Chapter 2

Electrostatics

2.1 The Electric Field

2.1.1 Introduction

The fundamental problem electromagnetic theory hopes to solve is this (Fig. 2.1): We have
some electric charges, g1, g2, g3, . . . (call them source charges); what force do they exert
on another charge, Q (call it the test charge)? The positions of the source charges are given
(as functions of time); the trajectory of the test particle is fo be calculated. In general, both
the source charges and the test charge are in motion.

The solution to this problem is facilitated by the principle of superposition, which states
that the interaction between any two charges is completely unaffected by the presence of
others. This means that to determine the force on Q, we can first compute the force Fy, due
to g1 alone (ignoring all the others); then we compute the force Fo, due to g2 alone; and so
on. Finally, we take thé vector sum of all these individual forces: F = F; +Fy + F3 4 ...
Thus, if we can find the force on Q due to a single source charge g, we are, in principle,
done (the rest is just a question of repeating the same operation over and over, and adding
it all up).!

Well, at first sight this sounds very easy: Why don’t I just write down the formula for
the force on Q due to ¢, and be done with it? 1 could, and in Chapter 10 I shall, but you
would be shocked to see it at this stage, for not only does the force on Q depend on the
separation distance » between the charges (Fig. 2.2), it also depends on both their velocities
and on the acceleration of q. Moreover, it is not the position, velocity, and acceleration
of g right now that matter: Electromagnetic “news” travels at the speed of light, so what
concerns Q is the position, velocity, and acceleration g had at some earlier time, when the
message left.

The principle of superposition may seem “obvious” to you, but it did not have to be so simple: if the electromag-
netic force were proportional to the square of the total source charge, for instance, the principle of superposition
would not hold, since (g; + q2)2 # ql2 + q% (there would be “cross terms” to consider). Superposition is not a
logical necessity, but an experimental fact.
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Therefore, in spite of the fact that the basic question (“What is the force on Q due to
q7’) is easy to state, it does not pay to confront it head on; rather, we shall go at it by
stages. In the meantime, the theory we develop will permit the solution of more subtle
electromagnetic problems that do not present themselves in quite this simple format. To
begin with, we shall consider the special case of electrostatics in which all the source
charges are stationary (though the test charge may be moving).

2.1.2 Coulomb’s Law

What is the force on a test charge Q due to a single point charge g which is at resr a distance
2 away? The answer (based on experiments) is given by Coulomb’s law:

1 n
19,

F= .
4eq 22

2.1)

The constant €q is called the permitivity of free space. In SI units, where force is in
Newtons (N), distance in meters (m), and charge in coulombs (C),

2
0 =885x 1077
N - m?
In words, the force is proportional to the product of the charges and inversely proportional
to the square of the separation distance. As always (Sect. 1.1.4), 2 is the separation vector
from r’ (the location of q) to r (the location of Q):

a=r-r’; 2.2)

2 is its magnitude, and 4 is its direction. The force points along the line from ¢ to Q: it is
repulsive if ¢ and Q have the same sign, and attractive if their signs are opposite.

Coulomb’s law and the principle of superposition constitute the physical input for
electrostatics—the rest, except for some special properties of matter, is mathematical elab-
oration of these fundamental rules.
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Problem 2.1

(a) Twelve equal charges, g, are situated at the corners of a regular 12-sided polygon (for
instance, one on each numeral of a clock face). What is the net force on a test charge Q at the
center?

(b) Suppose one of the 12 g’s is removed (the one at “6 o’clock’™™). What is the force on Q?
Explain your reasoning carefully.

(c) Now 13 equal charges, ¢, are placed at the corners of a regular 13-sided polygon. What is
the force on a test charge Q at the center?

(d) If one of the 13 ¢’s is removed, what is the force on Q? Explain your reasoning.

2.1.3 The Electric Field

If we have several point charges q1, qo, . . . , gn, at distances 21, 22, . . ., 2, from Q, the total
force on Q is evidently
1 “ o
F = Fi+F,+...= %414—%424—...
4meg 2 25
2 2 23
Teg \ 2] 25 23
or
F = OF, (2.3)
where
1 g
Er) = =%;. 2.4
(1) = > P 24)

i=1
E is called the electric field of the source charges. Notice that it is a function of position (r),

because the separation vectors 4; depend on the location of the field point P (Fig. 2.3). But
it makes no reference to the test charge Q. The electric field is a vector quantity that varies
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Figure 2.3
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from point to point and is determined by the configuration of source charges; physically,
E(r) is the force per unit charge that would be exerted on a test charge, if you were to place
one at P.

What exactly is an electric field? I have deliberately begun with what you might call
the “minimal” interpretation of E, as an intermediate step in the calculation of electric
forces. But 1 encourage you to think of the field as a “real” physical entity, filling the
space in the neighborhood of any electric charge. Maxwell himself came to believe that
electric and magnetic fields represented actual stresses and strains in an invisible primordial
jellylike “ether.” Special relativity has forced us to abandon the notion of ether, and with it
Maxwell’s mechanical interpretation of electromagnetic fields. (It is even possible, though
cumbersome, to formulate classical electrodynamics as an “action-at-a-distance” theory,
and dispense with the field concept altogether.) I can’t tell you, then, what a field is—only
how to calculate it and what it can do for you once you’ve got it.

Problem 2.2

(a) Find the electric field (magnitude and direction) a distance z above the midpoint between
two equal charges, ¢, a distance d apart (Fig. 2.4). Check that your result is consistent with
what you’d expect when z >> d.

(b) Repeat part (a), only this time make the right-hand charge —q instead of +4.

dlr’
P (a) Continuous (b) Line charge, A
distribution p
7 da’ 2 _~oP
ar’
g d2 | dr q (c) Surface charge, ¢ (d) Volume charge, p
Figure 2.4 Figure 2.5

2.14 Continuous Charge Distributions

Our definition of the electric field (Eq. 2.4), assumes that the source of the field is a collection
of discrete point charges g;. If, instead, the charge is distributed continuously over some
region, the sum becomes an integral (Fig. 2.5a):

1.

1
E(r)= — | —4dq. 25
(r) e | 2794 (2.5)
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If the charge is spread out along a line (Fig. 2.5b), with charge-per-unit-length A, then
dg = Adl’ (where dl’ is an element of length along the line); if the charge is smeared
out over a surface (Fig. 2.5¢), with charge-per-unit-area o, then dg = o da’ (where da’
is an element of area on the surface); and if the charge fills a volume (Fig. 2.5d), with
charge-per-unit-volume p, then dg = p d7’ (where d7’ is an element of volume):

dq — rdl' ~oda ~ pdt'.

Thus the electric field of a line charge is

1 Ar) .
E(r) = / MO s ar; 2.6)
4req 22
P
for a surface charge,
1 r).
Er) = /U( )4da’; .7
47 e 22
S
and for a volume charge,
1 r').
E(r) = / PE) s ar. 2.8)
4eg 22
v

Equation 2.8 itself is often referred to as “Coulomb’s law,” because it is such a short
step from the original (2.1), and because a volume charge is in a sense the most general
and realistic case. Please note carefully the meaning of % in these formulas. Originally, in
Eq. 2.4, 4; stood for the vector from the source charge g; to the field pointr. Correspondingly,
in Egs. 2.5-2.8, 4 is the vector from dgq (therefore from dl’, da’, or d1') to the field point

r.2

Example 2.1
Find the electric field a distance z above the midpoint of a straight line segment of length 2L,
which carries a uniform line charge A (Fig. 2.6).

Solution: It is advantageous to chop the line up into symmetrically placed pairs (at £x), for
then the horizontal components of the two fields cancel, and the net field of the pair is

1 rd
dE =2 il cosOZ.
4meg \ 22

2 Warning: The unit vector 2 is not constant; its direction depends on the source point r’, and hence it cannot be
taken outside the integrals 2.5-2.8. 1n practice, you must work with Cartesian components (X, ¥, Z are constant,
and do come out), even if you use curvilinear coordinates to perform the integration.
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Here cosf = z/2,2 = v/ z2 + x2, and x runs from 0 to L:

1 L 2X
E = / ‘ dx
dmey Jo (22 +x2)3/2
L

2Az X
47'[6() 22 /ZZ + x2
1 2AL

47T6()Z /Z2+L2,

0

and it aims in the z-direction.
For points far from the line (z 3> L), this result simplifies:
_ 1 2L
T dmeg 72
which makes sense: From far away the line “looks” like a point charge g = 2L, so the field
reduces to that of point charge g /(4megz2). In the limit L — oo, on the other hand, we obtain
the field of an infinite straight wire:
1 2%

E= :
4req z

or, more generally,
12X
- 47 €0 T ’

(2.9)

where s is the distance from the wire.

Problem 2.3 Find the electric field a distance z above one end of a straight line segment of
length L (Fig. 2.7), which carries a uniform line charge A. Check that your formula is consistent
with what you would expect for the case z > L.
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Problem 2.4 Find the electric field a distance z above the center of a square loop (side a)
carrying uniform line charge A (Fig. 2.8). [Hint: Use the result of Ex. 2.1.]

Problem 2.5 Find the electric field a distance z above the center of a circular loop of radius r
(Fig. 2.9), which carries a uniform line charge A.

Problem 2.6 Find the electric field a distance z above the center of a flat circular disk of radius
R (Fig. 2.10), which carries a uniform surface charge o. What does your formula give in the
limit R — 00? Also check the case z >> R.

Problem 2.7 Find the electric field a distance z from the center of a spherical surface of radius
R (Fig. 2.11), which carries a uniform charge density o. Treat the case z < R (inside) as well
as z > R (outside). Express your answers in terms of the total charge g on the sphere. [Hinz:
Use the law of cosines to write 2 in terms of R and 6. Be sure to take the posifive square root:

VR 4+ 72 —2Rz=(R—7)if R > z,butit’s z — R)if R < z.]

Problem 2.8 Use your result in Prob. 2.7 to find the field inside and outside a sphere of radius
R, which carries a uniform volume charge density p. Express your answers in terms of the
total charge of the sphere, g. Draw a graph of |E| as a function of the distance from the center.

