CUSAT 2021: Shift 1

Solved Paper

Question 1

The density of a material in the form of a cube is measured using its dimensions and mass. If the error in measurement of length and mass is 0.6% and 1.2% respectively, the maximum error in calculation of density is

15
Options:
A. 3.0%
B. 4.0%
C. 4.5%
D. 6.0%
Answer: A
Solution:
Solution:
Question 2
If m is the mass of a body and E its kinetic energy, then its linear momentum is
Options:
A. $m\sqrt{E}$
B. $2\sqrt{mE}$
$C.\sqrt{mE}$
D. $\sqrt{2 \text{ mE}}$
Answer: D
Answer: D Solution:

Question 3

What is the distance of the center of mass from the carbon atom?
Options:
A. 0.03 nm
3. 0.068 nm
C. 0.05 nm
O. 0.06 nm
Answer: B
Solution:
Solution:
Question 4
In a Young's double slit experiment, let S_1 and S_2 be two slits and C be the center of the screen. If angle $\angle S_1CS_2 = \theta$, and λ is the wavelength, the fringe width will be
Options:
A. $\frac{\lambda}{\theta}$
3. $\lambda\theta$
$C. \frac{2\lambda}{\theta}$
D. $\frac{\lambda}{2\theta}$
Answer: A
Solution:
Solution:
Question 5
For a series RLC circuit driven with voltage of amplitude V $_m$ and frequency $\omega_0=\frac{1}{\sqrt{LC}}$, the current exhibits resonance. The quality factor, Q of the circuit is given by

Options:

The separation between carbon and oxygen in CO molecule is $0.12\,\mathrm{nm}.$

A. $\omega_0 L / R$	
B. ω ₀ R / L	
C. R / $(\omega_0 L)$	
D. CR / $\omega_{\rm o}$	
Answer: A	
Solution:	
Solution:	
Question 6	
The half-life of 215 At is 100 μ s. The time taken for the decay of a sample of 215 At to 1 / 16 th of its initial value	radioactivity e is
Options:	
A. 400μ s	
B. 6.3μ s	
C. 40μ s	
D. 300μ s	
Answer: A	
Solution:	
Solution:	
Question 7	
The shortest wavelength of X-rays emitted from an X-ra on	ry tube depends
Options:	
A. the current in the tube	
B. the voltage applied to the tube	
C, the nature of the gas in the tube	

 $\ensuremath{\mathrm{D}}.$ the atomic number of the target material

Answer: B

Solution:
Solution:
Question 8
The electromagnetic waves detected using a thermopile and used in physiotherapy are
Options:
A. X - rays
B. γ - rays
C. ultraviolet radiations
D. infrared radiations
Answer: D
Solution:
Solution:
Question 9
If the wavelength of an electromagnetic wave is about the diameter of an apple, the region of radiation is
Options:
A. X-ray
B. UV
C. infrared
D. microwave
Answer: D
Solution:
Solution:

In an AC circuit containing a pure resistor and an inductor in series, the

phase lag between current and voltage is
Options:
A. dependent on the AC frequency
B. independent of AC frequency
C. always zero
D. always 90°
Answer: A
Solution:
Solution:
Question 11
Kirchhoff's junction rule is a reflection of
Options:
A. conservation of energy
B. conservation of charges
C. conservation of momentum
D. conservation of current density
Answer: B
Solution:
Solution:
Question 12
If the carrier power of a 100% modulated AM wave is suppressed, the percentage saving in power will be
Options:
A. 50%
B. 100%
C. 66.66%
D. 75%

Answer: C

Solution:
Solution:
Question 13
White X-rays are called "white" because
Options:
A. they are produced most abundantly in X-ray tubes
B. they have a nature similar to visible white light
C. they have a continuous range of frequencies
D. they can be converted into visible light coated screens
Answer: C
Solution:
Solution:
Question 14
An antenna uses electromagnetic waves of frequency 5 MHz. For proper working, the size of the antenna should be
Options:
A. 15m
B. 3 km
C. 60m
D. 300m
Answer: A
Solution:
Solution:

The rectangular Cartesian components of grad ϕ are

Options:
A. $\frac{\partial \phi}{\partial x}$, $\frac{\partial \phi}{\partial y}$, $\frac{\partial \phi}{\partial z}$
B. $\frac{\partial \varphi}{\partial x^2}$, $\frac{\partial \varphi}{\partial y^2}$, $\frac{\partial \varphi}{\partial z^2}$
$C. \ \frac{\partial^2 \phi}{\partial x^2}, \ \frac{\partial^2 \phi}{\partial y^2}, \ \frac{\partial^2 \phi}{\partial z^2}$
D. ϕ , ϕ^2 , ϕ^3
Answer: A
Solution:
Solution:
Question 16
An ideal gas undergoes a thermodynamic process such that $dW=0$ and $dQ<0.$ Then for the gas
Options:
A. the temperature will decrease
B. the temperature will increase
C. the volume will increase
D. there is no change in temperature
Answer: A
Solution:
Solution:
Question 17
Optical fibres transmit light signals from one place to another place by
Options:
A. internal conical refraction
B. double refraction
C. interference of light signals

D. total internal reflection

Answer: D

Solution:
Solution:
Question 18
When the source and the listener move in the same direction with a speed equal to the half of the speed of sound, the change in frequency of the sound is
Options:
A. zero
B. 25%
C. 50%
D. 75%
Answer: A
Solution:
Solution:
Question 19
When the source and the listener move in the same direction with a speed equal to the half of the speed of sound, the change in frequency of the sound is
Options:
A. zero
B. 25%
C. 50%
D. 75%
Answer: B
Solution:
Solution:

Two protons are kept at a separation of 10 nm. If ${\bf F_e}$ and ${\bf F_n}$ represent the electromagnetic force and nuclear force, then

Options:

B. F_e and F_n differ only slightly

C.
$$F_e = F_n$$

D.
$$Fe_e \ll F_n$$

Answer: A

Solution:

-			
Sol		n	•
30	ul	vII	•

Question 21

An inductor of inductance L and a resistor R are joined in series and connected to a source of frequency $\omega.$ The power dissipated in the circuit is

Options:

A.
$$\frac{V^2R}{R^2 + \omega^2L^2}$$

B.
$$\frac{V^2R}{\sqrt{R^2 + \omega^2L^2}}$$

$$C. \frac{R^2 + \omega^2 L^2}{V}$$

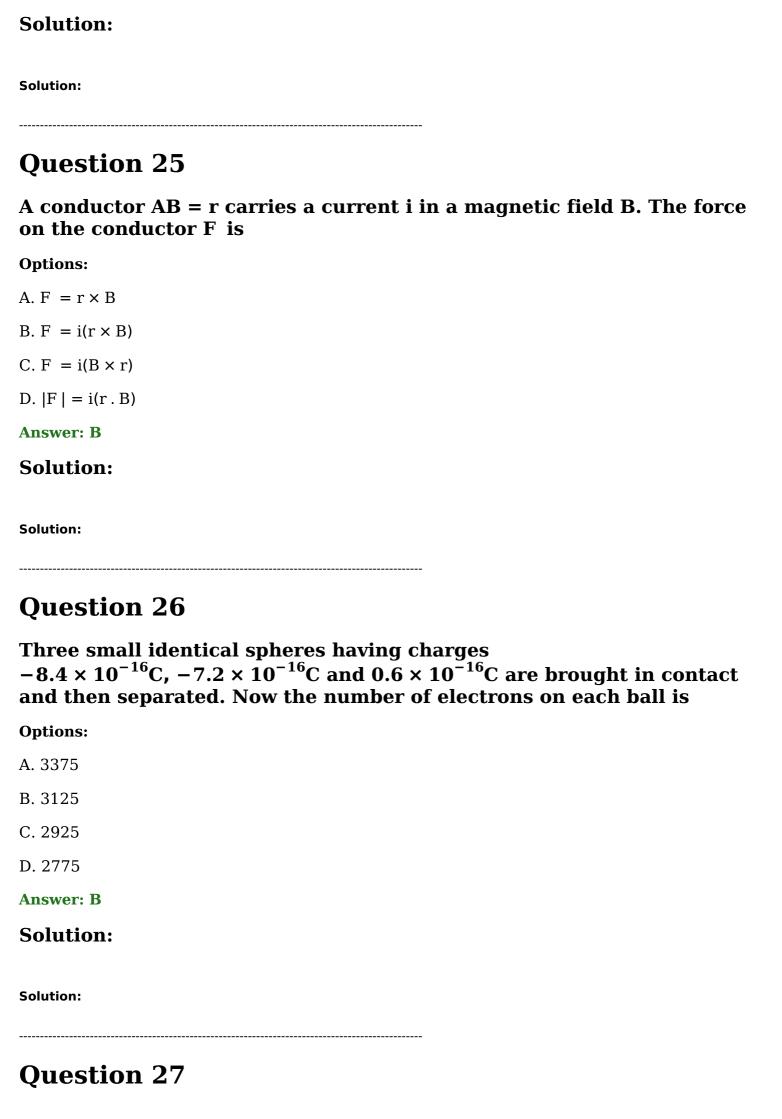
D.
$$\frac{V^2}{R^2 + \omega^2 L^2}$$

Answer: A

Solution:

Solution:

Question 22


Find the odd one out

Options:
A. silicon
B. gallium arsenide
C. barium titanate
D. Cadmium sulphide
Answer: C
Solution:
Solution:
Question 23
The two nearest harmonics of a tube closed at one end and open at other end are 220Hz and 260Hz . What is the fundamental frequency of the system?
Options:
A. 10 Hz
B. 20 Hz
C. 30 Hz
D. 40 Hz
Answer: B
Solution:
Solution:
Question 24
If a stone and a pencil are dropped simultaneously in vacuum from the top of a tower, which of the two will reach the ground first?
Options:
A. Pencil
B. Stone

C. Both will reach the ground simultaneously

Answer: C

D. Either stone or pencil depending on which is heavier

Nichrome wire has been used as heating element because of its		
Options:		
A. low melting point		
B. high conductivity		
C. low specific resistance		
D. high specific resistance		
Answer: D		
Solution:		
Solution:		
Question 28		
The torque on a rectangular coil placed in an uniform magnetic field is large, when the		
Options:		
A. number of turns is large		
B. number of turns is less		
C. plane of the coil is perpendicular to the field		
D. area of the coil is small		
Answer: A		
Solution:		
Solution:		
Question 29		
When a moving coil galvanometer is shunted with a resistance of 30 Ohms, then its deflection is reduced to half. The actual resistance of the galvanometer is		
Ontions:		

A. 10 Ohms

B. 15 Ohms

C. 20 Ohms

D. 30 Ohms
Answer: D
Solution:
Solution:
Question 30
Canal rays were discovered by
Options:
A. Neil Bohr
B. J.J. Thomson
C. Millikan
D. Eugen Goldstein
Answer: D
Solution:
Solution:
Question 31
Which of the following transition produces the spectral line of maximum wavelength in hydrogen atom?
Options:
$A. 4 \rightarrow 3$
B. $3 \rightarrow 2$
$C. 5 \rightarrow 4$
D. $6 \rightarrow 5$
Answer: D
Solution:
Solution:

The bandwidth of the amplitude modulation is

- A. equal to the signal frequency
- B. twice the signal frequency
- C. thrice the signal frequency
- D. four times the signal frequency

Answer: B

Solution:

Solution:

Question 33

Which one of the following of carrier wave remains constant in amplitude modulation?

