - 6z - 2z + 3$$

$$= 2z(2z - 3) - 1(2z - 3)$$

= (2z - 1)(2z - 3).

Question: 20

 $3 + 23y - 8y^2$

Factorizing the equation and taking 3 and - y as common,

$$= 3 + 24y - y - 8y^{2}$$
$$= 3(1 + 8y) - y(1 + 8y)$$
$$= (3 - y)(1 + 8y).$$