Figure2.10 Figure 2.11
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2.2 Divergence and Curl of Electrostatic Fields

2.2.1 Field Lines, Flux, and Gauss’s Law

In principle, we are done with the subject of electrostatics. Equation 2.8 tells us how to
compute the field of a charge distribution, and Eq. 2.3 tells us what the force on a charge Q
placed in this field will be. Unfortunately, as you may have discovered in working Prob. 2.7,
the integrals involved in computing E can be formidable, even for reasonably simple charge
distributions. Much of the rest of electrostatics is devoted to assembling a bag of tools and
tricks for avoiding these integrals. It all begins with the divergence and curl of E. 1 shall
calculate the divergence of E directly from Eq. 2.8, in Sect. 2.2.2, but first I want to show
you a more qualitative, and perhaps more illuminating, intuitive approach.
Let’s begin with the simplest possible case: a single point charge ¢, situated at the
origin:
1 ¢
4meq r?

E() = r. (2.10)
To get a “feel” for this field, I might sketch a few representative vectors, as in Fig. 2.12a.
Because the field falls off like 1/r2, the vectors get shorter as you go farther away from the
origin; they always point radially outward. But there is a nicer way to represent this field,
and that’s to connect up the arrows, to form field lines (Fig. 2.12b). You might think that I
have thereby thrown away information about the srrengrh of the field, which was contained
in the length of the arrows. But actually I have not. The magnitude of the field is indicated
by the density of the field lines: it’s strong near the center where the field lines are close
together, and weak farther out, where they are relatively far apart.

In truth, the field-line diagram is deceptive, when I draw it on a two-dimensional surface,
for the density of lines passing through a cjrcle of radius  is the total number divided by the
circumference (n/2mr), which goes like (1/r), not (1/7%). But if you imagine the model in
three dimensions (a pincushion with needles sticking out in all directions), then the density
of lines is the total number divided by the area of the sphere (n/47 %), which does go like

(1/r%).

v @ (b)

Figure 2.12
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Equal but opposite charges

Figure 2.13

Such diagrams are also convenient for representing more complicated fields. Of course,
the number of lines you draw depends on how energetic you are (and how sharp your pencil
is), though you ought to inciude enough to get an accurate sense of the field, and you must
be consistent: If charge g gets 8 lines, then 2g deserves 16. And you must space them
fairly—they emanate from a point charge symmetrically in all directions. Field lines begin
on positive charges and endon negative ones; they cannot simply terminate in midair, though
they may extend out to infinity. Moreover, field lines can never cross—at the intersection,
the field would have two different ditections at once! With all this in mind, it is easy to
sketch the field of any simple configuration of point charges: Begin by drawing the lines
in the neighborhood of each charge, and then connect them up or extend them to infinity
(Figs. 2.13 and 2.14).

Equal charges

Figure 2.14



2.2. DIVERGENCE AND CURL OF ELECTROSTATIC FIELDS 67

Figure 2.15

In this model the flux of E through a surface S,
<I>Est-da, 211
S

is a measure of the “number of field lines” passing through S. 1 put this in quotes because of
course we can only draw a representative sample of the field lines—the foral number would
be infinite. But for a given sampling rate the flux is proporrional to the number of lines
drawn, because the field strength, remember, is proportional to the density of field lines
(the number per unit area), and hence E - da is proportional to the number of lines passing
through the infinitesimal area da. (The dot product picks out the component of da along
the direction of E, as indicated in Fig. 2.15. Tt is only the area in the plane perpendicular
to E that we have in mind when we say that the density of field lines is the number per unit
area.)

This suggests that the flux through any closed surface is a measure of the total charge
inside. For the field lines that originate on a positive charge must either pass out through
the surface or else terminate on a negative charge inside (Fig. 2.16a). On the other hand, a
charge outside the surface will contribute nothing to the total flux, since its field lines pass
in one side and out the other (Fig. 2.16b). This is the essence of Gauss’s law. Now let’s
make it quantitative.

(b)

Figure 2.16
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In the case of a point charge g at the origin, the flux of E through a sphere of radius r is

%E-da:/ : (if)-(rzsinededaaf): L, (2.12)
4mey \r2 €0

Notice that the radius of the sphere cancels out, for while the surface area goes up as r2, the
field goes down as 1/r?, and so the product is constant. In terms of the field-line picture, this
makes good sense, since the same number of field lines passes through any sphere centered
at the origin, regardless of its size. In fact, it didn’t have to be a sphere—any closed surface,
whatever its shape, would trap the same number of field lines. Evidently the flux through
any surface enclosing the charge is q /€.

Now suppose that instead of a single charge at the origin, we have a bunch of charges
scattered about. According to the principle of superposition, the total field is the (vector)
sum of all the individual fields: .

E= Z E;.
i=1

The flux through a surface that encloses them all, then, is

frn=3(fo-m)-32(La)

For any closed surface, then,

1

%E'da: — Oenc, (2.13)
€0

S

where Qenc is the total charge enclosed within the surface. This is the quantitative state-
ment of Gauss’s law. Although it contains no information that was not already present in
Coulomb’s law and the principle of superposition, it is of almost magical power, as you will
see in Sect. 2.2.3. Notice that it all hinges on the 1/r2 character of Coulomb’s law; without
that the crucial cancellation of the r’s in Eq. 2.12 would not take place, and the total flux
of E would depend on the surface chosen, not merely on the total charge enclosed. Other
1/r2 forces (I am thinking particularly of Newton’s law of universal gravitation) will obey
“Gauss’s laws” of their own, and the applications we develop here carry over directly.

As it stands, Gauss’s law is an integral equation, but we can readily turn it into a
differential one, by applying the divergence theorem:

%E-da:/(V~E)dr.

S v

Rewriting Qenc in terms of the charge density p, we have

QenCZ/PdT-

v
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/w.mdr=/<ﬁ)da
€0
v v

And since this holds for any volume, the integrands must be equal:

So Gauss’s law becomes

1
V.E=—p. (2.14)
€0

Equation 2.14 carries the same message as Eq. 2.13; it is Gauss’s law in differential
form. The differential version is tidier, but the integral form has the advantage in that it
accommodates point, line, and surface charges more naturally.

Problem 2.9 Suppose the electric field in some region is found to be E = kr>#, in spherical
coordinates (k is some constant).

(a) Find the charge density p.

(b) Find the total charge contained in a sphere of radius R, centered at the origin. (Do it two
different ways.)

Problem 2.10 A charge g sits at the back corner of a cube, as shown in Fig. 2.17. What is the
flux of E through the shaded side?

Figure 2.17

2.2.2 The Divergence of E

Let’s go back, now, and calculate the divergence of E directly from Eq. 2.8:

A

/ %mﬂaﬁ (2.15)

all space

Er) =

dmeg

(Originally the integration was over the volume occupied by the charge, but I may as
well extend it to all space, since p = 0 in the exterior region anyway.) Noting that the
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r-dependence is contained in2 = r — r/, we have

1 2
V-E= V= Ydt'.
4]‘[60/ (@2) plr)de

This is precisely the divergence we calculated in Eq. 1.100:

V. (%) = 4183 (n).

f4n83(r —1)p)dr = %p(r), (2.16)

Thus
1

V.E=
dmr ey

which is Gauss’s law in differential form (2.14). To recover the integral form (2.13), we
run the previous argument in reverse—integrate over a volume and apply the divergence

theorem: | |
/V'EdtzﬁE'da=—/,Odf:_Qenc'
€0 €0
\%

1% S

2.2.3 Applications of Gauss’s Law

I must interrupt the theoretical development at this point to show you the extraordinary
power of Gauss’s law, in integral form. When symmetry permits, it affords by far the
quickest and easiest way of computing electric fields. I'll illustrate the method with a series
of examples.

Example 2.2
Find the field outside a uniformly charged solid sphere of radius R and total charge g.
Solution: Draw a spherical surface at radius r > R (Fig. 2.18); this is called a “Gaussian

surface” in the trade. Gauss’s law says that for this surface (as for any other)

1
fnda - Loene.
€0
S

and Qenc = ¢. At first glance this doesn’t seem to get us very far, because the quantity we
want (E) is buried inside the surface integral. Luckily, symmetry allows us to extract E from
under the integral sign: E certainly points radially outward,® as does da, so we can drop the

dot product,
/E-da:/iEIdu,
S

S

3 you doubt that E is radial, consider the alternative. Suppose, say, that it points due east, at the “equator.” But
the orientation of the equator is perfectly arbitrary—nothing is spinning here, so there is no natural “north-south”
axis—any argument purporting to show that E points east could just as well be used to show it points west, or
north, or any other direction. The only unigue direction on a sphere is radial.
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Gaussian -
surface

Figure 2.18

and the magnitude of E is constant over the Gaussian surface, so it comes outside the integral:

/lElda: |E|/ da = |E| 47 r2.
S

S
Thus
2 1
|E|4nr© = —q,
€0
or
1 ¢q.
= =T.
dreg r?

Notice a remarkable feature of this result: The field outside the sphere is exactly the same as
it would have been if all the charge had been concentrated at the center.

Gauss’s law is always true, but it is not always useful. If p had not been uniform (or, at
any rate, not spherically symmetrical), or if I had chosen some other shdpe for my Gaussian
surface, it would still have been true that the flux of E is (1/€p)q, but I would not have
been certain that E was in the same direction as da and constant in magnitude over the
surface, and without thdt I could not pull |E| out of the integral. Symmetry is crucial to this
application of Gauss’s law. As far as [ know, there are only three kinds of symmetry that
work:

1. Spherical symmetry. Make your Gaussian surface a concentric sphere.

2. Cylindrical symmetry. Make your Gaussian surface a coaxial cylinder
(Fig. 2.19).

3. Plane symmetry. Use a Gaussian “pillbox,” which straddles the surface
(Fig. 2.20).

Although (2) and (3) technically require infinitely long cylinders, and planes extending to
infinity in all directions, we shall often use them to get approximate answers for “long”
cylinders or “large” plane surfaces, at points far from the edges.
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Gaussian
pillbox

Gaussian surface

Figure 2.19 Figure 2.20

Example 2.3

A long cylinder (Fig. 2.21) carries a charge density that is proportional to the distance from
the axis: p = ks, for some constant k. Find the electric field inside this cylinder.