Options:

- A. amplitude and phase
- B. frequency and phase
- C. amplitude and frequency
- D. phase and time

Answer: B

Solution:

c	O	ı.		ю.	_	-	
3	u	IL	JL	ш	u	H	-

Question 34

What will be the input current when a step up transformer has a power input of 23 kW at 230 volts?

Options:

- A. 1A
- B. 10A
- C. 52.9A

D. 100A
Answer: D
Solution:
Solution:
Question 35
In an AC generator, the current from the coil is transferred to the external circuit through
Options:
A. split rings
B. slip rings
C. O-rings
D. field magnet
Answer: B
Solution:
Solution:
Question 36
A long solenoid having N turns, length (l), area of cross section A, carrying a current I is placed in a magnetic field of inductance B. The total magnetic flux is
Options:
A. $\phi = \mu_o NI$
B. $\phi = \mu_o N I / 1$
C. $\phi = \mu_0 N I A / l$
D. $\phi = \mu_0 N^2 IA / l$
Answer: C
Solution:

Solution:

Question 37	
In Raman spectrum, the intensity of corresponding anti Stokes lines.	Stokes lines will be the intensity of
Options:	
A. greater than	
B. less than	
C. equal to	
D. greater or less than	
Answer: A	
Solution:	
Solution:	
Question 38 In an X-ray tube, when 35 kV is appl emitted radiation is	ied, the minimum wavelength of the
Options:	
A. 3.0Å	
B. 1.5Å	
C. 0.821Å	
D. 0.333Å	
Answer: D	
Solution:	
Solution:	
Question 39	
The half-life period of a particle is 6	24 s. Its mean life is
Options:	

A. 11.3 s

B. 22.6 s

C. 90 s	
D. 900 s	
Answer: D	
Solution:	
Solution:	
Question 40	
What will be the energy of the thermal	neutrons?
Options:	
A. few MeV	
B. few keV	
C. few eV	
D. 0.025 eV	
Answer: D	
Solution:	
Solution:	
Question 41	
Which one of the following is not purely	y an electrostatic accelerator?
Options:	
A. Betatron	
B. Linear accelerator	
C. Van de Graff generator	
D. Cockcroft-Walton accelerator	
Answer: A	
Solution:	

The moment of inertia of a d	sc of mass M	and radius R	about its
diameter as axis is			

Hametel as axis is
Options:
A. $M R^2 / 2$
B. $M R^2 / 4$
$C. M R^2$
D. $(3/4)MR^2$
Answer: B
Solution:
Solution:
Question 43
An electron beam is moving horizontally towards east. If this beam is passed through a uniform magnetic field directed vertically upwards then the direction of the deflected beam is
Options:
A. east
B. west
C. north
D. south
Answer: C
Solution:
Solution:
Question 44

A pn-junction diode works as insulator if it is connected

Options:

A. in forward bias

B. in reverse bias

C. to a.c.
D. to d.c.
Answer: B
Solution:
Solution:
Question 45
A passenger is sitting in a fast moving car. The car blows horn with a frequency of f Hz. If the apparent frequency of the sound heard by the passenger is f Hz, then
Options:
A. $f' = f$
B. $f' < f$
C. f > f
D. $f' = 1 / f$
Answer: A
Solution:
Solution:
Question 46
Let v_{max} and a_{max} are the maximum velocity and maximum acceleration of a simple harmonic oscillator respectively, then its time period in terms of v_{max} and a_{max} is
Options:
A. zero
Β. 2π
C. $[2\pi v_{max}] / \alpha_{max}$
D. $[2\pi\alpha_{max}]$ / v_{max}

Answer: C

Solution:

Solution:
Question 47
A red paper illuminated by green light appears
Options:
A. black
B. blue
C. green
D. yellow
Answer: A
Solution:
Solution:
Question 48
A thermodynamics system goes from state (i) P_1 , V to $2P_1$, V (ii) P_1 , V to P_1 , P_2 , P_3 , P_4 , P_4 , P_5 , P_6 , P_7 , P_8 , P_9 , $P_$
Options:
A. zero and P ₁ V
B. P ₁ V and zero
$C. P_1V$ and P_1V
D. zero and zero
Answer: A
Solution:
Solution:
Question 49
Which one of the following pair of physical quantities do not have same dimension?

Options:

A. Planck's constant and Angular momentum
B. Impulse and moment of force
C. Force and rate of change of linear momentum
D. Pressure and Young's modules
Answer: B
Solution:
Solution:
Question 50
The exponential law of radioactive decay is
Options:
$A. \frac{N}{N_0} e^{-\lambda/t} = 1$
B. $\frac{N_0}{N}e^{-\lambda/t} = 1$
C. $\frac{N_0}{N}e^{z/t} = 1$
$D. \frac{N}{N_0} e^{\lambda t} = 1$
Answer: D
Solution:
Solution:
Question 51
Which of the following is the universal gate?
Options:
A. NOT
B. OR
C. AND
D. NAND
Answer: D

Solution:

Solution:
Question 52
When metals combine with non-metals, then
Options:
A. electrons of the outer shells are shared
B. electrons in the outer shells of non-metals are transferred to metals
C. electrons in the outer shells of metals are transferred to the non-metals atoms
D. hydrogen gas is given off
Answer: C
Solution:
Solution:
Question 53
The Compton shift is maximum for scattering angle of
Options:
A. 0°
B. 45°
C. 90°
D. 180°
Answer: D
Solution:
Solution:
Question 54
A stone released with zero velocity from the top of a tower, reaches th ground in 4 s. The height of the tower is ($g = 10m / s^2$.)
Options:

A. 20m

B. 40m	
C. 80m	
D. 120m	
Answer: C	
Solution:	
Solution:	
Question 55	
Swimming is possible on account of	
Options:	
A. first law of motion	
B. second law of motion	
C. third law of motion	
D. Newton's law of gravitation	
Answer: C	
Solution:	
Solution:	
Question 56	
A steel wire is stretched to double its	length, then its Young's modulus
Options:	
A. becomes half	
B. becomes double	
C. remains same	
D. becomes one-fourth	
Answer: C	
Solution:	
Solution:	

Thermoelectric thermometer is based on

Options:
A. Photoelectric effect
B. Seebeck effect
C. Compton effect
D. Joule effect
Answer: B
Solution:
Solution:
Question 58
The number of degrees of freedom for each atom of a monatomic gas is
Options:
A. 3
B. 5
C. 6
D. 1
Answer: A
Solution:
Solution:
Question 59
The capacity of parallel plate capacitor depends on
Options:
A. metal used to make plates

D. area of plate

B. thickness of plate

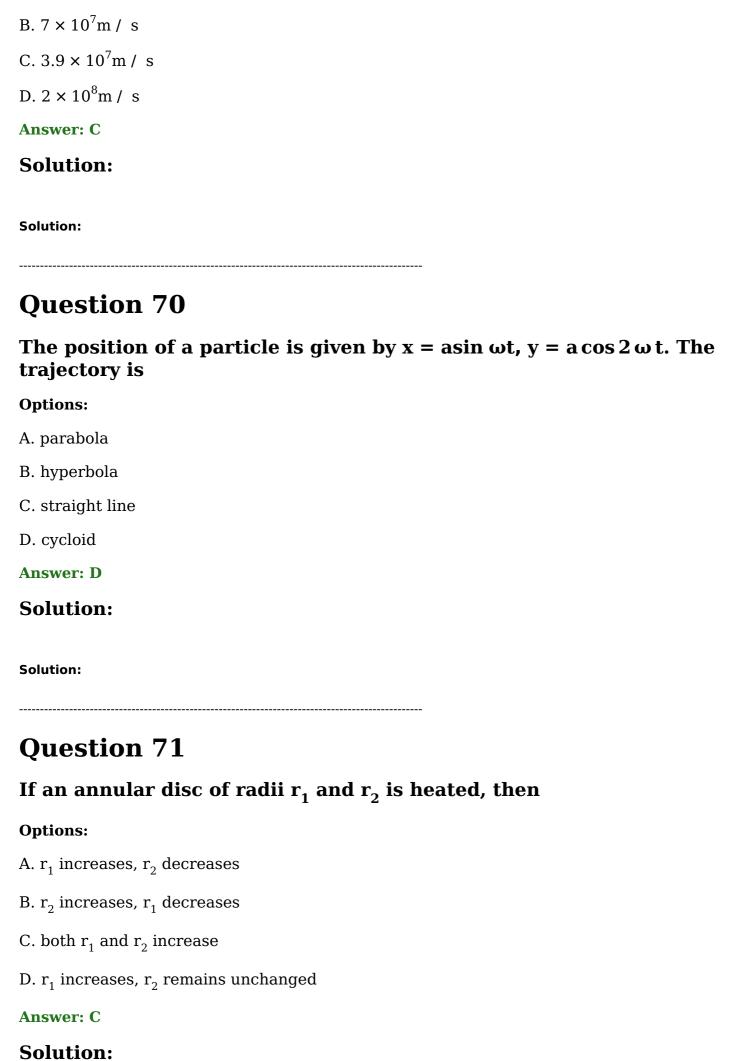
C. potential applied across the plate

Answer: A	
Solution:	
Solution:	
Question 60	
A hydrogen atom is paramagnetic. A hydrogen molecule is	
Options:	
A. diamagnetic	
B. paramagnetic	
C. ferromagnetic	
D. ferrimagnetic	
Answer: A	
Solution:	
Solution:	
Question 61	
10 cm is a wavelength corresponding to the spectrum of	
Options:	
A. infrared rays	
B. ultraviolet rays	
C. microwaves	
D. X-rays	
Answer: C	
Solution:	
Solution:	

In a semiconductor, the forbidden energy gap between the valance band

Options:
A. 1 MeV
B. 0.1 MeV
C. 1 eV
D. 5 eV
Answer: C
Solution:
Solution:
Question 63
The mass of a ship is $2\times 10^7\mathrm{kg}$. On applying a force of $25\times 10^5\mathrm{N}$, it is displaced through 25m. After the displacement, the velocity acquired by the ship will be
Options:
A. 12.5m / s
B. 5m / s
C. 3.7m / s
D. 2.5m/s
Answer: D
Solution:
Solution:
Question 64
A system consists of 3 particles each of mass m located at points (1, 1), (2, 2) and (3, 3). The coordinates of the centre of mass are
Options:
A. (6, 6)
B. (3, 3)
C. (1, 1)

and conduction band is of the order of


D. (2, 2)
Answer: D
Solution:
Solution:
Question 65
If a spring extends by ' x ' on loading, then the energy stored by the spring is (if T is tension in the spring and k is spring constant)
Options:
A. $T^2/2x$
B. $T^2 / 2k$
C. $2x / T^2$
D. $2T^2 / k$
Answer: B
Solution:
Solution:
Question 66
A simple pendulum is executing simple harmonic motion with a time period T . If the length of the pendulum is increased by 21%, the percentage increase in the time period of the pendulum of increased length is $\frac{1}{2} \int_{\mathbb{R}^n} \frac{1}{2} \left(\frac{1}{2} \int_{\mathbb{R}^n} \frac{1}{2} \left(\frac{1}{2} \int_{\mathbb{R}^n} \frac{1}{2} \int_{\mathbb{R}^n} \frac{1}{2} \left(\frac{1}{2} \int_{\mathbb{R}^n} \frac{1}{2} \int_{\mathbb{R}$
Options:
A. 10%
B. 21%
C. 30%
D. 50%
Answer: A
Solution:

Solution:

Question 67 If a diamagnetic substance is brought near north or south pole of a bar magnet, it is **Options:** A. attracted by the poles B. repelled by the poles C. repelled by the north pole and attracted by the south pole D. attracted by north pole and repelled by south pole **Answer: B Solution: Solution: Question 68** The inductive reactance of an inductor of 1 / π Henry at 50 Hz frequency **Options:** A. $50 / \pi Ohm$ B. π / 50 Ohm C. 100 Ohm D. 50 Ohm **Answer: C Solution: Solution: Question 69** How fast a person should drive his car so that the red signal of light appears green ($\lambda_{red} = 6200$ Å, $\lambda_{green} = 5400$ Å)

Options:

A. $1.5 \times 10^8 \text{m} / \text{s}$

Solution:
Question 72
Velocity of sound in air is 332m / s. Its velocity in vacuum is
Options:
A. $>332m / s$
B. $3 \times 10^8 \text{m} / \text{s}$
C. 332m / s
D. zero
Answer: D
Solution:
Solution:
Question 73
A steady current flows in a metallic conductor of non-uniform cross- section. The quantity/quantities constant along the length of the conductor is/are
Options:
A. current, electric field and drift velocity
B. drift speed only
C. current and drift speed
D. current only
Answer: D
Solution:
Solution:
Question 74

A convex lens is dipped in a liquid whose refractive index is equal to refractive index of the lens. Then its focal length will

Options:

A. remain unchanged
B. be 0
C. be infinity
D. be small but non zero
Answer: C
Solution:
Solution:
Question 75
AND gate can be produced using two gates of
Options:
A. NOT
B. NOR
C. XOR
D. NAND
Answer: D
Solution:
Solution:
Question 76
Iodine crystals are
Options:
A. electrical conductors
B. insulators

C. semiconductors

D. high melting

Answer: B

Solution:

Solution:

Question 77
n an ionic solid with the larger anions and smaller cations, the ions hat form close packed structure are
ptions:
. anions
. cations
. half of total anions
. half of total cations
nswer: A
olution:
olution:
Question 78
When a piece of copper is added to concentrated hydrochloric acid,
ptions:
. it remains insoluble
. it readily dissolves
. it slowly dissolves
. it dissolves with the release of hydrogen
nswer: A
olution:
olution:
Question 79

Options:

- A. does not vary with concentration of the solution
- B. depends on the concentration of the solution

C. depends on the rate of diffusion of the cation
D. depends on the rate of diffusion of the anion
Answer: B
Solution:
Solution:
Question 80
A catalyst
Options:
A. decreases the ΔG of a reaction
B. increases the ΔG of a reaction
C. does not alter the ΔG of a reaction
D. shifts the equilibrium of the reaction
Answer: C
Solution:
Solution:
Question 81
As per the Freundlich's adsorption isotherm, the amount adsorbed per gram of the adsorbent is independent of pressure, when
Options:
A. n = 0
B. $n > 1$
C. $n = 1$
D. $1 / n = 0$
Answer: D
Solution:
Solution:

When an ideal sol ^a	ution is formed	l from pure i	n-hexane and	n-heptane,
the wrong stateme	ent is			

the wrong	g statement is		
Options:			

- A. no heat is evolved
- B. no volume change occurs
- C. large quantity of heat is evolved
- D. it obeys Raoult's law

Answer: C

Solution:

Question 83

If cells placed in sodium chloride solution shrink, the solution is called

Options:

- (A) hypertonic
- (B) hypotonic
- (C) isotonic
- (D) azeotropic

Answer: A

Solution:

_	ı .	 	'n	_

Question 84

The van't Hoff's factor for ethanoic acid in benzene is equal to

Options:

A. zero

B. close to 0.5

C. unity

D. two
Answer: B
Solution:
Solution:
Question 85
When a dilute solution of KI is added to a dilute solution of ${\rm AgNO_3}$,
Options:
A. a positively charged sol results
B. a negatively charged sol results
C. a neutral sol results
D. both the positive and negative sol particles result
Answer: B
Solution:
Solution:
Question 86
Hardy - Schulze rule states that the ease of coagulation of a negatively charged colloid with the cations varies in the order
Options:
A. $Fe^{3+} > Mg^{2+} > K^+$
B. $K^+ > Mg^{2+} > Fe^{3+}$
C. $Mg^{2+} > Fe^{3+} > K^+$
D. $Fe^{3+} > K^+ > Mg^{2+}$
Answer: A
Solution:
Solution:

For the following reaction, the initial concentration of $HI(0.005 \text{ mol L}^{-1})$
becomes half of it after 25 min. The rate of decomposition of HI is equal
to

$$2\mathrm{HI}_{(g)} \rightarrow \mathrm{H}_{2(g)} + \mathrm{I}_{2(g)}$$

Options:

- A. $-0.0005 \, \text{mol L}^{-1} \, \text{min}^{-1}$
- B. $0.00005 \, \text{mol} \, L^{-1} \, \text{min}^{-1}$
- $C. -0.0001 \, mol \, L^{-1} \, min^{-1}$
- D. $+0.000.2 \,\mathrm{mol}\,\mathrm{L}^{-1}\,\mathrm{min}^{-1}$

Answer: C

Solution:

Solution:

Question 88

When acetone is added to ethanol, the solution shows

Options:

- A. positive deviation from Raoult's law
- B. negative deviation from Raoult's law
- C. no deviation from Raoult's law
- D. ideal behavior

Answer: B

Solution:

Solution:

Question 89

For the Daniel cell of emf 1.1V, if an external emf of 1.5V is applied,

Options:

- A. the copper electrode will dissolve
- B. the zinc electrode will dissolve

C. the electrode reactions will be ceased
D. copper will be deposited
Answer: A
Solution:
Solution:
Question 90
The material that shows increase in conductivity with increase in temperature is
Options:
A. copper
B. silver
C. alumina
D. titania
Answer: D
Solution:
Solution:
Question 91
One mole of a gas expands from $6m^3$ to $8m^3$ in a container against a constant external pressure of 3 Pa at 300K. The work done on the gas, w, is
Options:
A2J
B6J
C. +575J
D575J
Answer: B
Solution:

Solution:

Question 92
The latent heat of phase change from ice to water is 80 cal per gram a 0°C. Then change in entropy (in eu) for the surrounding, when 1 mole water freezes at 0°C
Options:
A. ≈-5.3 eu
B. ≈5.3 eu
C. ≈0.3 eu
D. zero
Answer: B
Solution:
Solution:
Question 93
At 25°C , p Kw is 14 . The degree of dissociation of water is nearly
Options:
A. 10^{-4}
B. 1.8×10^{-9}
C. 10^{-7}
D. 5.6×10^{-6}
Answer: B
Solution:
Solution:
Question 94
Which one of the following uranium isotopes is used as atomic fuel?
Options:
A. $^{233}U_{92}$

B. $^{235}U_{92}$	
C. 236 U $_{92}$	
D. $^{238}U_{92}$	
Answer: B	
Solution:	
Solution:	
Question 95	
Most abundant element in the earth crust is	
Options:	
A. O	
B. Al	
C. Fe	
D. Si	
Answer: A	
Solution:	
Solution:	
Question 96	
Soda acid type fire extinguishers contain $\mathrm{H_2SO_4}$ and	£
Options:	
A. $NaHCO_3 + Na_2CO_3$	
B. $NaHCO_3$ solution	
C. Na ₂ CO ₃	
D. CaCO ₃	
Answer: A	

Solution:
Question 97
The correct order of electronegativity of N, O, F and P is
Options:
A. F > O > N > P
B. F > N > P > O
C. F > O > P > N
D. N > O > P > F
Answer: A
Solution:
Solution:
Question 98
Find the correct order of electron affinity on the following elements. S, O and Se
Options:
A. S > O > Se
B. O > S > Se
C. S > Se > O
D. Se $>$ O $>$ S
Answer: C
Solution:
Solution:
Ouestion 99

The solution of sodium metal in liquid ammonia acts as a strong reducing agent due to the presence of

Options:

A. Sodium atoms

B. Solvated electrons
C. Sodium hydroxide
D. Sodium azide
Answer: B
Solution:
Solution:
Question 100
The isostructural group with ${\rm I_3}^-$ ion is
Options:
A. NO_2^- , XeF_2 , N_3^-
B. ICl_2^- , XeF_2 , N_3^-
C. NH ₂ ⁻ , NO ₂ ⁻ , ICl ₂ ⁻
D. BH ₃ , CO ₂ , ICl ₂
Answer: B
Solution:
Solution:
Question 101
The diamagnetic metal complex ion is
Options:
A. [NiCl ₄] ²⁻
B. $[CoCl_4]^{2-}$
C. [CoF ₆] ³⁻
D. [Ni(CN) ₄] ²⁻
Answer: D
Solution:

Question 102	
The CFSE of cobalt(II) in comple	ex ion [CoCl ₄] ²⁻ is
Options:	
Α. 0.6 Δ t	
B. 1.2 Δ t	
C. 1.8 Δ t	
D. 2.4 Δ t	
Answer: B	
Solution:	
Solution:	
Question 103	·
The species in which the colour	is not due to d-d transitions is
Options:	
A. $[Ti(H_2O)_6]^{3+}$	
B. [CoF ₆] ³⁻	
C. [Cu(NH ₃) ₄] ²⁺	
D. [CrO ₄] ²⁻	
Answer: D	
Solution:	
Solution:	

Options:

Solution:

A. Burning coal
B. Burning natural gas
C. Smelting zinc sulphide
D. Smelting lead sulphide
Answer: C
Solution:
Solution:
Question 105
The acceptable value for the missing quantum number in the following set of quantum numbers is: $n=3, l=?, m_l=2, m_s=+1/2$
Options:
A. 1 = 3
B. $l = 1$
C. 1 = 2
D. $1 = 0$
Answer: C
Solution:
Solution:
Question 106
Which must possess greater velocity to produce matter waves of same wavelength?
Options:
A. protons
B. neutrons
C. electrons
D. α-particles
Answer: C

Solution:
Solution:
Question 107
Which of the following ions has a trigonal planar shape?
Options:
A. $SO_3^{\ 2-}$
B. PO ₄ ³⁻
$^{-}$ C. $^{-}$ F $_{6}$
D. ${\rm CO_3}^{2-}$
Answer: D
Solution:
Solution:
Question 108
Number of angular nodes for 4d orbital is
Options:
A. 4
B. 3
C. 2
D. 1
Answer: C
Solution:
Solution:

What type of radioactive decay causes the atomic number of a nucleus to increase by one unit?

a. Electron capture
S. α-emission
C. β-emission
O. γ-ray emission
answer: C
Solution:
olution:
Question 110
The type of hybridization of each carbon in the compound, $H_3C - CH = C = CH - CH_3$ is
Options:
s^3 , sp^2 , sp^2 , sp^2 , sp^3
$s. sp^3, sp^2, sp, sp^2, sp^3$
$S. sp^3$, sp , sp , sp , sp^3
$0. \mathrm{sp}^3$, sp , sp^2 , sp , sp^3
answer: B
Solution:
olution:
Question 111
f the sodium fusion extract of an organic compound gives violet colour upon treatment with sodium nitroprusside, then which of the following statement is correct?
Options:
Nitrogen is present in the compound and the violet colour is due to the formation of ${\rm Fe(CN)}_6{ m l}^{4-}$

Options:

B. Both nitrogen and bromine are present in the compound and the violet colour is due to the formation of ${\rm (NH_4)_2MoO_4}$

C. Sulfur is present in the compound and the violet colour is due to the formation of

[Fe(CN) ₅ NOS] ⁴
D. Both nitrogen and sulfur are present in the compound and the violet colour is due to the formation of $[Fe(SCN)]^{2+}$
Answer: C
Solution:
Solution:
Question 112
Major product of the following reaction is
CI Na Product Dry ether Product
Options:
A.
Br————Br
B.
C.
CI
D.
Answer: B
Solution:
Solution:

When propyne is treated with mercuric sulphate and dilute sulfuric acid at 60°C , it forms

Options:

A. acetone through anti-Markovnikov addition of water
B. propionaldehyde through Markovnikov addition of water
C. acetone through Markovnikov addition of water
D. propionaldehyde through anti-Markovnikov addition of water
Answer: C
Solution:
Solution:
Question 114 Major product formed in the following reaction is
Major product formed in the following reaction is $\bigcirc \qquad \stackrel{\text{Cl} \\ }{\longrightarrow} \qquad \qquad \qquad $
Major product formed in the following reaction is CI AICI3 Options:
Major product formed in the following reaction is CI AICI3 Options: A. n-propylbenzene
Major product formed in the following reaction is CI AICI3 Options: A. n-propylbenzene B. isopropylbenzene (cumene)
Major product formed in the following reaction is CI AICI3 Options: A. n-propylbenzene B. isopropylbenzene (cumene) C. 1-phenylpropene
Major product formed in the following reaction is CI AICI3 Options: A. n-propylbenzene B. isopropylbenzene (cumene) C. 1-phenylpropene D. 1,3-di-(n-propyl)benzene
Major product formed in the following reaction is CI AICI3 Options: A. n-propylbenzene B. isopropylbenzene (cumene) C. 1-phenylpropene D. 1,3-di-(n-propyl)benzene Answer: B

The product(s) of the following bimolecular nucleophilic substitution

Question 115

reaction is (are)

Options:

A.

В.

Ө

C.

D.

Answer: B

Solution:

Solution:

Question 116

A compound P with molecular formula C_9H_{12} upon air oxidation gives compound Q, which upon treatment with dilute acid gives compounds R and S. R gives violet colour when treated with neutral $FeCl_3$. S gives an yellow precipitate on reaction with iodine in the presence of NaOH. The compounds P and S are

Options:

A. P = n-propylbenzene and S = acetone

B. P = n-propylbenzene and S = phenol

C. P = isopropylbenzene (cumene) and S = acetone

D. P = 1, 2, 4-trimethylbenzene and S = phenol

Answer: C

Solution:

Solution:

Question 117

The major product formed in the nitration of anisole (methoxybenzene)

Options:
A. o-nitroanisole
B. p-nitroanisole
C. m-nitroanisole
D. 3,4-dinitroanisole
Answer: B
Solution:
Solution:
Question 118
Suitable reagents to perform the following transformations are
Options:
A. For step-1: $SOCl_2$ and for step-2: H_2 , $Pd-BaSO_4$
B. For step-1: $SOCl_2$ and for step-2: $NaBH_4$
C. For step-1: Cl_2 and for step-2: H_2 , $Pd - BaSO_4$
D. For step-1: PCl_5 and for step-2: $LiAlH_4$
Answer: A
Solution:
Solution:
Question 119
A compound P with molecular formula $\rm C_6H_{10}$ decolorizes bromine water and undergoes oxidation with acidified $\rm KMnO_4$ to give a dicarboxylic acid with the same number of carbon atoms. The dicarboxylic acid serves as an important precursor in the manufacture of nylon- 6,6 . The compound P is

Options:

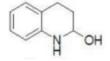
A.

B.
C.
D.
Answer: B
Solution:
Solution:
Question 120
Which one of the following carboxylic acids would undergo Hell-Volhard-Zelinsky reaction?
Options:
A.
——co ₂ H
B.
CO₂H
C.
CO ₂ H
D. CF_3CO_2H
Answer: C
Solution:
Solution:

Major product formed in the following reaction is

	1) LiAIH ₄
N V	2) H ₂ O

0	pti	ioi	ıs
_	P		


A.

B.

C.

D.

Answer: A

Solution:

Solution:

Question 122

Gabriel phthalimide synthesis cannot be used for introducing the NH_2 group in

Options:

- A. n-butylamine
- B. benzylamine
- C. aniline
- D. 2-aminopropanoic acid

Answer: C

Solution:
Solution:
Question 123
In amylose,
Options:
A. α-D-(+)-glucose units are linked through C1-C4 glycosidic linkage
B. α -D-(+)-glucose units are linked to β -D-(-)-fructose through C1-C2 glycosidic linkage
C. α -D-(+)-glucose units are linked through C1-C2 glycosidic linkage
D. β-D-(+)-glucose units are linked through C1-C4 glycosidic linkage
Answer: A
Solution:
Solution:
Question 124
The Ziegler-Natta catalyst is
Options:
A. $\mathrm{Et_2^{}Zn}$ and $\mathrm{TiCl_4^{}}$
B. Et ₃ Al and SnCl ₄
C. $\mathrm{Et_2^{}Zn}$ and $\mathrm{SnCl_4^{}}$
D. $\mathrm{Et_3}$ Al and $\mathrm{TiCl_4}$
Answer: B
Solution:
Solution:

Which one of the following is not a tranquilizer?

Options:
A. Meprobamate
B. Ranitidine
C. Valium
D. Serotonin
Answer: B
Solution:
Solution:
Question 126
The value of x with $\log \frac{1}{2}x \ge \log_{\frac{1}{3}}x$ lies in
Options:
A. (0, 1]
B. (0, 1)
C. [0, 1)
D. [0, 1]
Answer: A
Solution:
Solution:
Question 127
If $\alpha \in \left(0, \frac{\pi}{2}\right)$, then the expression $\sqrt{x^2+x}+\frac{\tan^2\alpha}{\sqrt{x^2+x}}$ is always greater than or equal to
Options:
A. $2 \tan \alpha$
B. 2
C. 1
D. $\sec^2 \alpha$

Answer: A
Solution:
Solution:
Question 128
If $\left z-\frac{4}{z}\right =2$, then the maximum value of $ z $ is
Options:
A. $\sqrt{3} + 1$
B. $\sqrt{5} + 1$
C. 2
D. $2 + \sqrt{2}$
Answer: B
Solution:
Solution:
Question 129
If α , β are roots of the equation $x^2 - 2x + 4 = 0$, then $\alpha^n + \beta^n$ is equal to
Options:
A. $2^n \cos\left(\frac{n\pi}{3}\right)$
B. $2^n \sin\left(\frac{n\pi}{3}\right)$
C. $2^{n+1}\cos\left(\frac{n\pi}{3}\right)$

D. $2^{n+1}\sin\left(\frac{n\pi}{3}\right)$

Answer: C

Solution:

Solution:

Question 130

If $\log_{\cos x} \tan x + \log_{\sin x} \cot x = 0$, then the most general solutions of x are

Options:

A.
$$n\pi + \frac{\pi}{4}$$
, $n \in I$

B.
$$2n\pi + \frac{\pi}{4}$$
, $n \in I$

C.
$$2n\pi - \frac{3\pi}{4}$$
, $n \in I$

D.
$$2n\pi - \frac{\pi}{2}$$
, $n \in I$

Answer: B

Solution:

Solution:

0 1 404

Question 131

The value of $|\sqrt{2i} - \sqrt{-2i}|$ is

Options:

A. 2

B.
$$\sqrt{2}$$

C. 0

D.
$$2\sqrt{2}$$

Answer: A

Solution:

Solution:

Question 132

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^{x}} dx \text{ is equal to}$$

Options:

Solution:
Solution:
Answer: C
D. $\left(-\frac{16}{7}, -\frac{53}{10}\right)$
C. $\left(-\frac{16}{5}, \frac{53}{10}\right)$
B. $\left(-\frac{16}{7}, \frac{53}{10}\right)$
A. $\left(-\frac{16}{5}, \frac{27}{10}\right)$
Options:
The centre of the circle passing through the point (0, 1) and touching the curve $y = x^2$ at (2, 4) is
Question 133
Solution:
Solution:
Answer: C
D. None of these
C. 1
A1 B. 0

If $z_1 = 8 + 4i$, $z_2 = 6 + 4i$ and $arg\left(\frac{z - z_1}{z - z_2}\right) = \frac{\pi}{4}$, then z satisfies

Options:

A.
$$|z - 7 - 4i| = 1$$

B.
$$|z - 4i| = 8$$

C.
$$|z - 7 - 5i| = \sqrt{2}$$

D.
$$|z - 4i| = \sqrt{18}$$

Answer: C
Solution:
Solution:
Question 135
Which of the following is a non-abelian group?
Options:
A. Cube roots of unity under multiplication
B. (Z, +)
C. $(Z_{n'} +_{n})$
D. 2×2 non-singular matrices under matrix multiplication
Answer: D
Solution:
Solution:
Question 136
The equation of the parabola with its focus at (3, 4) and vertex at the focus of the parabola $y^2 - 12x - 4y + 4 = 0$ is
Options:
A. $x^2 - 6x - 8y - 25 = 0$
B. $x^2 - 6x + 8y - 25 = 0$
$C. x^2 - 6x - 8y + 25 = 0$
D. $x^2 + 6x - 8y - 25 = 0$
Answer: C
Solution:
Solution:

The locus of z satisfying $Im(z^2) = 4$ is **Options:**

A. a circle

B. a rectangular hyperbola

C. a pair of straight lines

D. an ellipse

Answer: B

Solution:

Solution:

Question 138

The solution of the differential equation $\left(x\sin\left(\frac{y}{x}\right)\right)dy - \left(y\sin\left(\frac{y}{x}\right) - x\right)dx = 0$ is

Options:

A.
$$\cos\left(\frac{y}{x}\right) = 0$$

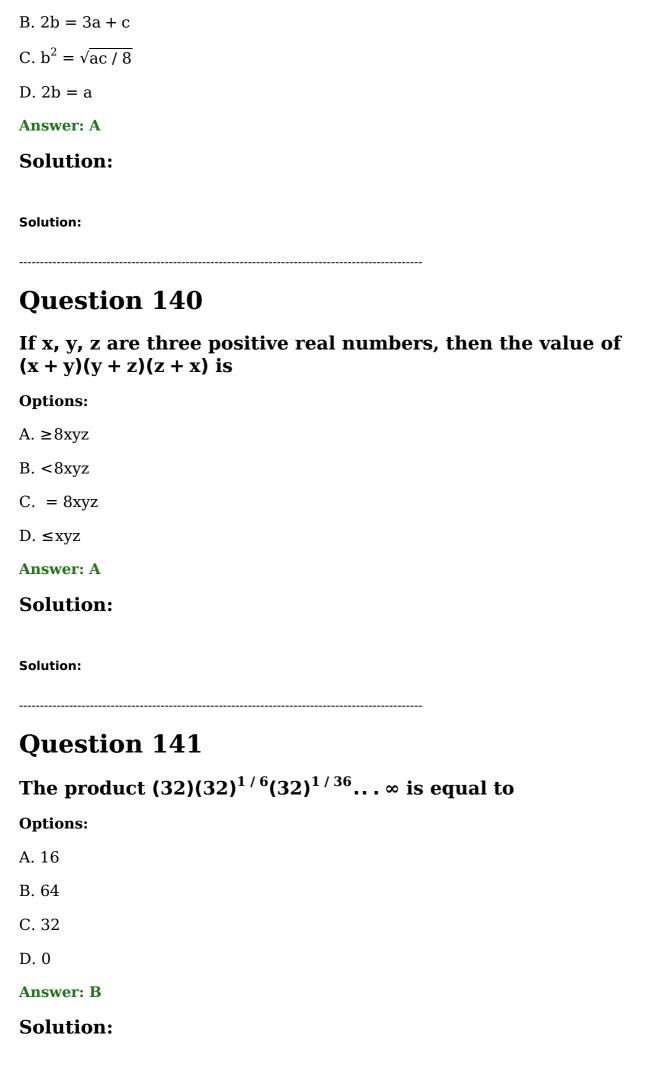
B.
$$\sin\left(\frac{y}{x}\right) = 0$$

$$C. \cos\left(\frac{y}{x}\right) - \log x = c$$

D.
$$\sin\left(\frac{y}{x}\right) - \log x = c$$

Answer: C

Solution:


Solution:

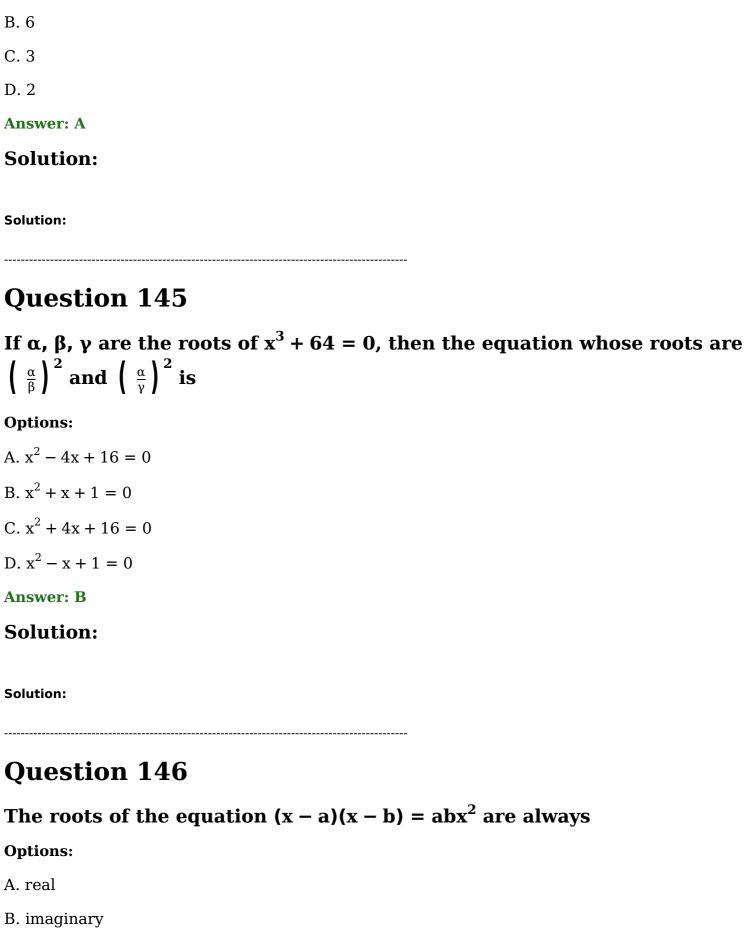
Question 139

If a, b, c are in A.P. and a², b², c² are in H.P., then

Options:

A. a = b = c

Solution:


Question 142 The harmonic mean of the roots of the equation $(5 + \sqrt{2})x^2 - (4 + \sqrt{5})x + 8 + 2\sqrt{5} = 0$ is **Options:** A. 2 B. 4 C. 6 D. 8 **Answer: B Solution: Solution: Question 143** If $ax^2 + bx + c = 0$ and $2x^2 + 3x + 4 = 0$ have a common root where a, b, $c \in$ square (set of natural numbers), the least value of a + b + c is **Options:** A. 13 B. 11 C. 7 D. 9 **Answer: D Solution: Solution:**

Question 144

If $x = \sqrt{7 + 4\sqrt{3}}$, then $x + \frac{1}{x}$ is equal to

Options:

A. 4

- C. rationals
- D. irrationals

Answer: A

Solution:

Question 147

Which of the following functions is nonperiodic?

Options:

A.
$$f(x) = x - [x]$$

B.
$$f(x) = \begin{cases} 1 & \text{if } x \text{ is a rational number} \\ 0 & \text{if } x \text{ is an irrational number} \end{cases}$$
.

C.
$$f(x) = \sqrt{\frac{8}{1 + \cos x} + \frac{8}{1 - \cos x}}$$

D.
$$\log(1 + |x|)$$

Answer: D

Solution:

Solution:

Question 148

If $\log_{10} x + \log_{10} y \ge 2$, then the smallest possible value of x + y is

Options:

A. 10

B. 30

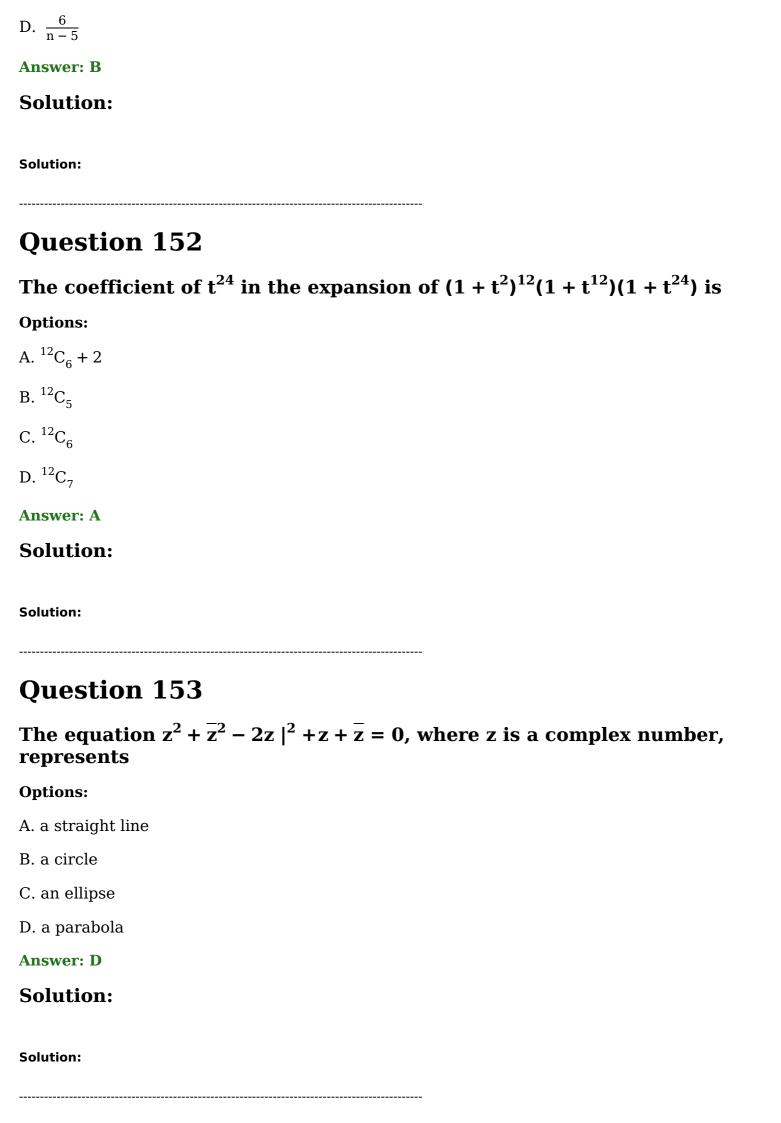
C. 20

D. 40

Answer: C

Solution:

Solution:



Question 149

The only value of x satisfying the equation $6\sqrt{\frac{x}{x+4}} - 2\sqrt{\frac{x+4}{x}} = 11$ where $x \in R$ is

Options:
A. 16/3
B16/3
C. 4 / 35
D4/35
Answer: B
Solution:
Solution:
Question 150
The number of real values of a for which the system of equations $x + ay - z = 0$, $2x - y + az = 0$, $ax + y + 2z = 0$ has a non-trivial solution is
Options:
A. 0
B. 1
C. 2
D. 3
Answer: D
Solution:
Solution:
Question 151
In the binomial expansion of $(a-b)^n$, $n \ge 5$ the sum of the 5^{th} and 6^{th} terms is zero. Then, $\frac{a}{b}$ equals
Options:
A. $\frac{n-5}{6}$
B. $\frac{n-4}{5}$

C. $\frac{5}{n-4}$

Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ and $10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}$. If B is the inverse of A,

then α is

Options:

A. -2

B. 1

C. 2

D. 5

Answer: D

Solution:

Solution:

Question 155

If [] denotes the greatest integer function, then $[(\sqrt{2} + 1)^6]$ is equal to

Options:

A. 196

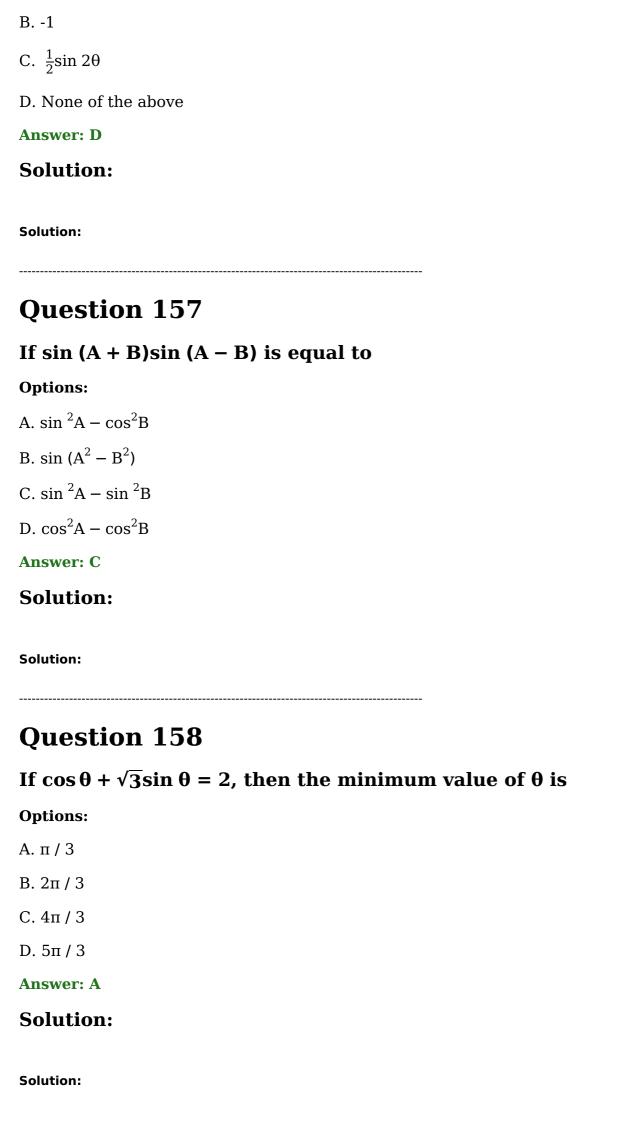
B. 197

C. 198

D. 199

Answer: B

Solution:


Solution:

Question 156

 $\tan \theta \sin \left(\frac{\pi}{2} + \theta\right) \cos \left(\frac{\pi}{2} - \theta\right) =$

Options:

A. 1

Question 159

$$\lim_{x \to \pi/3} \frac{2\sin\left(x - \frac{\pi}{3}\right)}{1 - 2\cos x} \mathbf{is}$$

Options:

A. 1 / $\sqrt{2}$

B. 2 / $\sqrt{3}$

C. 2/3

D. 1/3

Answer: B

Solution:

Solution:

Question 160

The value of $tan^{-1}\frac{1}{2} + tan^{-1}\frac{1}{3}$ is

Options:

A. 0

В. п / 3

C. π / 6

D. π / 4

Answer: D

Solution:

Solution:

Question 161

If $\begin{pmatrix} 2n \\ 3 \end{pmatrix}$: $\begin{pmatrix} n \\ 2 \end{pmatrix}$ = 44:3, then the value of n is

Options:

A. 3

B. 4
C. 5
D. 6
Answer: D
Solution:
Solution:
Question 162
If $\sin \left\{ \frac{1}{5}\cos^{-1}x \right\} = 1$, then $x =$
Options:
A. 0
B. 1
C1
D. ∞
Answer: A
Solution:
Solution:
Question 163
In a $\triangle ABC$, $b = \sqrt{3} + 1$, $c = \sqrt{3} - 1$, $\angle A = 60^\circ$, then the value of $\tan \frac{1}{2}(B - C)$ is
Options:
A. 2
B. 1 / 2
C. 1
D. 3
Answer: C
Solution:

Question 164

If
$$\begin{cases} x^n & x^{n+2} & x^{n+3} \\ y^n & y^{n+2} & y^{n+3} \\ z^n & z^{n+2} & z^{n+3} \end{cases} = (y-z)(z-x)(x-y)\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)$$
, then n is equal to

Options:

- A. 2
- B. -2
- C. -1
- D. 1

Answer: C

Solution:

Solution:

Question 165

If $f(x) = |\log_{10} x|$ then at x = 1,

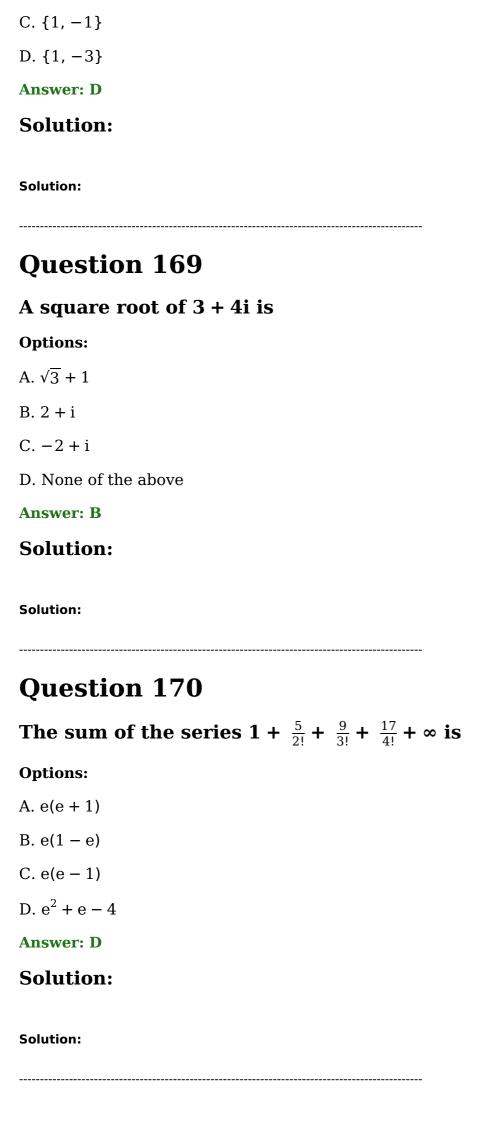
Options:

- A. f is not continuous
- B. f is continuous but not differentiable
- C. f is differentiable
- D. the derivative is 1

Answer: B

Solution:

Solution:



Question 166

If the ratio of the roots of $ax^2 + bx + c = 0$, $a \ne 0$ is 4:5, then $\frac{b^2}{ac}$ is equal

to	
Options:	
A. $\frac{20}{49}$	
B. $\frac{49}{20}$	
C. $\frac{81}{20}$	
D. $\frac{20}{81}$	
Answer: C	
Solution:	
Solution:	
Question 167	
The locus represented by $ Z - 1 $ =	= Z + i is
Options:	
A. a circle of radius 1	
B. an ellipse with foci at $(1, 0)$ and $(0, -1)$	
C. a straight line through the origin	
D. a circle on the line joining $(1, 0)$, $(0, 1)$ as	diameter
Answer: C	
Solution:	
Solution:	
Question 168	
The solution set of the equation	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Options:	-
Α. φ	

B. {0, 1}

If (1 + 3p) / 3, (1 - p) / 4 and (1 - 2p) / 2 are the probabilities of three mutually exclusive events, then the set of all values of p is

Options:

A.
$$-1 \le p \le 1 / 5$$

B.
$$-2 \le p \le 1/3$$

C.
$$1/3 \le p \le 1/2$$

D.
$$1/4 \le P \le 1/3$$

Answer: C

Solution:

Solution:

Question 172

If $2\alpha + 3\beta + \gamma = 0$, then the line $\alpha x + 5\beta y + 2\gamma = 0$ passes through the fixed point

Options:

A.
$$(4, \frac{6}{5})$$

B.
$$\left(\frac{6}{5}, 4\right)$$

C.
$$\left(-4, -\frac{6}{5}\right)$$

D.
$$\left(-\frac{6}{5}, -4\right)$$

Answer: A

Solution:

Solution:

Question 173

If f (x) = cos(log x), then f (x²)f (y²) - $\frac{1}{2}$ [f (x² / y²) + f (x²y²)], has the value of

Options:

A2
B1
C. 1/2
D. 0
Answer: D
Solution:
Solution:
Question 174
A and B are two independent events. Then probability that both A and B occur, is $1\/6$ and the probability that none of them occurs, is $1\/3$. The minimum value of probability of occurrence of A, is
Options:
A. 1 / 2
B. 1/3
C. 1 / 4
D. 1 / 5
Answer: B
Solution:
Solution:
Question 175
The equation of the directrix of the parabola $(x - \alpha)^2 = 4a(y - \beta)$ is
Options:
$A. x + a = \alpha$
B. $x + a = \beta$
C. $y + a = \beta$
D. $y + a = \alpha$
Answer: C

Solution:

Solution:
Question 176
The minimum value of $27 \tan^2 \theta + 3 \cot^2 \theta$ is
Options:
A. 9
B. 18
C. 27
D. 30
Answer: B
Solution:
Solution:
Question 177
The interval in which the function $y = \frac{x-1}{x^2-3x+3}$ transforms the real line is
Options:
A. (0, ∞)
B. (−∞, ∞)
C. [0, 1]
D. $\left[-\frac{1}{3}, 1 \right]$
Answer: D
Solution:
Solution:
Question 178

A. 3

B. 2

C. 1

D. 0

Answer: C

Solution:

Solution:

0 11 470

Question 179

Twelve tickets are numbered from 1 to 12 . One ticket is drawn at random, then the probability of the number to be divisible by 2 or 3 , is

Options:

A. 2/3

B. 7 / 12

C. 5 / 6

D. 3/4

Answer: A

Solution:

Solution:

Question 180

 $\lim_{x\to 0} \{\sin x - x / x^3\} \text{ equals}$

Options:

A. 1/3

B. -1/3

C. 1 / 6
D1/6
Answer: D
Solution:
Solution:
Question 181
If $f(x) = \log_3 x$ and $g(x) = x^2$, then the composite function $f(g(x))$ is equal to
Options:
A. 2f (x)
B. $(f(x))^2$
C. g(x)
D. 2g(x)
Answer: A
Solution:
Solution:
Question 182
The projection of the vector $2\hat{i} + \hat{j} - 3\hat{k}$ on the vector $\hat{i} - 2\hat{j} + \hat{k}$ is

Options:

A.
$$\frac{-3}{\sqrt{14}}$$

B.
$$\frac{3}{\sqrt{14}}$$

$$C. - \sqrt{\frac{3}{2}}$$

D.
$$\frac{3}{\sqrt{2}}$$

Answer: C

Solution:

Solution:
Question 183
The smallest positive x satisfying the equation $\log_{\cos x} \sin x + \log_{\sin x} \cos x = 2$ is
Options:
Α. π / 2
Β. π / 3
C. n / 4
D. π / 6
Answer: C
Solution:
Solution:
Question 184
The median of a set of 9 distinct observation is 20.5 . If each of the largest 4 observations of the set is increased by 2 , then the median of the new set
Options:
A. is increased by 2
B. is decreased by 2
C. is two times the original median
D. remains the same as that of the original set
Answer: D
Solution:
Solution:
Ouestion 185

The position vector of the points A, B, C are $2^{\hat{i}} + \hat{j} - \hat{k}$, $3^{\hat{i}} - 2^{\hat{j}} + \hat{k}$ and $\hat{i} + 4\hat{j} - 3^{\hat{k}}$ respectively. These points