Solution: Draw a Gaussian cylinder of length / and radius s. For this surface, Gauss’s law
states:
1
fE'da = —Qenc-
€0
S
The enclosed charge is
5
Qenc = /pdr = /(ks’)(s/ds/ahb dz) = 2nkl/ s ds' = Sukls®.
0

(Iused the volume element appropriate to cylindrical coordinates, Eq. 1.78, and integrated ¢
from 0 to 27, dz from O to /. I put a prime on the integration variable s/, to distinguish it from
the radius s of the Gaussian surface.)

Gaussian
surface

Figure 2.21
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Now, symmetry dictates that E must point radially outward, so for the curved portion of the
Gaussian cylinder we have:

/E-da=/|E|da:|Ef/da=|E|2n'sl,

while the two ends contribute nothing (here E is perpendicular to da). Thus,

12
IE| 27l = — Smkis>.
€0 3

or, finally,

Example 2.4

An infinite plane carries a uniform surface charge . Find its electric field.

Solution: Draw a “Gaussian pillbox,” extending equal distances above and below the plane
(Fig. 2.22). Apply Gauss’s law to this surface:

1
fE‘da: — Qenc-
€0

In this case, Qenc = 0’ A, where A is the area of the lid of the pillbox. By symmetry, E points
away from the plane (upward for points above, downward for points below). Thus, the top and
bottom surfaces yield

/E -da = 2A|E|,

Figure 2.22
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whereas the sides contribute nothing. Thus

1
2A|E| = —0 A,
€0
or p
E- i 2.17)
2¢€p

where i is a unit vector pointing away from the surface. In Prob. 2.6, you obtained this same
result by a much more laborious method.

It seems surprising, at first, that the field of an infinite plane is independent of how far away
you are. What about the 1/ r in Coulomb’s law? Well, the point is that as you move farther
and farther away from the plane, more and more charge comes into your “field of view” (a
cone shape extending out from your eye), and this compensates for the diminishing influence
of any particular piece. The electric field of a sphere falls off like 1/ #2; the electric field of an
infinite line falls off like 1/r; and the electric field of an infinite plane does not fall off at all.

Although the direct use of Gauss’s law to compute electric fields is limited to cases of

spherical, cylindrical, and planar symmetry, we can put together combinations of objects
possessing such symmetry, even though the arrangement as a whole is not symmetrical.
For example, invoking the principle of superposition, we could find the field in the vicinity
of two uniformly charged parallel cylinders, or a sphere near an infinite charged plane.

Example 2.5

Two infinite parallel planes carry equal but opposite uniform charge densities +o (Fig. 2.23).
Find the field in each of the three regions: (i) to the left of both, (ii) between them, (iii) to the
right of both.

Solution: The left plate produces a field (1/2€g)o which points away from it (Fig. 2.24)—to
the left in region (i) and to the right in regions (ii) and (iii). The right plate, being negatively
charged, produces a field (1/2¢p)g, which points toward it—to the right in regions (i) and
(ii) and to the left in region (iii). The two fields ¢ancel in regions (i) and (iii); they conspire
in region (ii). Conclusion: The field is (1/€y)o, and points to the right, between the planes;
elsewhere it is zero.

@ (ii) (iii)

+G -0

Figure 2.23 Figure 2.24
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Problem 2.11 Use Gauss’s law to find the electric field inside and outside a spherical shell of
radius R, which carries a uniform surface charge density o. Compare your answer to Prob. 2.7.

Problem 2.12 Use Gauss’s law to find the electric field inside a uniformly charged sphere
(charge density p). Compare your answer to Prob. 2.8.

Problem 2.13 Find the electric field a distance s from an infinitely long straight wire, which
carries a uniform line charge A. Compare Eq. 2.9.

Problem 2.14 Find the electric field inside a sphere which carries a charge density proportional
to the distance from the origin, p = kr, for some constant k. [Hint: This charge density is not
uniform, and you must integrate to get the enclosed charge.]

Problem 2.15 A hollow spherical shell carries charge density

pP= r_2
in the region a < r < b (Fig. 2.25). Find the electric field in the three regions: (i) r < a, (ii)
a <r < b, (iii) r > b. Plot |E as a function of r.

Problem 2.16 A long coaxial cable (Fig. 2.26) carries a uniform volume charge density p on
the inner cylinder (radius @), and a uniform surface charge density on the outer cylindrical
shell (radius b). This surface charge is negative and of just the right magnitude so that the
cable as a whole is electrically neutral. Find the electric field in each of the three regions: (i)
inside the inner cylinder (s < a), (i) between the cylinders (a < s < b), (iii) outside the cable
(s > b). Plot |E| as a function of s.

Problem 2.17 An infinite plane slab, of thickness 2d, carries a uniform volume charge density
p (Fig. 2.27). Find the electric field, as a function of y, where y = 0 at the center. Plot E
versus y, calling £ positive when it points in the +y direction and negative when it points in
the —y direction.

Problem 2.18 Two spheres, each of radius R and carrying uniform charge densities +p and
— p, respectively, are placed so that they partially overlap (Fig. 2.28). Call the vector from the
positive center to the negative center d. Show that the field in the region of overlap is constant,
and find its value. [Hint: Use the answer to Prob. 2.12.]

Figure 2.25 Figure 2.26
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2.2.4 The Curl of E

I’ll calculate the curl of E, as I did the divergence in Sect. 2.2.1, by studying first the simplest
possible configuration: a point charge at the origin. In this case
1 g,
= ———T.
4meg r?
Now, a glance at Fig. 2.12 should convince you that the curl of this field has to be zero, but

I suppose we ought to come up with something a little more rigorous than that. What if we
calculate the line integral of this field from some point a to some other point b (Fig. 2.29):

b
f E.dl
a

In spherical coordinates, dl = dr t +r df 6 + rsinf d¢ $, SO

1 4
E-dl=——=dr
Areor?

Therefore,

b b
1 -1
f E-dl= 9 g4y = 4
a Areg Ju 12 Ameg r

'y 1

= (1 - 1) . QI8)
ra drweg \rg p
where r, is the distance from the origin to the point a and r, is the distance to b. The
integral around a closed path is evidently zero (for then r, = rp):

?{Edl =0, (2.19)
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Figure 2.29

and hence, applying Stokes’ theorem,

220

Now, I proved Egs. 2.19 and 2.20 only for the field of a single point charge at the origin,
but these results make no reference to what is, after all, a perfectly arbitrary choice of
coordinates; they also hold no matter where the charge is located. Moreover, if we have
many charges, the principle of superposition states that the total field is a vector sum of
their individual fields:

E=E, +E +...,

80
VXE=VX(E +E+..)=(VXE)+(VxEy)+...=0.

Thus, Eqs. 2.19 and 2.20 hold for any static charge distribution whatever.

Problem 2.19 Calculate V x E directly from Eq. 2.8, by the method of Sect. 2.2.2. Refer to
Prob. 1.62 if you get stuck.

2.3 Electric Potential

2.3.1 Introduction to Potential

The electric field E is not just any old vector function; it is a very special kind of vector
function, one whose curl is always zero. E = yX, for example, could not possibly be
an electrostatic field; no set of charges, regardless of their sizes and positions, could ever
produce such a field. In this section we’re going to exploit this special property of electric
fields to reduce a vector problem (finding E) down to a much simpler scalar problem. The
first theorem in Sect. 1.6.2 asserts that any vector whose curl is zero is equal to the gradient
of some scalar. What I'm going to do now amounts to a proof of that claim, in the context
of electrostatics.
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(i)

Figure 2.30

Because V x E = 0, the line integral of E around any closed loop is zero (that follows
from Stokes’ theorem). Because § E - dl = 0, the line integral of E from point a to point
b is the same for all paths (otherwise you could go out along path (i) and return along path
(ii)—Fig. 2.30—and obtain § E - dl # 0). Because the line integral is independent of path,
we can define a function*

V() = —/rE~dl. (.21
(@)

Here O is some standard reference point on which we have agreed beforehand; V then
depends only on the point r. It is called the electric potential.
Evidently, the potential difference between two points a and b is

b a
V(b)— V() = —/ E-dl+/ E.dl
(@] (@]

b (@) b
—f E-dl—f E-dl:—f E - dl (2.22)
(@] a a

Now, the fundamental theorem for gradients states that

b
Vb) —V(a) = / (VV) - dl,

a

b b
f (VV)-dl:—f E.-dl

Since, finally, this is true for any points a and b, the integrands must be equal:

2

Equation 2.23 is the differential version of Eq. 2.21; it says that the electric field is the
gradient of a scalar potential, which is what we set out to prove.

SO

4To avoid any possible ambiguity I should perhaps put a prime on the integration variable:
r
V(r) =~ / E(r')-dl.
@]

But this makes for cumbersome notation, and I prefer whenever possible to reserve the primes for source points.
However, when (as in Ex. 2.6) we calculate such integrals explicitly, I shall put in the primes.
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Notice the subtle but crucial role played by path independence (or, equivalently, the fact
that V x E = 0) in this argument. If the line integral of E depended on the path taken, then
the “definition” of V, Eq. 2.21, would be nonsense. It simply would not define a function,
since changing the path would alter the value of V(r). By the way, don’t let the minus sign
in Eq. 2.23 distract you; it carries over from 2.21 and is largely a matter of convention.

Problem 2.20 One of these is an impossible electrostatic field. Which one?

@E =k[xyX+2yzy+ 3xz%];
() E = k[y? & + Qxy +22) § + 2yz .

Here k is a constant with the appropriate units. For the possible one, find the potential, using
the origin as your reference point. Check your answer by computing VV. [Hint: You must
select a specific path to integrate along. It doesn’t matter what path you choose, since the
answer is path-independent, but you simply cannot integrate unless you have a particular path
in mind.]

2.3.2 Comments on Potential

(i) The name.  The word “potential” is a hideous misnomer because it inevitably
reminds you of potential energy. This is particularly confusing, because there is a connection
between “potential” and “potential energy,” as you will see in Sect. 2.4. I'm sorry that it
is impossible to escape this word. The best I can do is to insist once and for all that
“potential” and “‘potential energy” are completely different terms and should, by all rights,
have different names. Incidentally, a surface over which the potential is constant is called
an equipotential.

(ii) Advantage of the potential formulation.  If you know V, you can easily get
E—just take the gradient: E = —VV. This is quite extraordinary when you stop to think
about it, for E is a vector quantity (three components), but V is a scalar (one component).
How can one function possibly contain all the information that three independent functions
carry? The answer is that the three components of E are not really as independent as
they look; in fact, they are explicitly interrelated by the very condition we started with,
V x E = 0. In terms of components,

0E, OEy % _O0Ey 0E, 0E;

dy ax dy oz’ 9z ax

This brings us back to my observation at the beginning of Sect. 2.3.1: E is a very special
kind of vector. What the potential formulation does is to exploit this feature to maximum
advantage, reducing a vector problem down to a scalar one, in which there is no need to
fuss with components.
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(iii) The reference point O.  There is an essential ambiguity in the definition of
potential, since the choice of reference point O was arbitrary. Changing reference points
amounts to adding a constant K to the potential:

r O r
v’(r)=—/ E«dl:—/ E~dl—/E~dl=K+V(r),
’ 4 O

where K is the line integral of E from the old reference point O to the new one (. Of
course, adding a constant to V will not affect the potential difference between two points:

Vi(b) — V'(a) = V(b) — V(a),

since the K’s cancel out. (Actually, it was already clear from Eq. 2.22 that the potential
difference is independent of O, because it can be written as the line integral of E from a to
b, with no reference to O0.) Nor does the ambiguity affect the gradient of V:

VvV =VYV,

since the derivative of a constant is zero. That’s why all such V’s, differing only in their
choice of reference point, correspond to the same field E.

Evidently potential as such carries no real physical significance, for at any given point
we can adjust its value at will by a suitable relocation of . In this sense it is rather like
altitude: If I ask you how high Denver is, you will probably tell me its height above sea level,
because that 1s a convenient and traditional reference point. But we could as well agree
to measure altitude above Washington D.C., or Greenwich, or wherever. That would add
(or, rather, subtract) a fixed amount from all our sea-level readings, but it wouldn’t change
anything about the real world. The only quantity of intrinsic interest is the difference in
altitude between two points, and that is the same whatever your reference level.

Having said this, however, there is a “natural” spot to use for @ in electrostatics—
analogous to sea level for altitude—and that is a point infinitely far from the charge. Or-
dinarily, then, we “set the zero of potential at infinity.” (Since V() = 0, choosing a
reference point is equivalent to selecting a place where V is to be zero.) But I must warn
you that there is one special circumstance in which this convention fails: when the charge
distribution itself extends to infinity. The symptom of trouble, in such cases, is that the
potential blows up. For instance, the field of a uniformly charged plane is (o/2¢g)ii, as we
found in Ex. 2.4; if we naively put O = oo, then the potential at height z above the plane
becomes

t 1
V() = —f —odz=——0(z — 0).
oo 2€0 2eg
The remedy is simply to choose some other reference point (in this problem you might use
the origin). Notice that the difficulty occurs only in textbook problems; in “real life” there
is no such thing as a charge distribution that goes on forever, and we can always use infinity
as our reference point.
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(iv) Potential obeys the superposition principle. The original superposition princi-
ple of electrodynamics pertains to the force on a test charge Q. It says that the total force
on @ is the vector sum of the forces attributable to the source charges individually:

F=F1+F,+...
Dividing through by Q, we find that the electric field, too, obeys the superposition principle:
E=E;+E;+...

Integrating from the common reference point to r, it follows that the potential also satisfies
such a principle:

V=Vi+Va+...

That is, the potential at any given point is the sum of the potentials due to all the source
charges separately. Only this time it is an ordinary sum, not a vector sum, which makes it
a lot easier to work with.

(v) Units of Potential.  In our units, force is measured in newtons and charge in
coulombs, so electric fields are in newtons per coulomb. Accordingly, potential is measured
in newton-meters per coulomb or joules per coulomb. A joule per coulomb is called a volt.

Example 2.6

Find the potential inside and outside a spherical shell of radius R (Fig. 2.31), which carries a
uniform surface charge. Set the reference point at infinity.

Figure 2.31
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Solution: From Gauss’s law, the field outside is

1
4meg

E =

4;
r2 ’

where ¢ is the total charge on the sphere. The field inside is zero. For points outside the sphere
(r > R),

r -1 r I r 1
V(r):—/ E-dl= L gy = 7 = - 9
o drey Joo r'? degr' | Amey T

To find the potential inside the sphere (r < R), we must break the integral into two sections,
using in each region the field that prevails there:

R 1 q
0= —.
oo+ 47‘[60R

-1 [k 4 r 1 ¢
- L ar — | @dr' = -—4
v dreg /oo 72 /R( yar 4reg 1

Notice that the potential is nof zero inside the shell, even though the field is. V is a constant
in this region, to be sure, so that VV = 0—that’s what matters. In problems of this type you
must always work your way in from the reference point; that’s where the potential is “nailed
down.” It is tempting to suppose that you could figure out the potential inside the sphere on
the basis of the field there alone, but this is false: The potential inside the sphere is sensitive to
what’s going on outside the sphere as well. If I placed a second uniformly charged shell out at
radius R’ > R, the potential inside R would change, even though the field would still be zero.
Gauss’s law guarantees that charge exterior to a given point (that is, at larger r) produces no
net field at that point, provided it is spherically or cylindrically symmetric; but there is no such
rule for potential, when infinity is used as the reference point.

Problem 2.21 Find the potential inside and outside a uniformly charged solid sphere whose
radius is R and whose total charge is ¢. Use infinity as your reference point. Compute the
gradient of V in each region, and check that it yields the correct field. Sketch V (r).

Problem 2.22 Find the potential a distance s from an infinitely long straight wire that carries
a uniform line charge A. Compute the gradient of your potential, and check that it yields the
correct field.

Problem 2.23 For the charge configuration of Prob. 2.15, find the potential at the center, using
infinity as your reference point.

Problem 2.24 For the configuration of Prob. 2.16, find the potential difference between a point
on the axis and a point on the outer cylinder. Note that it is not necessary to commit yourself
to a particular reference point if you use Eq. 2.22.
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2.3.3 Poisson’s Equation and Laplace’s Equation

We found in Sect. 2.3.1 that the electric field can be written as the gradient of a scalar
potential.

E=-VvV.

The question arises: What do the fundamental equations for E,

V-E= and VXE=0,

L4
€0

look like, in terms of V? Well, V-E = V- (—VV) = —V?V 50, apart from that persisting
minus sign, the divergence of E is the Laplacian of V. Gauss’s law then says that

vy = -2

. (2.24)
€0

This is known as Poisson’s equation. In regions where there is no charge, so that p = 0,
Poisson’s equation reduces to Laplace’s equation,

V2V =0. (2.25)

We’ll explore these equations more fully in Chapter 3.
So much for Gauss’s law. What about the curl law? This says that

VXE=VXx(-VV)

must equal zero. But that’s no condition on V—curl of gradient is always zero. Of course,
we used the curl law to show that E could be expressed as the gradient of a scalar, so it’s not
really surprising that this works out: V x E = 0 permits E = —VV; in return, E = —VV
guarantees V. X E = 0. It takes only one differential equation (Poisson’s) to determine V/,
because V is a scalar; for E we needed rwo, the divergence and the curl.

2.3.4 The Potential of a Localized Charge Distribution

I defined V in terms of E (Eq. 2.21). Ordinarily, though, it’s E that we’re looking for (if we
already knew E there wouldn’t be much point in calculating V). The idea is that it might be
easier to get V first, and then calculate E by taking the gradient. Typically, then, we know
where the charge is (that is, we know p), and we want to find V. Now, Poisson’s equation
relates V and p, but unfortunately it’s “the wrong way around”: it would give us p, if we
knew V, whereas we want V, knowing p. What we must do, then, is “invert” Poisson’s
equation. That’s the program for this section, although I shall do it by roundabout means,
beginning, as always, with a point charge at the origin.
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Figure 2.32

Setting the reference point at infinity, the potential of a point charge ¢ at the origin is

r

qa ,,_ 1 qf 1 ¢

v = dreg Joo 1 dr’ = dmey r' o dmeyr’

(You see here the special virtue of using infinity for the reference point: it kills the lower
limit on the integral.) Notice the sign of V; presumably the conventional minus sign in
the definition of V (Eq. 2.21) was chosen precisely in order to make the potential of a
positive charge come out positive. It is useful to remember that regions of positive charge
are potential “hills,” regions of negative charge are potential “valleys,” and the electric field
points “downhill,” from plus toward minus.

In general, the potential of a point charge g is

4 (2.26)

V() = ,
™ dmeg 2

where 2, as always, is the distance from the charge to r (Fig. 2.32). Invoking the superpo-
sition principle, then, the potential of a collection of charges is

1 &g
V() = -, 2.27)
47'[6() i=1 i
or, for a continuous distribution,
V(r) ! / 1a’ (2.28)
r=—— | —-dg. .
4 ey 2 1
In particular, for a volume charge, it’s
1 r
vy = —— [ 29 4 (2.29)
4meg 2

This is the equation we were looking for, telling us how to compute V when we know p; it
is, if you like, the “solution” to Poisson’s equation, for a localized charge distribution.” I

5Equation 2.29 is an example of the Helmholtz theorem (Appendix B), in the context of electrostatics, where
the curl of E is zero and its divergence is p/¢g.
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invite you to compare Eq. 2.29 with the corresponding formula for the electric field interms

of p (Eq. 2.8):
L o),
adt’.
47[60/ 22 ¢

The main point to notice is that the pesky unit vector % is now missing, so there is no need
to worry about components. Incidentally, the potentials of line and surface charges are

b / MO g ang L / AL (2.30)

4meg 2 4meg 2

E(l‘) =

I should warn you that everything in this section is predicated on the assumption that
the reference point is at infinity. This is hardly apparent in Eq. 2.29, but remember that we
got that equation from the potential of a point charge at the origin, (1 /4mep)(g/r), which
is valid only when O = co. If you try to apply these formulas to one of those artificial
problems in which the charge itself extends to infinity, the integral will diverge.

Example 2.7
Find the potential of a uniformly charged spherical shell of radius R (Fig. 2.33).
Solution: This is the same problem we solved in Ex. 2.6, but this time we shall do it using

Eq. 2.30:
1
/z da’.
dreg J 2

Let’s set the point r on the z axis and use the law of cosines to express 2 in terms of the polar
angle 6:

V)=

22 = R? + zz —2Rzcosd’,

Figure 2.33
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An element of surface area on this sphere is R2sin6’ o’ d¢’, so
/ R%sing’ de’ d¢’
1oz
VR2 472 — 2Rz cos 6’
T sin g’

= ZJTRZG/ de’
0 VRZ¥ 72 _2Rzcosd’

T

4megV (2)

1
= 27R%¢ <R—\/R2 +z72 - 2chos9’)
z

0

- 2”ZRU (\/R2+z2+2Rz—\/R2+z2—2Rz)
27R
= T2 [V®+? - Viw=-27).

At this stage we must be very careful to take the positive root. For points outside the sphere, z is

greater than R, and hence v/ (R ~ z)2 = z— R; for points inside the sphere, v/ (R — 2)2 = R—z.
Thus,

2

Ro R0 .
V@i = —Il(R+2z)—(z—R)]=——, outside;
2¢p2 €02
R R
V@) = s—[(R+2—(R—2)]=—, inside.
2€0z €

In terms of the total charge on the shell, ¢ = 4x R2g, V() = (1/4m€g)(g/2) (or, in general,
V(ry = (1/4m€p){(gq/r)) for points outside the sphere, and (1/4mep)(g/R) for points inside.

Of course, in this particular case, it was easier to get V by using 2.21 than 2.30, because
Gauss’s law gave us E with so little effort. But if you compare Ex. 2.7 with Prob. 2.7, you will
appreciate the power of the potential formulation.

Problem 2.25 Using Eqgs. 2.27 and 2.30, find the potential at a distance z above the center of
the charge distributions in Fig. 2.34. In each case, compute E = —VV, and compare your
answers with Prob. 2.2a, Ex. 2.1, and Prob. 2.6, respectively. Suppose that we changed the
right-hand charge in Fig. 2.34a to —g; what then is the potential at P? What field does that
suggest? Compare your answer to Prob. 2.2b, and explain carefully any discrepancy.

1P 1P
| |
| |

z1 zl
| |
| |
I |
' i
: Al

+q d +q 2L .
(a) Two point charges (b) Uniform line charge (c) Uniform surface charge

Figure 2.34
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Problem 2.26 A conical surface (an empty ice-cream cone) carries a uniform surface charge
0. The height of the cone is 4, as is the radius of the top. Find the potential difference between
points a (the vertex) and b (the center of the top).

Problem 2.27 Find the potential on the axis of a uniformly charged solid cylinder, a distance
z from the center. The length of the cylinder is L, its radius is R, and the charge density is p.
Use your result to calcnlate the electric field at this point. (Assume that z > L/2.)

Problem 2.28 Use Eqg. 2.29 to calculate the potential inside a uniformly charged solid sphere
of radius R and total charge g. Compare your answer to Prob. 2.21.

Problem 2.29 Check that Eq. 2.29 satisfies Poisson’s equation, by applying the Laplacian and
using Eq. 1.102.

2.3.5 Summary; Electrostatic Boundary Conditions

In the typical electrostatic problem you are given a source charge distribution p, and you
want to find the electric field E it produces. Unless the symmetry of the problem admits a
solution by Gauss’s law, it is generally to your advantage to calculate the potential first, as
an intermediate step. These, then, are the three fundamental quantities of electrostatics: p,
E, and V. We have, in the course of our discussion, derived all six formulas interrelating
them. These equations are neatly summarized in Fig. 2.35. We began with just two exper-
imental observations: (1) the principle of superposition—a broad general rule applying to
all electromagnetic forces, and (2) Coulomb’s law—the fundamental law of electrostatics.
From these, all else followed.

Figure 2.35
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EJ_

Figure 2.36

You may have noticed, in studying Exs. 2.4 and 2.5, or working problems such as 2.7,
2.11, and 2.16, that the electric field always undergoes a discontinuity when you cross a
surface charge o. In fact, it is a simple matter to find the amount by which E changes at
such a boundary. Suppose we draw a wafer-thin Gaussian pillbox, extending just barely
over the edge in each direction (Fig. 2.36). Gauss’s law states that

1 1
fE~da= — Oenc = —0A,
€0 €0
S

where A is the area of the pillbox lid. (If o varies from point to point or the surface is
curved, we must pick A to be extremely small.) Now, the sides of the pillbox contribute
nothing to the flux, in the limit as the thickness € goes to zero, so we are left with

1
L 1
E - Ebelow = ZO-O’, (231)

above

1
where E e ove |

above, and Ey, . is the same, only just below the surface. For consistency, we let “upward”
be the positive direction for both. Conclusion: The normal component of E is discontinuous
by an amount o /€y at any boundary. In particular, where there is no surface charge, E Lis
continuous, as for instance at the surface of a uniformly charged solid sphere.

The tangential component of E, by contrast, is always continuous. For if we apply

Eq.2.19,
fE -dl =0,

to the thin rectangular loop of Fig. 2.37, the ends give nothing (as € — 0), and the sides
give (E|| [—E 1), so

above below

denotes the component of E that is perpendicular to the surface immediately

_g

below?’

E||

above

(2.32)
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Figure 2.37

where El stands for the components of E parallel to the surface. The boundary conditions
on E (Egs. 2.31 and 2.32) can be combined into a single formula:

g

Eabove - Ebelow = _ﬁs (233)
€0

where f is a unit vector perpendicular to the surface, pointing from “below” to “above.”®
The potential, meanwhile, is continuous across any boundary (Fig. 2.38), since

b
Vabove — Vhelow = _/ E - dl;
a
as the path length shrinks to zero, so too does the integral:

Vabove = Vhelow- 2.34)

Figure 2.38

®Notice that it doesn’t matter which side you call “above” and which “below,” since reversal would switch the
direction of fi. Incidentally, if you're only interested in the field due to the (essentially flat) local patch of surface
charge itself, the answer is (0'/2€g)i immediately above the surface, and —(0'/2¢()h immediately below. This
follows from Ex. 2.4, for if you are close enough to the patch it “looks” like an infinite plane. Evidently the entire
discontinuity in E is attributable to this local patch of charge.
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However, the gradient of V inherits the discontinuity in E; since E = —VV, Eq. 2.33

implies that
1 .,
VVavove — V Voelow = _aan, (2.35)
or, more conveniently,
0 Vabove . 3 Vielow _ —LU, (2.36)
on on €0
where -
—=VV.h 2.37)
on

denotes the normal derivative of V (that is, the rate of change in the direction perpendicular
to the surface).

Please note that these boundary conditions relate the fields and potentials just above and
Jjust below the surface. For example, the derivatives in Eq. 2.36 are the limiting values as
we approach the surface from either side.

Problem 2.30
(a) Check that the results of Exs. 2.4 and 2.5, and Prob. 2.11, are consistent with Eq. 2.33.

(b) Use Gauss’s law to find the field inside and outside a long hollow cylindrical tube, which
carries a uniform surface charge o. Check that your result is consistent with Eq. 2.33.

(c) Check that the result of Ex. 2.7 is consistent with boundary conditions 2.34 and 2.36.

2.4 Work and Energy in Electrostatics
2.4.1 The Work Done to Move a Charge

Suppose you have a stationary configuration of source charges, and you want to move a test
charge Q from point a to point b (Fig. 2.39). Question: How much work will you have to
do? At any point along the path, the electric force on Q is F = QE; the force you must
exert, in opposition to this electrical force, is —QE. (If the sign bothers you, think about
lifting a brick: Gravity exerts a force mg downward, but you exert a force mg upward. Of
course, you could apply an even greater force—then the brick would accelerate, and part

‘110.
P \)Q

.
g,* ® .qi°

Figure 2.39
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of your effort would be “wasted” generating kinetic energy. What we’re interested in here
is the minimum force you must exert to do the job.) The work is therefore

b b
W:/Fdh&@/llmszM—Wm.

Notice that the answer is independent of the path you take from a to b; in mechanics, then,
we would call the electrostatic force “conservative.” Dividing through by O, we have

V(b) - V(a) = v (2.38)
0

In words, the potential difference between points a andb is equal ro the work per unit charge
required to carry a particle from a to b. In particular, if you want to bring the charge Q in
from far away and stick it at point r, the work you must do is

W = Q0[V() — V(o)
so, if you have set the reference point at infinity,
W= QV(. (2.39)

In this sense potential is potential energy (the work it takes to create the system) per unit
charge (just as the field is the force per unit charge).

2.4.2 The Energy of a Point Charge Distribution

How much work would it take to assemble an entire collection of point charges? Imagine
bringing in the charges, one by one, from far away (Fig. 2.40). The first charge, g, takes
no work, since there is no field yet to fight against. Now bring in g». According to Eq. 2.39,
this will cost you g> V| (r2), where V; is the potential due to gy, and r, is the place we’re

putting g>:
1 q1
Wy = —
2 47[60 7 </L12 )

Figure 2.40
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{212 is the distance between g; and ¢» once they are in position). Now bring in g3; this
requires work g3V 2(r3), where V> is the potential due to charges g; and g7, namely,
(1/4me0)(q1/713 + q2/723). Thus

1 a9 )
W; = a4,y
} 4meq q3 (¢13 + 273

Similarly, the extra work to bring in g4 will be

1 1 2 3
Wy = 44 (q— + 2L B
dmeg” \214 224 234

The toral work necessary to assemble the first four charges, then, is

_ (qlqz LD D94 D9 9294 q3q4)'
dmep \ 212 213 214 223 224 234

You see the general rule: Take the product of each pair of charges, divide by their separation
distance, and add it all up:

n

1 - giq;
W= E E =27 2.40
4meg 2ij ( )

i=1 j=1
j>i

The stipulation j > i is just to remind you not to count the same pair twice. A nicer way
to accomplish the same purpose is intentionally to count each pair twice, and then divide
by 2:

! Z Z 24j .41)
8mep — — 4
i=] j=1
J#i
(we must still avoid i = j, of course). Notice that in this form the answer plainly does not
depend on the order in which you assemble the charges, since every pair occurs in the sum.
Let me next pull out the factor g;:

W =

1 n n 1 g
W=_ , - 1
2;% Z4Tf€0¢ij

j=1

J#i
The term in parentheses is the potential at point r; (the position of ¢;) due to all the other

charges—all of them, now, not just the ones that were present at some stage in the building-
up process. Thus,

1 n
W= ;q,-V(r,-). (2.42)

That’s how much work it takes to assemble a configuration of point charges; it’s also the
amount of work you’d get back out if you dismantled the system. In the meantime, it
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represents energy stored in the configuration (“potential” energy, if you like, though for
obvious reasons I prefer to avoid that word in this context).

Problem 2.31

(a) Three charges are situated at the corners of a square (side a), as shown in Fig. 2.41. How
much work does it take to bring in another charge, +¢, from far away and place it in the fourth
corner?

(b) How much work does it take to assemble the whole configuration of four charges?

-q

tq -q

Figure 2.41

2.4.3 The Energy of a Continuous Charge Distribution

For a volume charge density p, Eq. 2.42 becomes

W= % / oV dx. (2.43)

(The corresponding integrals for line and surface charges would be [ AV dl and [oVda,
respectively.) There is a lovely way to rewrite this result, in which p and V are eliminated
in favor of E. First use Gauss’s law to express p in terms of E:

p=eV-E so W:%O/(V~E)Vdr.

Now use integration by parts (Eq. 1.59) to transfer the derivative from E to V:
€0
W= E[—/E~(VV)dr+¢VE-da].

w=2 /Ezdr+?§VE-da . (2.44)

2
Vv S

But VV = —E, so
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But what volume is this we’re integrating over? Let’s go back to the formula we started
with, Eq. 2.43. From its derivation, it is clear that we should integrate over the region
where the charge is located. But actually, any larger volume would do just as well: The
“extra” territory we throw in will contribute nothing to the integral anyway, since p = 0
out there. With this in mind, let’s return to Eq. 2.44. What happens here, as we enlarge the
volume beyond the minimum necessary to trap all the charge? Well, the integral of E can
only increase (the integrand being positive); evidently the surface integral must decrease
correspondingly to leave the sum intact. In fact, at large distances from the charge, £ goes
like 1/7* and V like 1/r, while the surface area grows like 2. Roughly speaking, then,
the surface integral goes down like 1/r. Please understand that Eq. 2.44 gives you the
correct energy W, whatever volume you use (as long as it encloses all the charge), but the
contribution from the volume integral goes up, and that of the surface integral goes down,
as you take larger and larger volumes. In particular, why not integrate over all space? Then
the surface integral goes to zero, and we are left with

W=— / E’dr. (2.45)

all space

Example 2.8

Find the energy of a uniformly charged spherical shell of total charge g and radius R.
Solution 1: Use Eq. 2.43, in the version appropriate to surface charges:

1
Wz—/ana.
2

Now, the potential at the surface of this sphere is (1/47€g)q/R (a constant), so

1 g 1 4°
= = | oda = —
8meg R 8meg R
Solution 2: Use Eq. 2.45. Inside the sphere E = 0; outside,
1 ¢q. 2 112
E= —=T. S0 = —
47y r? (4meg)2rt
Therefore,
W _© / a’ (+2sin6 dr d6 d¢)
ot 2(47'[50)2 r4

outside

1 ] 1 42
‘1247t/ —dr = £
3272¢ R 12 8mep R
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Problem 2.32 Find the energy stored in a uniformly charged solid sphere of radius R and
charge g. Do it three different ways:

(a) Use Eq. 2.43. You found the potential in Prob. 2.21.
(b) Use Eq. 2.45. Don’t forget to integrate over all space.
(c) Use Eq. 2.44. Take a spherical volume of radius a. Notice what happens as a — oo.

Problem 2.33 Here is a fourth way of computing the energy of a uniformly charged sphere:
Assemble the sphere layer by layer, each time bringing in an infinitesimal charge dg from far
away and smearing it uniformly over the surface, thereby increasing the radius. How much
work dW does it take to build up the radius by an amount dr? Integrate this to find the work
necessary to create the entire sphere of radius R and total charge ¢.

2.44 Comments on Electrostatic Energy

(i) A perplexing “inconsistency.” Equation 2.45 clearly implies that the energy of a
stationary charge distribution is always positive. On the other hand, Eq. 2.42 (from which
2.45 was in fact derived), can be positive or negative. For instance, according to 2.42, the
energy of two equal but opposite charges a distance » apart would be —(1/4meg)(g? /).
What’s gone wrong? Which equation is correct?

The answer is that both equations are correct, but they pertain to slightly different
situations. Equation 2.42 does not take into account the work necessary to make the point
charges in the first place; we started with point charges and simply found the work required
to bring them together. This is wise policy, since Eq. 2.45 indicates that the energy of a
point charge is in fact infinite:

% €0 / 4 (r? sin 6 dr d6 de) ¢’ /OO L
= — — r 1 = — ar = OQ.
2(4mep)? r4 4 8mweg Jo 12

Equation 2.45 is more complete, in the sense that it tells you the total energy stored in
a charge configuration, but Eq. 2.42 is more appropriate when you’re dealing with point
charges, because we prefer (for good reason!) to leave out that portion of the total energy
that is attributable to the fabrication of the point charges themselves. In practice, after
all, the point charges (electrons, say) are given to us ready-made; all we do is move them
around. Since we did not put them together, and we cannot take them apart, it is immaterial
how much work the process would involve. (Still, the infinite energy of a point charge
is a recurring source of embartassment for electromagnetic theory, afflicting the quantum
version as well as the classical. We shall return to the problem in Chapter 11.)

Now, you may wonder where the inconsistency crept into an apparently water-tight
derivation. The “flaw” lies between Egs. 2.42 and 2.43: In the former, V (r;) represents
the potential due to all the other charges but not q;, whereas in the latter, V (r) is the full
potential. For a continuous distribution there is no distinction, since the amount of charge
right at the point 1 is vanishingly small, and its contribution to the potential is zero.
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(ii) Where is the energy stored? Equations 2.43 and 2.45 offer two different ways of
calculating the same thing. The first is an integral over the charge distribution; the second
is an integral over the field. These can involve completely different regions. For instance,
in the case of the spherical shell (Ex. 2.8) the charge is confined to the surface, whereas the
electric field is present everywhere outside this surface. Where is the energy, then? Is it
stored in the field, as Eq. 2.45 seems to suggest, or is it stored in the charge, as Eq. 2.43
implies? At the present level, this is simply an unanswerable question: I can tell you what
the total energy is, and I can provide you with several different ways to compute it, but it is
unnecessary to worry about where the energy is located. In the context of radiation theory
(Chapter 11) it is useful (and in General Relativity it is essential) to regard the energy as
being stored in the field, with a density

GZ—OE 2 — energy per unit volume. (2.46)

Butin electrostatics one could just as well say it is stored in the charge, with a density % pV.
The difference is purely a matter of bookkeeping.

(iii) The superposition principle. Because electrostatic energy is quadratic in the
fields, it does not obey a superposition principle. The energy of a compound system is not
the sum of the energies of its parts considered separately—there are also ““cross terms”:

Wt = %0 E2dr=%0/(E1+E2)2dr

€
- 50/(E12+E§+2E1.E2)dr
= W +W2+€0/E1 -EordrT. (2.47)

For example, if you double the charge everywhere, you quadruple the total energy.

Problem 2.34 Consider two concentric spherical shells, of radii a and b. Suppose the inner
one carries a charge ¢, and the outer one a charge —¢ (both of them uniformly distributed
over the surface). Calculate the energy of this configuration, (a) using Eq. 2.45, and (b) using
Eq. 2.47 and the results of Ex. 2.8.

2.5 Conductors

2.5.1 Basic Properties

In an insulator, such as glass or rubber, each electron is attached to a particular atom. In a
metallic conductor, by contrast, one or more electrons per atom are free to roam about at will
through the material. (In liquid conductors such as salt water it is ions that do the moving.)
A perfect conductor would be a material containing an unlimited supply of completely free
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charges. In real life there are no perfect conductors, but many substances come amazingly
close. From this definition the basic electrostatic properties of ideal conductors immediately
follow:

(i) E = 0 inside a conductor. Why? Because if there were any field, those free charges
would move, and it wouldn’t be electroszatics any more. Well . . . that’s hardly a satisfactory
explanation; maybe all it proves is that you can’t have electrostatics when conductors are
present. We had better examine what happens when you put a conductor into an external
electric field Eg (Fig. 2.42). Initially, this will drive any free positive charges to the right,
and negative ones to the left. (In practice it’s only the negative charges—electrons—that
do the moving, but when they depart the right side is left with a net positive charge—the
stationary nuclei—so it doesn’t really matter which charges move; the effect is the same.)
When they come to the edge of the material, the charges pile up: plus on the right side,
minus on the left. Now, these induced charges produce a field of their own, E|, which, as
you can see from the figure, is in the opposite direction to Eq. That’s the crucial point, for
it means that the field of the induced charges tends to cancel off the original field. Charge
will continue to flow until this cancellation is complete, and the resultant field inside the
conductor is precisely zero.” The whole process is practically instantaneous.

+ 4+ + + +

s

4+

E,

Figure 2.42

(ii) p = 0 inside a conductor. This follows from Gauss’slaw: V- E = p/ep. If E = 0,
so also is p. There is still charge around, but exactly as much plus charge as minus, so the
net charge density in the interior is zero.

(iii) Any net charge resides on the surface. That’s the only other place it can be.

(iv) A conductor is an equipotential. For if a and b are any two points within (or at the
surface of) a given conductor, V(b) — V(a) = — j:’ E - dl =0, and hence V(a) = V(b).

7 Qutside the conductor the field is not zero, for here Eg and E; do not cancel.



98 CHAPTER 2. ELECTROSTATICS

E

Conductor
E=0

Figure 2.43

(v) E is perpendicular to the surface, just outside a conductor. Otherwise, as in (i),
charge will immediately flow around the surface uritil it kills off the tangential component
(Fig. 2.43). (Perpendicular to the surface, charge cannot flow, of course, since it is confined
to the conducting object.)

I think it is strange that the charge on a conductor flows to the surface. Because of their
mutual repulsion, the charges naturally spread out as much as possible, but for all of them
t0 go to the surface seems like a waste of the interior space. Surely we could do better, from
the point of view of making each charge as far as possible from its neighbors, to sprinkle
some of them throughout the volume. . . Well, it simply is not so. You do best to put a// the
charge on the surface, and this is true regardless of the size or shape of the conductor.’

The problem can also be phrased in terms of energy. Like any other free dynamical
system, the charge on a conductor will seek the configuration that minimizes its potential
energy. What property (iii) asserts is that the electrostatic energy of a solid object (with
specified shape and total charge) is a minimum when that charge is spread over the surface.
For instance, the energy of a sphere is (1/87¢€0)(¢?/ R) if the charge is uniformly distributed
over the surface, as we found in Ex. 2.8, but it is greater, (3/207 oso)(q2 /R), if the charge is
uniformly distributed throughout the volume (Prob. 2.32).

2.5.2 Induced Charges

If you hold a charge +¢ near an uncharged conductor (Fig. 2.44), the two will attract one
another. The reason for this is that ¢ will pull minus charges over to the near side and repel
plus charges to the far side. (Another way to think of it is that the charge moves around in
such a way as to cancel off the field of g for points inside the conductor, where the total
field must be zero.) Since the negative induced charge is closer to g, there is a net force of
attraction. (In Chapter 3 we shall calculate this force explicitly, for the case of a spherical
conductor.) ‘

8By the way, the one- and two-dimensional analogs are quite different: The charge on a conducting disk does
not all go to the perimeter (R. Friedberg, Am. J. of Phys. 61, 1084 (1993)), nor does the charge on a conducting
needle go to the ends (D. J. Griffiths and Y. Li, Am. J. of Phys. 64, 706 (1996)). See Prob. 2.52.
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Gaussian
surface

Conductor

Figure 2.44 Figure 2.45

By the way, when I speak of the field, charge, or potential “inside” a conductor, 1
mean in the “meat” of the conductor; if there is some cavity in the conductor, and within
that cavity there is some charge, then the field in the cavity will not be zero. But in a
remarkable way the cavity and its contents are electrically isolated from the outside world
by the surrounding conductor (Fig. 2.45). No external fields penetrate the conductor; they
are canceled at the outer surface by the induced charge there. Similarly, the field due to
charges within the cavity is killed off, for all exterior points, by the induced charge on the
inner surface. (However, the compensating charge left over on the outer surface of the
conductor effectively “communicates™ the presence of g to the outside world, as we shall
seein Ex. 2.9.) Incidentally, the total charge induced on the cavity wall is equal and opposite
to the charge inside, for if we surround the cavity with a Gaussian surface, all points of
which are in the conductor (Fig. 2.45), $ E - da = 0, and hence (by Gauss’s law) the net
enclosed charge must be zero. But Qene = ¢ + Ginduced » SO G induced = —4-

Example 2.9

An uncharged spherical conductor centered at the origin has a cavity of some weird shape
carved out of it (Fig. 2.46). Somewhere within the cavity is a charge g. Question: What is the
field outside the sphere?

Conductor

Figure 2.46
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Solution: At first glance it would appear that the answer depends on the shape of the cavity
and on the placement of the charge. But that’s wrong: The answer is
1
- 94
dreq r2

regardless. The conductor conceals from us all information concerning the nature of the cavity,
revealing only the total charge it contains. How can this be? Well, the charge +¢ induces
an opposite charge —¢g on the wall of the cavity, which distributes itself in such a way that
its field cancels that of ¢, for all points exterior to the cavity. Since the conductor carries no
net charge, this leaves +¢ to distribute itself uniformly over the surface of the sphere. (It’s
uniform because the asymmetrical influence of the point charge +¢ is negated by that of the
induced charge —¢ on the inner surface.} For points outside the sphere, then, the only thing
that survives is the field of the leftover +¢, uniformly distributed over the outer surface.

It may occur to you that in one respect this argument is open to challenge: There are actually
three fields at work here, E¢, Eiyduced » and E fefiover . All we know for certain is that the sum
of the three is zero inside the conductor, yet I claimed that the first two alone cancel, while
the third is separately zero there. Moreover, even if the first two cancel within the conductor,
who is to say they still cancel for points outside? They do not, after all, cancel for points
inside the cavity. I cannot give you a completely satisfactory answer at the moment, but this
much at least is true: There exists a way of distributing ~¢ over the inner surface so as to
cancel the field of ¢ at all exterior points. For that same cavity could have been carved out of
a huge spherical conductor with a radius of 27 miles or light years or whatever. In that case
the leftover +¢ on the outer surface is simply too far away to produce a significant field, and
the other two fields would have to accomplish the cancellation by themselves. So we know
they can do it ... but are we sure they choose to? Perhaps for small spheres nature prefers
some complicated three-way cancellation. Nope: As we’ll see in the uniqueness theorems of
Chapter 3, electrostatics is very stingy with its options; there is always precisely one way—no
more—of distributing the charge on a conductor so as to make the field inside zero. Having
found a possible way, we are guaranteed that no alternative exists even in principle.

If a cavity surrounded by conducting material is itself empty of charge, then the field
within the cavity is zero. For any field line would have to begin and end on the cavity wall,
going from a plus charge to a minus charge (Fig. 2.47). Letting that field line be part of a
closed loop, the rest of which is entirely inside the conductor (where E = 0), the integral

Figure 2.47
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¢ E - dlis distinctly positive, in violation of Eq. 2.19. It follows that E = 0 within an empty
cavity, and there is in fact no charge on the surface of the cavity. (This is why you are
relatively safe inside a metal car during a thunderstorm—you may get cooked, if lightning
strikes, but you will not be electrocuted. The same principle applies to the placement of
sensitive apparatus inside a grounded Faraday cage, to shield out stray electric fields. In
practice, the enclosure doesn’t even have to be solid conductor—chicken wire will often
suffice.)

Problem 2.35 A metal sphere of radius R, carrying charge g, is surrounded by a thick concentric
metal shell (inner radius a, outer radius b, as in Fig. 2.48). The shell carries no net charge.

(a) Find the surface charge density ¢ at R, at a, and at b.
(b) Find the potential at the center, using infinity as the reference point.

(c) Now the outer surface is touched to a grounding wire, which lowers its potential to zero
(same as at infinity). How do your answers to (a) and (b) change?

Problem 2.36 Two spherical cavities, of radii @ and b, are hollowed out from the interior of a
(neutral) conducting sphere of radius R (Fig. 2.49). At the center of each cavity a point charge
is placed—call these charges g, and ¢p.

(a) Find the surface charges a4, 03, and og.
(b) What is the field outside the conductor?
(c) What is the field within each cavity?

(d) What is the force on g, and ¢p?

(e) Which of these answers would change if a third charge, ¢, were brought near the conductor?

Figure 2.48 Figure 2.49
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2.5.3 Surface Charge and the Force on a Conductor

Because the field inside a conductor is zero, boundary condition 2.33 requires that the field
immediately outside is
o .
E= A8, (2.48)
€0
consistent with our earlier conclusion that the field is normal to the surface. In terms of

potential, Eq. 2.36 yields
av
= —eg—-. (2.49)
on
These equations enable you to calculate the surface charge on a conductor, if you can
determine E or V; we shall use them frequently in the next chapter.

In the presence of an electric field, a surface charge will, naturally, experience aforce; the
force per unit area, f, is  E. Butthere’s a problem here, for the electric field is discontinuous
at a surface charge, so which value are we supposed to use: Egpove, Ebelow, Or something in
between? The answer is that we should use the average of the two:

1
f=0E average — EO(E above + Epelow). (2.50)

Why the average? The reason is very simple, though the telling makes it sound complicated:
Let’s focus our attention on a small patch of surface surrounding the point in question
(Fig. 2.50). Make it tiny enough so it is essentially flat and the surface charge on it is
essentially constant. The fotal field consists of two parts—that attributable to the patch
itself, and that due to everything else (other regions of the surface, as well as any external
sources that may be present):

E = Epalch + Eolher .

Now, the patch cannot exert a force on itself, any more than you can lift yourself by standing
in a basket and pulling up on the handles. The force on the patch, then, is due exclusively
t0 E giher, and this suffers no discontinuity (if we removed the patch, the field in the “hole”
would be perfectly smooth). The discontinuity is due entirely to the charge on the patch,

% oleg ¥

Figure 2.50
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which puts out a field (o /2¢p) on either side, pointing away from the surface (Fig. 2.50).
Thus,

[oJN

E sbove = Eother + n,
260

[ON

Epeiow = Eother - n,
260

and hence

1
Eolher = E (E above T E below) =E average

Averaging is really just a device for removing the contribution of the patch itself.

That argument applies to any surface charge; in the particular case of a conductor, the
field is zero inside and (o /€p)n outside (Eq. 2.48), so the average is (o /2¢p)iy, and the force
per unit area is

1
f= —o’h. (2.51)
260
This amounts to an outward electrostatic pressure on the surface, tending to draw the
conductor into the field, regardless of the sign of . Expressing the pressure in terms of the
field just outside the surface,

pP= %OE? (2.52)

Problem 2.37 Two large metal plates (each of area A) are held a distance d apart. Suppose
we put a charge Q on each plate; what is the electrostatic pressure on the plates?

Problem 2.38 A metal sphere of radius R carries a totdl charge Q. What is the force of
repulsion between the “northern” hemisphere and the “southern” hemisphere?

2.5.4 Capacitors

Suppose we have two conductors, and we put charge +Q on one and —Q on the other
(Fig. 2.51). Since V is constant over a conductor, we can speak unambiguously of the
potential difference between them:

+)
V=V+—V_=—/ E - dl.
(-)

We don’t know how the charge distributes itself over the two conductors, and calculating
the field would be a mess, if their shapes are complicated, but this much we do know: E is
proportional to Q. For E is given by Coulomb’s law:

1 o .
E= —adrt,
47T60//L2
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Figure 2.51

so if you double p, you double E. (Wait a minute! How do we know that doubling Q (and
also — Q) simply doubles p? Maybe the charge moves around into a completely different
configuration, quadrupling p in some places and halving it in others, just so the fotal charge
on each conductor is doubled. The fact is that this concern is unwarranted—doubling Q
does double p everywhere; it doesn’t shift the charge around. The proof of this will come
in Chapter 3; for now you’ll just have to believe me.)

Since E is proportional to , so also is V. The constant of proportionality is called the
capacitance of the arrangement: A
Y
v (2.53)
Capacitance is a purely geometrical quantity, determined by the sizes, shapes, and separation
of the two conductors. In SIunits, C is measured in farads (F); a farad is a coulomb-per-volt.
Actually, this turns out to be inconveniently large;” more practical units are the microfarad
(107 F) and the picofarad (102 F).

Notice that V is, by definition, the potential of the positive canductor less that of the
negative one; likewise, Q 1s the charge of the positive conductor. Accordingly, capacitance
is an intrinsically positive quantity. (By the way, you will occasionally hear someone
speak of the capacitance of a single conductor. In this case the “second conductor,” with
the negative charge, is an imaginary spherical shell of infinite radius surrounding the one
conductor. It contributes nothing to the field, so the capacitance is given by Eq. 2.53, where
V is the potential with infinity as the reference point.)

C

1

Example 2.10

Find the capacitance of a “parallel-plate capacitor” consisting of two metal surfaces of area A
held a distance d apart (Fig. 2.52).

Figure 2.52

9In the second edition I claimed you would need a forklift to carry a 1 F capacitor. This is no longer the
case—you can now buy a 1 F capacitor that fits comfortably in a soup spoon.
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Solution: If we put +Q on the top and — Q on the bottom, they will spread out uniformly over
the two surfaces, provided the area is reasonably large and the separation distance small.l0
The surface charge density, then, is o = Q/A on the top plate, and so the field, according to
Ex. 2.5,is (1/€g) Q/A. The potential difference between the plates is therefore

V= _Q_d7
Ae€g
and hence A
€0
C=—. 2.54
y (2.54)

If, for instance, the plates are square with sides 1 cm long, and they are held 1 mm apart, then
the capacitance is 9 x 10713 F,

Example 2.11

Find the capacitance of two concentric spherical metal shells, with radii a and b.

Solution: Place charge +Q on the inner sphere, and —Q on the outer one. The field between
the spheres is
I 9

E =
dmeg r2

t,

so the potential difference between them is

a a1 1 1
v:—/ Ea=-—2 ["L, -2 (1_1)
b dweg Jp r? dmeg \a b

As promised, V is proportional to Q; the capacitance is

Q ab
v =0 —

To “charge up” a capacitor, you have to remove electrons from the positive plate and
carry them to the negative plate. In doing so you fight against the electric field, which is
pulling them back toward the positive conductor and pushing them away from the negative
one. How much work does it take, then, to charge the capacitor up to a final amount Q7
Suppose that at some intermediate stage in the process the charge on the positive plate is
g, so that the potential difference is ¢ /C. According to Eq. 2.38, the work you must do to
transport the next piece of charge, dg, is

10The exact solution is not easy—everl for the simpler case of circular plates. See G. T. Carlson and B. L. Illman,
Am. J. Phys. 62, 1099 (1994).
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The total work necessary, then, to go fromg =0to g = Q, is
Q 2
q 10
v-[ G-
/0 c/Ta¢

1
W= 5Cvz, (2.55)

or, since Q = CV,

where V is the final potential of the capacitor.

Problem 2.39 Find the capacitance per unit length of two coaxial metal cylindrical tubes, of
radii a and b (Fig. 2.53).

Figure 2.53

Problem 2.40 Suppose the plates of a parallgl-plate capacitor move closer together by an
infinitesimal distance e, as a result of their mutual attraction.

(a) Use Eq. 2.52 to express the amount of work done by electrostatic forces, in terms of the
field E, and the area of the plates, A.

(b) Use Eq. 2.46 to express the energy lost by the field in this process.

(This problem is supposed to be easy, but it contains the embryo of an alternative derivation
of Eq. 2.52, using conservation of energy.)

More Problems on Chapter 2

Problem 2.41 Find the electric field at a height z above the center of a square sheet (side a)
carrying a uniform surface charge o. Check your result for the limiting cases ¢ — oo and
> a.

[Answer: (0/2€p){(4/m)tan" 1 /1 + (a2/272) — 1}]

Problem 2.42 If the electric field in some region is given (in spherical coordinates) by the
expression
At + Bsinfcos¢ @

r

E(r) =

where A and B are constants, what is the charge density? [Answer: €g(A — Bsin¢)/ 2]
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Problem 2.43 Find the net force that the southern hemisphere of a uniformly charged sphere
exerts on the northern hemisphere. Express your answer in terms of the radius R and the total
charge Q. [Answer: (1/4meg)(30%/16R?)]

Problem 2.44 An inverted hemispherical bow! of radius R carries a uniform surface charge
density o. Find the potential difference between the “north pole” and the center. [Answer:

(Ro/2€0)(v/2 — )]

Problem 2.45 A sphere of radius R carries a charge density p(r) = kr (where k is a constant).
Find the energy of the configuration. Check your answer by calculating it in at least two
different ways. [Answer: Tk2R /7€p]

Problem 2.46 The electric potential of some configuration is given by the expression

—Ar
Vi) = AL
.

where A and 1 are constants. Find the electric field E(r), the charge density p(r), and the total
charge Q. [Answer: p = eoA(4ﬂ83(r) - Aze_”/r)]

Problem 2.47 Two infinitely long wires running parallel to the x axis carry uniform charge
densities +A and —2 (Fig. 2.54).

(2) Find the potential at any point (x, y, z), using the origin as your reference.

(b) Show that the equipotential surfaces are circular cylinders, and locate the axis and radius
of the cylinder corresponding to a given potential V.

Problem 2.48 In a vacuum diode, electrons are “boiled” off a hot cathode, at potential zero,
and accelerated across a gap to the anode, which is held at positive potential V. The cloud of
moving electrons within the gap (called space charge) quickly builds up to the point where it
reduces the field at the surface of the cathode to zero. From then on a steady current I flows
between the plates.

Suppose the plates are large relative to the separation (A >> d2 in Fig. 2.55), so that edge
effects can be neglected. Then V, p, and v (the speed of the electrons) are all functions of x

alone.
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(a) Write Poisson’s equation for the region between the plates.

(b) Assuming the electrons start from rest at the cathode, what is their speed at point x, where
the potential is V (x)?

(c) In the steady state, I is independent of x. What, then, is the relation between p and v?
(d) Use these three results to obtain a differential equation for V, by eliminating p and v.

(e) Solve this equation for V as a function of x, Vg, and d. Plot V(x), and compare it to the
potential without space-charge. Also, find p and v as functions of x.
(f) Show that

1=kv;"? (2.56)
and find the constant K. (Equation 2.56 is called the Child-Langmuir law. It holds for other
geometries as well, whenever space-charge limits the current. Notice that the space-charge
limited diode is noniinear—it does not obey Ohm’s law.)

Problem 2.49 Imagine that new and extraordinarily precise measurements have revealed an
error in Coulomb’s law. The actual force of interaction between two point charges is found to
be

1 2 A
- N (142) e,
dmeg 42 A

where 2 is a new constant of nature (it has dimensions of length, obviously, and is a huge
number—say half the radius of the known universe—so that the correction is small, which is
why no one ever noticed the discrepancy before). You are charged with the task of reformulating
electrostatics to accommodate the new discovery. Assume the principle of superposition still
holds.

(a) What is the electric field of a charge distribution p (replacing Eq. 2.8)?

(b) Does this electric field admit a scalar potential? Explain briefly how you reached your
conclusion. (No formal proof necessary—just a persuasive argument.)

(c) Find the potential of a point charge g—the analog to Eq. 2.26. (If your answer to (b) was
“no,” better go back and change it!) Use oo as your reference point.

(d) For a point charge g at the origin, show that

1 1
E-da+—/Vdr=— ,
.(é 22 Jy e

where S is the surface, V the volume, of any sphere centered at g.

(e) Show that this result generalizes:

1 1
fE~da+—'/Vdr:—QenC,
S 22 Jy €0

for any charge distribution. (This is the next best thing to Gauss’s Law, in the new “electro-
statics.”)

(f) Draw the triangle diagram (like Fig. 2.35) for this world, putting in all the appropriate
formulas. (Think of Poisson’s equation as the formula for p in terms of V, and Gauss’s law
(differential form) as an equation for p in terms of E.)
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Problem 2.50 Suppose an electric field E(x, y, z) has the form
Ey =ax, Ey=0, E,=0

where a is a constant. What is the charge density? How do you account for the fact that the
field points in a particular direction, when the charge density is uniform? [This is a more subtle
problem than it looks, and worthy of careful thought.]

Problem 2.51 All of electrostatics follows from the 1/r2 character of Coulomb’s law, together
with the principle of superposition. An analogous theory can therefore be constructed for
Newton’s law of universal gravitation. What is the gravitational energy of a sphere, of mass M
and radius R, assuming the density is uniform? Use your result to estimate the gravitational
energy of the sun (look up the relevant numbers). The sun radiates at a rate of 3.86 x 1026 W:
if all this came from stored gravitational energy, how long would the sun last? [The sun is in
fact much older than that, so evidently this is nor the source of its power.]

Problem 2.52 We know that the charge on a conductor goes to the surface, but just how it
distributes itself there is not easy to determine. One famous example in which the surface
charge density can be calculated explicitly is the ellipsoid:
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In this case!!

where Q is the total charge. By choosing appropriate values for a, b, and ¢, obtain (from
Eq. 2.57): (a) the net (both sides) surface charge density o () on a circular disk of radius R;
(b) the net surface charge density o (x) on an infinite conducting “ribbon” in the x y plane,
which straddles the y axis from x = —a to x = a (let A be the total charge per unit length
of ribbon); (c) the net charge per unit length A(x) on a conducting “needle”, running from
X = —ato x = a. In each case, sketch the graph of your result.

1TFor the derivation (which is a real tour de force) see W. R. Smythe, Static and Dynamic Electricity, 3rd ed.
(New York: Hemisphere, 1989), Sect. 5.02.