Options: A. form an isosceles triangle B. form a right angled triangle C. are collinear D. for a scalene triangle **Answer: C Solution: Solution: Question 186** The statement $p \rightarrow (q \rightarrow p)$ is equivalent to **Options:** A. $p \rightarrow (p \leftrightarrow q)$ B. $p \rightarrow (p \rightarrow q)$ C. p \rightarrow (p v q) D. p \rightarrow (p \land q) **Answer: C Solution: Solution:**

Question 187

If $y = \log(\log(\log x))$, then $\frac{dy}{dx}$ is equal to

Options:

A.
$$log(log x)$$

B.
$$\log x \cdot \log(\log x)$$

C.
$$\frac{1}{x \cdot \log x \cdot \log(\log x)}$$

D.
$$\frac{1}{\log x \cdot \log(\log x)}$$

Answer: C

Solution:
olution:
Question 188
Slope of the tangent to the curve $xy - 3x + 2y = 6$ at the point (2, 3) is
ptions:
1
$3. \frac{1}{2}$
. ∞
0. 0
answer: D
Solution:
olution:
Question 189
$f z = x^2 tan^{-1} \left(\frac{y}{x} \right) - y^2 tan^{-1} \left(\frac{x}{y} \right)$, then $\frac{\partial^2 z}{\partial x \partial y} = \frac{1}{2} \int \frac{dy}{dx} dy$
ptions:
$\frac{y^2 - x^2}{x^2 + y^2}$
$3. \frac{x^2 - y^2}{(x^2 + y^2)^2}$
$\frac{(x-y)^2}{x^2+y^2}$
$\int \frac{(x^2 - y^2)}{x^2 + y^2}$
answer: D
Solution:
olution:

C. 4

The argument of the complex number -	5 is
Options:	
A. 0	
Вп	
C. $\frac{\pi}{2}$	
D. π	
Answer: D	
Solution:	
Solution:	
Question 191	
One function is selected from all the fu $S = \{1, 2, 3, 4, 5, 6\}$. The probability the	
Options:	
A. 5 / 81	
B. 5 / 162	
C. 5 / 324	
D. 7 / 324	
Answer: C	
Solution:	
Solution:	
Question 192	
The equation of the tangent to the curv	$y = 4 + \sin^2 x$ at $x = 0$ is $y = 0$
Options:	
A. 2	
B. 3	

Answer: C
Solution:
Solution:
Question 193
The non-zero vectors \vec{a} , \vec{b} and \vec{c} are related by $\vec{a} = 8\vec{b}$ and $\vec{c} = -7\vec{b}$. Then, the angle between \vec{a} and \vec{c}
Options:
A. 0
Β. π / 4
С. п / 2
D. π
Answer: D
Solution:
Solution:
Question 194
The point P is equidistant from A(1, 3), B(-3 , 5) and C(5, -1). Then PA is equal to
Options:
A. 5
B. $5\sqrt{5}$
C. 25
D. $5\sqrt{10}$
Answer: D
Solution:
Solution:

D. 6

Question 195 The area bounded by the curves x + 2y = 1 and x = 0 is **Options:** A. $\frac{1}{3}$ B. $\frac{1}{2}$ C. 2 D. 3 **Answer: B Solution: Solution: Question 196** If a > 1, then the roots of the equation $(1 - a)x^2 + 3ax - 1 = 0$ are **Options:** A. both positive B. both negative C. opposite in sign D. imaginary conjugate **Answer: A Solution: Solution: Question 197** The tangent from the origin to the parabola $y^2 + 4 = 4x$ are inclined at an angle **Options:** Α. π / 6

Β. π / 4

C. n/3

D. π / 2
Answer: D
Solution:
Solution:
Question 198
If the points $(-2, 0)$, $\left(-1, \frac{1}{\sqrt{3}}\right)$ and $(\cos \theta, \sin \theta)$ are collinear, then the number of values of $\theta = [0, 2\pi]$ is
Options:
A. 0
B. 1
C. 2
D. infinite
Answer: B
Solution:
Solution:
Question 199
The contrapositive of the statement "I go to school if it does not rain" is
Options:
A. if it rains, I do not go to school
B. if I do not go to school, it rains
C. if it rains, I go to school
D. if I go to school, it rains
Answer: B
Solution:
Solution:

The function $f(x) = [x(x-3)]^2$	² increases	for all	values	of x lying	in the
interval					

A. 0 < x < 3/2

B. 0 < x < ∞

 $C. -\infty < x < 0$

D. 1 < x < 3

Answer: A

Solution:

Solution:

Question 201

Let $f: \Box \to \Box$ be a positive valued increasing function with $\lim_{x \to a} \frac{f(3x)}{f(x)} = 1$.

Then $\lim_{x \to \infty} \frac{f(2x)}{f(x)}$ is

Options:

- A. $\frac{3}{2}$
- B. 3
- C. $\frac{2}{3}$
- D. 1

Answer: D

Solution:

Solution:

Question 202

If one of the lines of $my^2 + (1 - m^2)xy - mx^2 = 0$ is a bisector of the angle between the lines xy = 0, then m is

A. $-\frac{1}{2}$		
B2		
C. ±1		
D. 2		
Answer: C		
Solution:		
Solution:		
Question 203		
The number of points from the line 2x + 2y	s on the line x + y = 4 which are unit distance ap = 5 is	art
Options:		
A. 0		
B. 1		
C. 2		
D. ∞		
Answer: A		
Solution:		
Solution:		

$$\int \frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \, dx \text{ is equal to}$$

Options:

A.
$$\log(\sin x + \cos x) + c$$

B.
$$-\log(\sin x + \cos x) + c$$

C.
$$\log \sec \left(x - \frac{\pi}{4}\right) + c$$

D.
$$-\log \sec \left(x - \frac{\pi}{4}\right) + c$$

Answer: B

Solution:
Solution:
Question 205
The range of λ for which the circles $x^2+y^2=4$ and $x^2+y^2-4\lambda x+9=0$ have two common tangents, is
Options:
A. $\lambda \in \left(-\frac{13}{8}, \frac{13}{8}\right)$
B. $\lambda > \frac{13}{8}$ or $\lambda < -\frac{13}{8}$
C. $1 < \lambda < \frac{13}{8}$
D. $\lambda \in \left[-\frac{13}{8}, \frac{13}{8} \right]$
Answer: B
Solution:
Solution:
Question 206
If $I_n = \int_0^1 [(n+1)x^n + nx^{n-1} + + 2x + 1] dx$, then the value of I_n is
Options:
A. $n - 1$
B. n
C. n + 1
D. n + 2
Answer: C
Solution:
Solution:

The area of the region bounded by the lines $y = x - 2 $, $x = 1$, $x = 3$ and he x-axis is
ptions:
. 1
. 2
. 3
. 4
nswer: A
olution:
olution:
Question 208 The value of a for which the difference of the roots of the equation $x^2 + (a - 1)x + 2 = 0$ is min, is given by
The value of a for which the difference of the roots of the equation
The value of a for which the difference of the roots of the equation $x^2 + (a - 1)x + 2 = 0$ is min, is given by
The value of a for which the difference of the roots of the equation $x^2 + (a - 1)x + 2 = 0$ is min, is given by options:
The value of a for which the difference of the roots of the equation $x^2 + (a - 1)x + 2 = 0$ is min, is given by options:
The value of a for which the difference of the roots of the equation $x^2 + (a - 1)x + 2 = 0$ is min, is given by options: 1/5 5
The value of a for which the difference of the roots of the equation $x^2 + (a - 1)x + 2 = 0$ is min, is given by options: 1/5 .5 1/5
The value of a for which the difference of the roots of the equation $x^2 + (a - 1)x + 2 = 0$ is min, is given by options: 1/5 5 -1/5 None of the above

Question 209

The line x - 1 = 0 is the directrix of the parabola $y^2 - kx + 8 = 0$. Then, one of the value of k is

- A. $\frac{1}{8}$
- B. 8

\mathbf{C}	1
U.	4

D. $\frac{1}{4}$

Answer: C

Solution:

Solution:

Question 210

Area between the curve $y = 4 + 3x - x^2$ and x-axis is

Options:

A.
$$\left(\frac{125}{3}\right)$$
 sq. unit

B.
$$\left(\frac{125}{4}\right)$$
 sq. unit

C.
$$\left(\frac{125}{6}\right)$$
 sq. unit

D. None of the above

Answer: C

Solution:

Solution:

Question 211

The focus of the parabola $y = 2x^2 + x$ is

Options:

A.
$$(0, 0)$$

B.
$$\left(\frac{1}{2}, \frac{1}{4}\right)$$

C.
$$\left(-\frac{1}{4}, 0\right)$$

D.
$$\left(-\frac{1}{4}, \frac{1}{8}\right)$$

Answer: C

Solution:

Question 212

The order and degree of the differential equation

y + $\left(\frac{d^3y}{dx^3}\right)^2 = \sqrt[3]{1 + \frac{dx}{dy}}$ are respectively

Options:

- A. 3,5
- B. 3,6
- C. 3, 2
- D. 5, 4

Answer: B

Solution:

Solution:

Question 213

The area bounded by the straight lines x = 0, x = 2 and the curve $y = 2^x$, $y = 2x - x^2$ is

Options:

- A. $\frac{4}{3} \frac{1}{\log 2}$
- B. $\frac{3}{\log 2} + \frac{4}{3}$
- C. $\frac{4}{\log 2} 1$
- D. $\frac{3}{\log 2} \frac{4}{3}$

Answer: D

Solution:

Solution:

The number of solutions of the equation $z^2 = \overline{z}$, where z is a complex number, is
Options:
A. 2
B. 3
C. 4
D. 6
Answer: C
Solution:
Solution:
Question 215
The differential equation of all circles passing through the origin and having their centres on the x -axis is
Options:
$A. x^2 = y^2 + xy \frac{dy}{dx}$
$B. x^2 = y^2 + 3xy \frac{dy}{dx}$
$C. y^2 = x^2 + 2xy \frac{dy}{dx}$
$D. y^2 = x^2 - 2xy \frac{dy}{dx}$
Answer: C
Solution:
Solution:
Question 216
Which one of the following function is not periodic?
Options:

A. e^{sin x}

 $B. \ \frac{1}{10 + \sin x + \cos x}$

C. $\log_{e}(\cos x)$
D. sin (e ^x)
Answer: D
Solution:
Solution:
Question 217
Differential coefficient of $\log_{10} x$ with respect to $\log_x 10$ is
Options:
A. $-\frac{(\log 10)^2}{(\log x)^2}$
B. $\frac{(\log_x 10)^2}{(\log 10)^2}$
C. $\frac{(\log_{10}x)^2}{(\log 10)^2}$
D. $-\frac{(\log x)^2}{(\log 10)^2}$
Answer: D
Solution:
Solution:
Question 218
The derivative of sin $^{-1}$ $\left(\begin{array}{c} 2x \\ 1+x^2 \end{array}\right)$ with respect to $\cos^{-1}\left(\begin{array}{c} \frac{1-x^2}{1+x^2} \end{array}\right)$ is
Options:
A. 11
B. 1
C. 2
D. 4
Answer: B
Solution:

Question 219

$$\lim_{n\to\infty} \left[\begin{array}{c} \frac{n!}{n^n} \end{array} \right]^{1/n} equals$$

Options:

- A. e
- B. 1 / e
- $C. \pi / 4$
- D. 4 / π

Answer: B

Solution:

Solution:

Question 220

If
$$\frac{1}{a} = \frac{1}{b} = \frac{1}{c} = \frac{1}{a+b+c}$$
 then $\frac{1}{a^5} = \frac{1}{b^5} = \frac{1}{c^5} = \frac{1}{c^5}$

Options:

- A. 0
- B. 1
- C. 1 / $(a^5 + b^5 + c^5)$
- D. None of the above

Answer: C

Solution:

Solution:

Question 221

If $x = y\sqrt{1 - y^2}$, then $\frac{dy}{dx}$ is equal to

A.	2
В.	
C.	
D.	(

B.
$$\frac{\sqrt{1-y^2}}{1+2y^2}$$

C.
$$\frac{\sqrt{1-y^2}}{1-2y^2}$$

0

Answer: C

Solution:

Solution:

Question 222

The solution of $sec^2xtan^2y dx + sec^2ytan^2x dy = 0$ is

Options:

A.
$$\frac{\tan x - \tan y}{\tan x \tan y} = c$$

B.
$$\frac{\tan x + \tan y}{\tan x} = c$$

C.
$$\frac{\tan x + \tan y}{\tan x \tan y} = c$$

D.
$$\frac{\tan x + \tan y}{\tan y} = c$$

Answer: C

Solution:

Solution:

Question 223

A differentiable function f(x) is defined for all x > 0 and satisfies $f(x^3) = 4x^4$ for all x > 0. The value of f'(8) is

A.
$$\frac{16}{3}$$

B.
$$\frac{32}{3}$$

C.
$$\frac{16\sqrt{2}}{3}$$

D	$32\sqrt{2}$
ν.	3

Answer: B

Solution:

Solution:

Question 224

If
$$\Delta(\mathbf{n}) = \begin{bmatrix} x^n & \sin x & \cos x \\ n! & \sin \frac{n\pi}{2} & \cos \frac{n\pi}{2} \\ \alpha & \alpha^2 & \alpha^3 \end{bmatrix}$$
, then the value of $\frac{d^n}{dx^n} [\Delta(x)]$ at $x = 0$ is

Options:

A. -1

B. 0

C. 1

D. 2

Answer: B

Solution:

Solution:

Question 225

The vector in the direction of 3i – 4j that has magnitude 7 unit is **Options:**

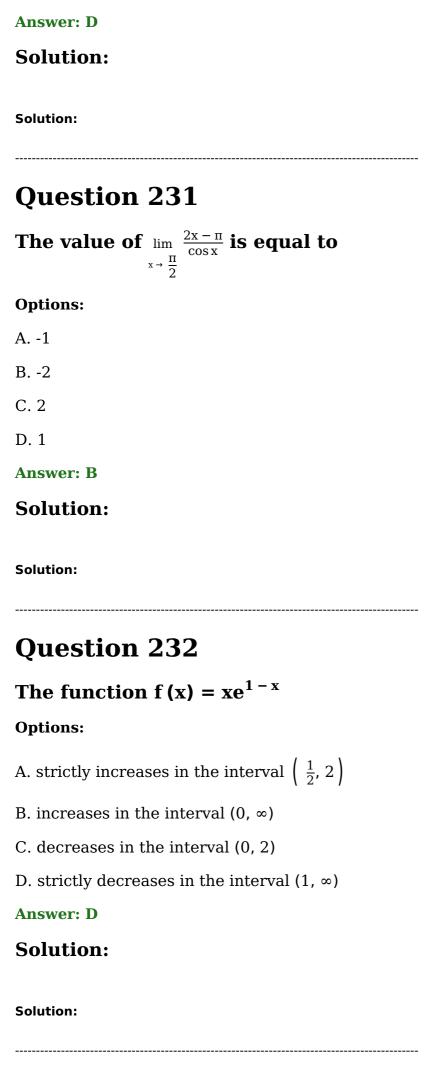
A.
$$\frac{21}{5}i - \frac{28}{5}j$$

B.
$$\frac{3}{5}i - \frac{4}{5}j$$

C.
$$21i - 28j$$

D.
$$\frac{21}{5}i + \frac{28}{5}j$$

Answer: A


Solution:

Solution:	
Question 226	
If $f(x) = ax + b$ and $g(x) = cx + d$, then $f(g(x)) = g(f(x))$ is equivalent to	D
Options:	
A. f(a) = g(c)	
B. f(b) = g(b)	
C. f(d) = g(b)	
D. f(c) = g(a)	
Answer: C	
Solution:	
Solution:	
Question 227	
In a $\triangle ABC$, tan A and tan B are the roots of pq(x ² + 1) = r ² x. Then $\triangle ABC$ is	
Options:	
A. a right angled triangle	
B. an equilateral triangle	
C. an acute angled triangle	
D. an obtuse angled triangle	
Answer: A	
Solution:	
Solution:	

The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and at least twice as many women as men is

A. 94	
B. 126	
C. 136	
D. 156	
Answer: C	
Solution:	
Solution:	
Question 229	
If $f(x) = \begin{cases} \frac{1-\cos x}{x} \\ k \end{cases}$	$x \neq 0$. is continuous at $x = 0$, then the value of k is $x = 0$
Options:	
A. 0	
B. $\frac{1}{2}$	
C. $\frac{1}{4}$	
D. $-\frac{1}{2}$	
Answer: A	
Solution:	
Solution:	
Question 230	
If $f(2) = 4$ and $f'(2)$	= 1, then the value of $\lim_{x\to 2} \frac{xf(2)-2f(x)}{x-2}$ is

- A. -3
- B. 1
- C. 3
- D. 2

If three positive real numbers a, b, c are in A.P. and abc = 4 then minimum possible value of b is
Options:
A. $2^{3/2}$
B. 2 ^{2/3}
C. 2 ^{1/3}
D. 1
Answer: B
Solution:
Solution:
Question 234
Let $f: N \to Y$ be a function defined as $f(x) = 4x + 3$ where $Y = \{ y \in N : y = 4x + 3 \text{ for some } x \in N \}$. Then the inverse of f is
Options:
A. $g(y) = \frac{3y+4}{3}$
B. $g(y) = 4 + \frac{y+3}{4}$
$C. g(y) = \frac{y+3}{4}$
D. $g(y) = \frac{y-3}{4}$
Answer: D
Solution:
Solution:
Question 235
The first two terms of a geometric progression add up to 12 . The sum of the third and the fourth terms is 48 . If the terms of the geometric progression are alternately positive and negative, then the first term is

Options:

A. -4

B12
C. 12
D. 4
Answer: B
Solution:
Solution:
Question 236
If ω is a cube root of unity, then a root of the equation
$ \begin{array}{cccc} x+1 & \omega & \omega^2 \\ \omega & x+\omega^2 & 1 \\ \omega^2 & 1 & 1+\omega \end{array} $ = 0 is
Options:
A. $x = 1$
B. $x = \omega$
C. $x = \omega^2$
D. x = 0
Answer: D
Solution:
Solution:
Question 237
Let α and β be two real numbers and the matrix $A = \begin{bmatrix} 0 & \alpha \\ \beta & 0 \end{bmatrix}$ be such
that $A^3 + A = 0$. Then
Options:
A. $\alpha\beta = 2$
B. $\alpha\beta = 0$

C. $\alpha\beta = 1$

D. $\alpha\beta = -1$
Answer: D
Solution:
Solution:
Question 238
The number of surjection's from $A = \{1, 2, n\}$, $n \ge 2$, onto $B = \{a, b\}$ is
Options:
A. nP_2
B. $2^n - 2$
C. $2^n - 1$
D. None of the above
Answer: B
Solution:
Solution:
Question 239
For real numbers x and y, we define xRy if and only if $x - y + \sqrt{2}$ is an irrational number. Then the relation R is
Options:
A. Reflexive
B. Symmetric
C. Transitive
D. None of the above
Answer: A
Solution:
Solution:

Question 240 The set of all values of x for which log(1 + x) < x is **Options:** A. x > 0B. 0 < x < 1 $C. x \ge 0$ D. x = 1**Answer: C Solution: Solution: Question 241** A house has multi-storey's. The lowest storey is 20 ft. high. A stone which is dropped from the top of the house passes the lowest story in 1 / 4 second. The height of the house is **Options:** A. 100 ft. B. 110 ft. C. 110.25 ft. D. None of the above **Answer: C Solution:**

Solution:

0 11 040

Question 242

A particle is projected with a velocity of 39.2m / sec at an angle of 30° to the horizontal. It will move at right angles to the direction of projection after the time.

Options:

A. 8 sec

B. 5 sec
C. 6 sec
D. 10 sec
Answer: B
Solution:
Solution:
Question 243
The value of $\int_{\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{1}{x^2} \sin \frac{1}{x} dx$ is equal to
Options:
A. 0
B. 1
C. 2
D1
Answer: B
Solution:
Solution:
Question 244
Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the same house is
Options:

A. $\frac{8}{9}$

B. $\frac{7}{9}$

C. $\frac{2}{9}$

D. $\frac{1}{9}$

Answer: D
Solution:
Solution:
Question 245
Last two digits of the natural number 19 ⁹⁴ is
Options:
A. 29
B. 39
C. 90
D. 19
Answer: D
Solution:
Solution:
Question 246
The number of solutions of $1/x + 1/y = 1/6$, where $x, y \in 0$ is
Options:
A. 9
B. 18
C. 21
D. 28
Answer: A
Solution:
Solution:

If (3, 2, 5) is one end of a diameter of the sphere

$x^2+y^2+z^2-6x-12y-2z+20$ = 0, then co-ordinates of the other end of the diameter are
Options:
A. (4, 3, 5)
B. $(4, 3, -3)$
C. $(4, 9, -3)$
D. None of the above
Answer: C
Solution:
Solution:
Question 248
The weighted mean of first n natural numbers whose weights are equal to the squares of corresponding number is
Options:
A. $\frac{n+1}{2}$
B. $\frac{3n(n+1)}{2(2n+1)}$
C. $\frac{(n+1)(2n+1)}{6}$
D. $\frac{n(n+1)}{2}$
Answer: B
Solution:
Solution:
Question 249
$\int 5^{5^{5^{x}}} \cdot 5^{5^{x}} \cdot 5^{x} dx equal to$

Options:

A. $\frac{5^{5^2}}{(\log 5)^3} + c$

3. $5^{5^{5^{5}}} (\log 5)^3 + c$
C. $\frac{5^{5^{5^{x}}}}{(\log 5)^3} + c$
D. None of these
Answer: C
Solution:
Solution:
Question 250
The sum of the coefficients of all those term with integral power of x in the expansion of $(1+\sqrt{x})^9$ is
Options:
A. 128
3. 225
C. 312
D. 256
Answer: D
Solution:
Solution: