Structural Dynamics

Dalinltion: Structural dynamics is a type of structural analysis which covers \he behaviour of struclures
subjecledtody namic loading. Such dynamic loads include wing, waves, wraffic, earthquakes angd maching
vibrations. Structural dynamics includes analysing amplilude. frequency and time period of molion
response of Siruclu(cs subjected lo dynamic 10ad 1.e.. Joad which vary with respect 1o ime.

A.Undamped Free Vibration of Single Degree of Freedom Systems

»  Analytical solutions are oblained for simple prablems.

«  For problems involving complex malerial praperties. loading and boundary condilions: assumplions
areused to obtain approvimate solutions.

11.1 Degree of Freedom

« The number of independent coordinales necessary 1@ specily the configuration ol & syslem at any
lime is known as the number of degree of {reedom.
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Fig. 11.1 Examples of structures modefed as one-degree-of-freedom sysiems
+ Thesc one-degree-of-freedom syslemmay be descnbed by .\___‘_ ¥

mathematical moda! (a% shown in figure below). whichhas X
ihe lollowing clements. -
{iy miepresenting the Inass and the nertial character of _{Ck_ " - Fif

{he steuclure. :

n * k representing the elastic cestoring lorce and patenial
energy capacily of the struclure. Fig.11.2 Mathematicalmodet for
on-degree-of-freedom systems



(i) damping elemen Crepresents 'the {ri

i ¥ N
2 ert i e} terint s}
( lation force f (!) represants tt Siructyr * Forces actir g inver cal direction do not enter into the equation (ﬂ motion {or the y-direction

icali } fon in 'y direction gives
'e-exlernal force acling on the Structural sysiem, * The application of Newton's seconsj law ot moll y
F=my = my+ky =0

. L senis the second
11.2 Undamped System : where, yis disptacement and § is acceleration iny-direction (double overdols repre
* Inihe analysis of single-degree-of-ireedom undamped
is neglected. Also, syslem is considered (o be free fr

f1otion or vibration,

Syslem, effect of frictional forces or damping - derivalive wilh respect to lime)
Om any external actions or forcas during itg

‘s Principle
11.5 D'Alembert’s Prin o X sysiem may
i is given ! The equation my + ky = 0 is also obtained by D'Alemberl's principle which siates that a sy
- A
displacement angd velocily atime { = p, )

pedo 15815 Nam m Y cing il as the inenial force 1o the
1 b lina d)’ amic equilib ium stale by addi a ficukous ce

. ‘ l -

1 i d as (} 12 SiF 1p!E undam d scilla or. doing fict {orce known the inert il

. ; o external forces. . L % Thi in mass
*  Simple examplesof it are shownin figure 5 ture {c) shown above shows Iree body diagram with the inertial forces mj? .This force in
13, 5 * g
———— '
¢ Inthese models the mass mis restrained

¢

i i itely to the corresponding coordinate.
. mulliplied by acceleration and always direcled oppositely

gy
by the spring k and goes (hrough - 3 f Motion
. : on of Mo ;
rectiinear motion along one coordinate 11.6 Solution of Differential Equati A6
s, v For differential cquation, my+ky = 0
¢ The relation belween force ang C ; eral solution
displacement for a lingar spring is ) ' Taking y = c* as-; ge-” i tion 16
F=ky ‘ Pulling soltion in diferential equation - 1)
s ) ) Fig. 1‘1.3Alremalerep!e:enran‘on:ofmavhemcrim/mudels(or mb? . e+ ke = O
{where, yis a small displacement in vy < -of-froed: " .
directionin spring) one-degree-of-lreedom systems Fromeq. {ii}
' ) £ E _ iJL {where i is square foot of -1}
11.3 Springs in Parallel or in Series ’ Sl Eold =
¢ Fornsprings in parallel, ihe equivalent spring consfant is

' So solution of dilferential equation will be

4 o s .‘i‘.HC s‘m,}-’ir
kn = Zk' : : y= C‘CG m 2 m
rul

(vihere: displacemen of al springs are same) {where C, and C, are constents of integration]
Forn Springs in series, the equivalent spring conslani is

3 )
w= j— inequalicn above
1 21 . ' Tﬂklﬂg, Vo
;!— : E‘E ‘ | ‘ ' ' {wis callcd angular frequency of motic] sl i
(whete forces in all he springs are same) . - . ) - Displacement, y= Cycosol+ G, .
. . | ifterentiaing above equation i
11.4 Free Body Diagram 5‘:9 : g ¢ = ~Cywsin ol + Cacos wf "
elocity, ‘ T
Acceleration ¥ = -y cos at - G0 sin wf |
ceele ) )
Using boundary cdnditions
" je.when{=0,y=y
Also when f = 0, velocily 7 = V,
Pulling these values in 1(ii) and 1(iv) ,‘.l(j.ré)
Ci=¥, }
: i LA
Fig.11.49 rap {0} Single degree-of-ireedom System () Shawing onlyexternal forces v

=
(0]
(¢) Showing externgl andinesiiol forces.



Using 1{vi} and 1{vii}in 1{iif}

_ 79
Displacement, Y= cosmn-‘;—smwr < Wiy

E‘ ———
,‘ 2
= ye | T Lcomars 1012 sinat 1/;@4(."2]
,‘ [y§+(%) 2. gQJ p

Taking an angle '0" such tha : '

sing = — Yo
ol
q]a 0 »
and cosf = —:—:avo—lL-
;}'2 +(E°~)z
Y
T\ Vc X
Also A= B *(?E] u v
. W
F19. 115 Tiongulor Transtormation of equation
Displacement, Y= Asin {wf + 8) . i)
Velocity, ¥ = Awcos (o + a) ~A(x)
Acceleration, ¥ = -Aw” sinfwr + 0) L)

From above qquatiohs
Maximum valye of displacement, also called as amplilude = A '

Maximum value of velocity, Ve = A2
Maximum value of acceleration, 8o = AP

11.7 Frequency, Period and Energy

* Themotion described by equation of disglacement is simpte harmonic mation as it is representad by
sine and cosine function having same angular frequency v, ’

* Assine andcosine both are repelitive functions having same period equal to 2 So period of mation
can be easily found as

ol = 2x ’ !

2r

@

* Since natural trequency is inverse of time period i.e., nalural ltequency,

Time period, =

»  For any instant in motion ' .
Potential enargy (energy stored in spring)

1.2
Ul = sky

2 ] 2.2
! i =~ {+8
Uy = Ek[/\sm(wuo)) = 2kA sin” (w!+8)

1 a2
) ; - —mv?
Kinematic energy of motion, . k(1) = 2m

k(Y = E‘m(Amcos(mi +0))2

= K cos?(wr+0)A? = %M“ cos” {wr +8}
Te2m

142
= Uf)+ k(1] ==kA
Total energy. E= U()+4(1) >

i i or angular [requency
Unil of natural frequency () is hernz or cycles per second. Where as unit of circutar g
Note:Uni
is radians per second {radfsecond)}.

11.8 Graphical Representation of Motion

y

el

Flg. 11.6 Graphical representation of lree vibration response

Summary

5 ibration,
» General solution ol single degree al freedorm undamped syslem vib

) v .
i y= YyCoSul+—sinw!
Displacement, "

= Asin (! + 0)
i = —y,wsinol+ Y, cosml
Vefocxiy. ¥ Yy
= Aw COS (i + 0)

2 .
i P o= —ygw© cosuwl - wsint
Accelealion, ¥ Yo© oSl - g

= A’ ‘SII'I(ll)! I-O)



where, fang = Jo_
Y
w
¢ Amplilude 2 (%Y
0 A= ~ + -2
‘ ()
¢ Maximum velocity, V.= An
*  Maximum acceleration, am‘= AP
mar
. Angu!arfrequency. W= -"3-
m
¢ Time period, T= 2
©
= Nalural frequency, ° o 10 1JF
T 2t 2n¥m
*  Total energy of motion, E= lkAz
2

Kamp - uate I
ural
Example 1 1.1 EVﬂl ate the natur [ 1 equar iy (| adlen’saco”d) and natural par fod far

k= 45kNim

(a)

m=10&N
£= 20000 MPo
11510 k= 45 kNim
(b}
()
= 30 kNim
€ = 22000 MPn
1= 30 m =30 kN
oz m=_18 kN
017 ¢
O S—————
e L=6m 'Z-;\
£= 16000 MPa

ER R ERT

the

Selutiom:
{a} For given system, providing a small displacement 'y
In the beam of mass ‘m'

=157 107 m

] 3Ef
Resistance of beam = —L;r}’
Total torce or fre@ end, - F= —kyy~ky—ky
-3E1
=3 y - 2ky
o -4
. _[3)(20000::140: x1.5%10 +2x45x103Jy
. = -230625 y
10000
z ———=1019.37 k
Mass, . m 381 1018.37 kg
Using Newton's 2nd (aw, F=ma
i.e., 101018.375 + 230625y = 0
* Using gensral solution y = &
= 1018.37b% + 230625 = O
= b = £16.047
Solution. y = C,cos 1504+ C,sin 15041
Angular frequency, » = 15.04radfsec
. 25 2n p
i T e S e—— A
Natural period, T o " T50d 0,418 sec
Alternate Sclution (a)
3El
{a} Slitlness of beam K, = T
5
, k, = SX3x107 4 406 10° Nim
i o P
m= 1008010= 1019.37 kg

. Now, equivalent spring constant (kml is
Keg = Fpt 2k
{because spring have Ihe same displacerment thus are in parallel connection)
kg = 1406 105 + 2(45 % 10%)
ko = 2306x 10° Nfm



Natwral frequency is given by

a,

q, =
Natural period, T =

(o} o -

k

Hi

He

fiea _ [2206x70°
Ym 1019.37
15.04 radiansfsecond

2n
=04
o 2se6

G
361 _3x25x10°
£ as?
12000
=1223,24 kg

g.81
1.1 1 {
Z;“ + ; ——
” 174.927x10°  40x1Q°
32.56 x 10° NIm "

= 174,927 x10° Nfm
!

{because spring a m |
pring and the beam have same force acting, thus the spring and beam are in series)

=

Nalural peried, T =
{c)
K =

m =
Equivalent spring constant, &,

BRI
k

e 13256 10" .
V'm =Y 13 sg =016 radian/sec

2n
Py =122 sgc

J92E1  192x2.2x1,1%10°

- = T = 3717124 10° tim
, .

o8, = 3058.104 kg

.1...]._1. = ’ 1.

b E e —
ky k- 37742x10° 30107

Be i o
{Because both the Springs have unagua. displacement, thare are in series)

k«z:
Lq!=

@ . .
=

& = =
0837 x0.17% x8% ~

n

29,76 x 10? N/m

— ——
{40 - [29.75x10’
\'m " 3@ 100 = 312 rad/sec

. 2014
o, . SCC i

IEI

a?\{__a)Z

_ Stfr
(@831 (0171

3E7 3x1.8x1.4x70°

083 %0172 0
1757.98 kivim 0.17°x6
18000

m= 1831 86 ky '

fog _ [1757.98%10° o
@ = J_;._ TN = 30.85 radisec

7= 2n =0.203 sec
,

n

#] Aslingla degree of fraedom system (SDOF) of mass m and slifiness kis found to

‘ d racorded is 0.22 secC.

vibrale with a perlod of 0.19 sec. When mass in increased by 4 kg, the perio
Determina the mass and stitfness for the ariginal system as shown in figure.

h i i K el
(a) g g m w1

Figure (a) and (b) showing original and modilied syslem.

Solution:
Angular (requency of original sysiem s _
' 2t 2n
= S-=——=33.07 radfsec
@ = T g /
Angular frequency of modified systemis
2n  2n
o, = -T—=-62—=28.56 radfsec
2 ﬁ. d e —
Nery, W = P and @," = m+a
[&T [m+4 _ 33.07]2
= w, ) T U m J T\ 2856
m = 11.74kg
\ _E
Also, W’ = m
3307 = LI
ST 174
k = 12.84 kN/m

s (ho maximur d the natural pericd

A dynarmiic syslem has lhe maximum velagity of 135 mm{s an
of 1.5 sec. if the inilia! displacement is 5 mm, datermine the amplitude, tha initial velocity and the

rnaximum accelaration.

Solution:
2% _2n

Nalural [requency is, W= T g
w, = 4.189@dfsec

Maximurn velacity 1s,  * Vo= Ao,

¥ = 0.135= Ax4.189




= Amplitude, A = 0,032m
Now, o)’
e ol
\ n
0.032 = 0A005?+( %Y
} ¥ 4.189
V% (Initiat velocily) = 0,133 mys

And maximum acceleration is

Yrae = A0F=0032x4.1892= 0.56{ m/s?

Example 1 C P q 4 -
y g {
11.4 ompute the natural fre uency in slde swa 'Ol It 11:] 'IBIHG is figure bslow. i 2]

inllia! displacemant is 35 mm and the Initial velocily is 20 mmys, wh.

att=2sec? &t is lhe amplitude and displacemen

100 kN

Salution:
Equivalent laleral stifiness of calumng is
P 12/5‘1+ IZ(QEldﬂ 36E7
3 IEl - L:!
3620~ 10"

T 5760 Nl = 5,76 x 105 Nim

o 3 5~?—éx 108 ‘
* \/_ = \[ ~ = 23.77 rad/sec

B

Angular frequency s,

m " | 100000
9Bt

Amplitude is A= \/;gj[?._if - \/552 P [ﬁT =3501rmm

Displacement at { = 25 is 2377

74
¥ = YoCosw,l +— ging,
) ;

"

20
23.77

= 35¢05{23.77x2) + sin{23,77% 2)

= ~32.35mm

RS BDampedSmgledegree-of-freedomSystems

In undamped system it was assumed that Ihere is no energy loss in the system during motion but in
reality \hare are atways forces acling such as friction, vihich results in encrgy losses in the system. Since
these energy losses are essentially due to damping out vibration of a struclure, This engrgy loss mechanism
is called damping. There is no knowledge of actuat energy loss mechanism, so some assumplions are

mode 1o model ihese energy losses.

11.9 Viscous Damping

« Damping Torces in dynamic analysis are assumed to be proportionat lo magnituda of the velocily

and opposite to the direction of the motion.
This type of damping is known as viscous damping asil is equivalent o a force developedina body

restrained in its molion by a surrounding viscous fluid.
+  This is an assumplion made for simple mathematical analysis.

11.10 Equation of Motion and it’s Analysis
«  Modo! of a structural system oscillator with viscous damping is shova in figure below;

'

(a) ®)

Flg. 11.7 (o) Viscous damped oscillator (b} Free body dfagrom
Here m, k and ¢ are the mass, spring corsiant of oscillator and viscous damping coellicient,

respeclively
«  Fromfigure (b, we have differential eguation

mi+cy+ky =0 200
Taking trial solution as y = " in equatian 2(i)
[mFt e’ 4 cPe+ kel = O 200
Aller removing common faclors,
.20}

M+ cP+k =0
Roots of above quadratic equation are

o _ .S, [-C_)E_:'i
VT o2m 2m} m



and P = £ _ ( ¢ ]2 k +  Thus the rools of eguation: mA s cPa k=0is
z - m— ] -
The general solut : an vemlm ' i p =P P - P . g,
solutto H o : = P,= = =
cotaon. n of equalion my +cy +ky =0 is oblained by superposing the twi 4 1 27 om | 2ma,
1o, Le., 0 possibla « Therefore, the solulion is
) , ‘= Colampt 2 {vi
where C, and C Y = Co¥ 4 Cpe 2{iv) } {C]*C?l)e’ "
1 , are constanis of integraticn ; . Rty
eqralica determined by using boundary conditions. (0
:A.S SEQﬂ ab{):,te ,YOOIS-‘;’ ; - ) . . oo Ya
.  raols Py and P, have radical under s .
PR L quare root, bas i
L 500K cadiatnder ‘ sauare (qo, Biased on relative yeluss AN
.and . raciaiu { U
‘an m T n er:.square ‘rcm may Be zerd, positive or negalive end thus accord;né;y ! l \:>-————~,
hare are threa cases; criti : 4 ' o I . ,
systems. Ses: culllcaily damped system. ovardamped syslems and underdampéd’ Flg. 11.8Free vibrationsesponsewith crltical domping
NOE | 11.12 Overdamped System
. . s we know natural angular Ir k - ' '
' ngular frequency w, = |— , 50 ro0ts of equation mj + ¢y = ¥
be vrritten m Ve +ky=0 also Har [i] ~o2l 50 2 (vii)
as - . ) . : . re, . om .
g ' |
. c ¥ , 3 ' : ; = Two rools are real and negative.
R N OE S e G 03
. : 2% T5m Tl "9 ) S | — The solution is given by (2(v)}, thatis
11.11 Criti ‘ ' y = Ce¥ 0™
n:ucaﬂy Damped System | '
*  For a syslem oscillating with cili : i iclenti it
crilical damping, the e; : = 1n an overdamping system, the damping caelliclent is grealer lhan the value for critical
equalt . , xpression under the radical i . o NOTE '
qualte zero, thatis radical in equation (2(il}is - ey damping. thatie ¢ > C,-
c,, 2 ' Inanover damped system, the magniwde of oscillation decays exponentially withtime 1o
.2;) = 0 zero. Thus motion is not oscillalory.
209 +  Theresponse of the over damped system i similat to lhe response of the aritical damped
’ ' ' em (as shown in tigure above). Bul tharelurn lone natural posilion requires exira time
ca = ZJZTH- = 2’71@ = & SYSt m( s .0 \ g.ur. ) . po ‘ Qs
" _ as the damping valueis increased. -

where, ¢, is crilical damping coefficien) ’

NOTE C 11.13 Underdamped System
i [{-C—) —Uﬁ] <0 .2 (il

ping ra ( } & d conjugates ina
Dam tio g isth e ralio of aclua systa ndan Pl ¢} 1o the critical da ”pl”g C,
' ( Cl) hatis
% > Two rools are Co! “p‘ete | —
« |f g =1 Sys is crilically dar lped nean are wh oscillation and ystem
T y cai i a A
tem ] th il be no cillatio 1 EIS St ( )
§ .sysl 8] . ¢
eq,
g
e i< 1 em is und Kda"lp d, SO it wi | oscillale around the mean value, WldeClEaS 2 om m [Z“] ( )

if § >1. SySEEl 1i% overda llped and will reach aqul librium slow ywith no oscillation -
' where, i A



5 " 3 R
Note: In under amped syslem, the value o dampvng coellicient Is less than the ¢ ilical Value that :
Cc N
r

The soluti
ution of Ihe undardamped syslem makes use of Euler's equalions
&7 = cosx + isiny }

€% = o5y ~isink
and subslitulion of the roots from (2(ix)) i !
4 i»}) inlo {2(i i e
oo o e $) (2(iv)). along wilh the use of {2{x)).
el :
o ; y = e (Acosept + Bsinug!) .2 ()
. Aand B are constanis of integration and oy, is the damped frequency of syste
m
k c ¥
“ =\~ (3n)
‘ Qb = w, 1-52 '
where, ‘ X s £
o= J; and g = -

(=]

MNow, initial conditions of disp
v splacement (i) and velogity { V.
are gvalualed and substituted into equan‘oon (2(x1)) vl areused and constanis of eareton

-t ¥ 2
Wi = € *‘"’(yocosman CRELEL P 2 (il
o | up L2 (i
ernalively, the expression can be wiilten as
AN = Ce cos(wpf o) 2(xii)
=2 i ) ’
= Amplitude, C= /yg +M§“l{'_]_
‘l wp’
Vo+
ani tane - (V% yefwn)
* Agraphical o
phical record of the response of an underdamped system is showin below:
oy |
N cg—’.l»,(
Yo "!“'w.
el 2T.
LI
2 T, TR !

Fia. I
i9.11.9 Freevibration responseforunderdemped system

= Mation is oscillalory, not periodic
2n 2n

ChaE

 Real struclures damping coetficient is much less than the crilical damping coefficient. itis

NOTE
gengrally belween 210 20% of the criical damping valug.
é +  Sructure with damping coeflicient as much as 20% is essentially equal tothe undamped
natural frequency systerm.

e Figure beio(w shows comparalive siudy of damped sysiems.

Crileally damped oy pr.damped

no sysiom system

' Fig. 17,10 The moticn of damped dynamic systems

11.14 Logarithmic Decrement .
» The decayis expressed as (he fogarilhric decrement {8}, whichisused 1o find out damging ratio of
underdamped system in time domain is natural logarithm of the ratio of any iwo successive peak

amplitudes (v, and y;} infree damped vibration

§= inzl .2 (xiv)
Yz
. 5= 2nE1-2° 2 {xv)
o Forsmall vaiue of damping ratio,
§ = 2x§ .2 (xvi}

;En 'of mass 20 kg and spring with stiffness 32 N/mm is damped

“Exampte 11.5 JESULIEULLERY
0 0.91. Determine

so thal the ratio of two consecutive ampliludes is 1.00 1
{8) the natural [rpquency of the undamped syslem
{b) lhe logarithric decrement
{c) the damping ratio
{d} tho damped coefliclent
{e) the dampad nelural frequency

Solution:
(a) Undamped natural trequency (.

k = 32 Njmm = 32000 Nim

'



= 1% _ 32000
On = \[; =y - 40 radfsec :

=8.37 cyclestsec
{b}  Thelogarithmic decrement

© The damping ratio is
{d) The damped coaliicient

= 0.015x2J%m

= 0.015x 232000 20

= 24 Ns/m
) Thenawral frequency of the damped system

@ny1-82 = 40{1- 00157

39.99radlesc o~ w,

)

@

n

For the frame shown below, the
velocity is 13 mm/s, Damping is 10% of erltical. Cross-
300 mm and elastic modulus Is 22.8 GPa, Datermine

{a)  the natura) frequancy {rad/s)

{b) the amplituda

{c}) the expression for the displacement

initiel displacement is 25 mm and the Inftial
sactional dimension of each column is 250 mm x
In rad/sac

500 kN
I
U TTTTITT
3

" A

-
Solution: i
fevn {mOment of inertia of each cotumn) = 250?230(? = 562.5%10° mm?

Flexural rigichy, &

1

228 x 107 5625 » 10°
12825 x 109 N-mm?

Equivalent lateral stiflness of columns (in parallel) is
2x12E1 N QLE_I_

88

2x12x 1282510 3x1.2825x10"%
X

T (5000 (2000)

= 38874 Nfmm

‘ o o 1288 g8 radisee
(a) Nawralfrequency, - @ = = 5

’ 2
Damped nalural ffEQUEﬂC)’, = wy 1-E
ah 8.73¢1-0. * = 8.69 radfsec

Yo*ﬂ’rﬁyo]h
(b)  Amplitude, ‘ A= y§+[ o
2
‘ > 13+8,73x0.1x25]
A = 25.82mm

{¢) . Expression for displacement

,.") + wn“?YG :
% t 22 D7 cintn!
y= € @b {yo cosupl + o sinwg

13+6.73%0,1%25
y = @Bidon [2SC4)58.691+—-—W-—51n8.59I

y = 0¥ [25¢058.69t+4.01sin8.69(] mm

C. Response of One-degree-of-freedom System to Harmenic Loading

i i i citations.
Structures supporting the reciprocating or rolating machines are subjected to harmonic ex
: . . .
Such excitalions are funclions ol sine or cosine with respect Lo time.

11.15 Undamped Harmonic Excitation

b—r

i m L~ F st &y.---l.--....-‘. —— F_ s @t
l
SO o it ¢ B -
{a)

Fig. 11.11 (o) Undamped oscillatar hatmanicatly excited (bj Free body diagram



*

Fysinwy is harm: C force, vihere £ is peak alllf)lll da and 5 lhe fre uvency of fori
("] arman . ‘ q
\ ° u ar Y
e force in

The difterential equalion: mip+ky = Fysinit
=30

Solution of equalion m + Ry = F sinit is
,V(I} = yc“) ,V;, “) 3 ('}
= + 30

where, Y. (f) is compler ry i
.. c ﬂ'e entary solution salisiying the hom nea h h
0 (I)) | " o ying 1 oJel us equalion that is lefi hand side of

¥ (n iSpa ticular solulion based o i
(N n the <ol IU!O”Sa! S‘ﬂ Ul 1@ non-hon ogeneous dilerenlia equation

The complemen ary SOIUIIO”,
yc“) = Acos ul B si w/ .3 ( )
+ ¥ (B il

Whele, ||_ Aar r I n niegralion
(0]
g‘ "/ d8a e constant ol in| ga!r

[l

Expression ol i j H; i 5
oremg funclio n (3[0) decides lhe expression of par!icular salution (1
" Yu )

} ‘ Y = bsinat i
where, bis peak value of particular solulion. o
Substi i v} in (3(i '
tule solution (3(iv})in (3(i)) and on cancelling the common factors; we h
ywe have

-mib+kb = F

&
= b= ——F:"—«»—: Folk
k-ma' - )

where, ris qQuency 8] ie U o he n ral frequency of vibration of the
here, 7 fre (il ralio ot the a plied lreque cy lot | {=2 f vib ‘]
; . Y a f q Y rati i

Thus. sofution for equation (3(i))is

. Y0 = Acosol+Bsinut + F°/;i singr 3 {vi)
| 7 Tt (YL
Assume inilial condilion i
alf= ing v, :
" { 0} taking y,, and Y, equal 15 zero. and applying (o 3 {vi)
A=10
g alk
| 1-¢7
Thus linally, we have solulion of equation (3(i)) as
Wi} = !_’,L,(Sln(n!—rsmmt) L3 (vin)

NOTE

|

From solution {3{vii)} iLis clear that the resulting motion due 1o superposilion of two harmoanic
\erms of dillerent trequencigs is not harmonic.
The fast term in solution (3(vii)} is ransient response because damping lorces will atways

presen! ang causes the last term to vanish evenlually. However the [irst term is

: Folk . _ .
y{t)= s sinG! is known as Lhe sleady siale response.
ifr="1le. when applied frequency is equal lo natural {reguency, thenam

inlinitely large, The phenomena is called resonance.

pliude becomes

11,16 Damped Harmonic Excitation

!

*

o
K
.5 p—
1 ¢ m F,sin i —atieees e Fosin T
i ' '
} — e ®

(8)
Fig. 11,72 {0 Damped oscittator harmanically excited (b} Frec bodydiagram

The dilferential equation of motion

mprcyrky = Fysindt L3
The solution is given as
wo = yih+ yh
Eor underdamped case (¢ < ¢,.). 35 givenin equation (2(x))
L3 (i}

yd = e (Acosagt+Bsinwyf]

For determination of yp{!) !

Assume y, (i of the lorm
vl = C,sindt + C, cosd!
Substitute (N above expression in equation (3(viil}) and equate the coeliicients of sine are cosine
funclions.
Allernatively, s use Eutar's relation {prelarred)
¢ = oS! +isingt

Thus, mji4-cy +ky = Fpsinwt
Canbewritlen as

my + ci+hy = Foém L 30%)
but heré, anly imaginary component of Fﬁé‘” thal is the imaginary lorce component Fsingi is

acting. lt means response Consists only of the imaginary parl of the tolal solution of equalion (3(x)}



(3{x)) will be
. ‘ ‘ ¥ = pe
Substituting equation (3(xi)y into equau‘or‘: {3{x)) we obtain
~MB 4 icBb 4k = 5
- F
beg ——iB
k- 3 + it
and ¥ - f-;,e:a:
The complex denominajor (3(x7i)) can be v

Thus Ihe particular solution of equation

-
K~mi + ol
illen using potar coordin alé

. - R

L (. A
,/(mmﬂﬂ{mf

where, <o

lang =

- TR
. K- m&

e ol the for F, si b ompanent of Fﬂdm
erlespons f ce Sinw! (imagl ary

i 0 i C =l n
equation [3{xm), that 18

y, = Fosin(Bt - 0)
Alk=ma2)* + (o
o
- ¥ = yisin{@t-g)
Amphiude of steady slate motion, ¥ o= 5

—_——— .
12
ﬁ;—muf") +{cu‘))z
an in terms of dimensionless ralips
Y, - Yo Sin[@! - p)

1}{1—#)3 +(28r )

and —_—
lang = &
1-72

pring) = £ /k

Equation {3{xv)and {30} can be easily wril}

where, y,, (stalic defiection afthes

Therefore, The overalitesponse is

WY = e“"'[AcosmnHBsinms:}

Yq Sin(B! - )

1T sy

)isthe imaginary component of

. Dynamic magnilication factor, D, s given as
30 y:(steady stale amplitude)
=y (sale dellection) 3 i)
I S .3 (xix)
2\ 2
; (1-r) +(2rE)
-3 (xit
) ! o = Figure below shows that (or light damped system, peak amplitude occurs at r {Irequency
ratio) close 10 one i.e., £Xdynamic magnitication faciar) has maximum value virlually al
: resonance{r=1)
i s |l can be observed from equalion {3(xix)} that at r = 1, we oblain
. : 1
i D= -2—:; L3 ()
.3 (xiif) ; . 0.125
+ ilzﬁ
-3 {xi
biv) 0.15 —
4\
o il
5 |
-3 (xv) g fli o2
g i T\
.3 (i) g, /]/ /”ff\ {\
@3
E
& i s | i}
_— /f//l_—o-i,\\ \
1 ZARSARN
—--..\\L\ ~ ~¥. {
NEEAS RSN
~ NN
”“&; (2 =l \\ \§\‘~
B | I N N
= =N
0 1 2 3
Fraquency ratio r= S
Flg.11.13 Dynamic magnification factor as afunction of the frequency ratio for various amounts of damping
SN IR AR Calculale damping cosfficient of a viscously damped system having mass of
3 (i) 4 kg undergolng resananl amplitude of 1.2 m wilh a pericd of 0.3 s, when subjecled lo harmonic [erce

of peak ampiitude 270 N. |



Solutlon:

Alresonance, re B
o, ~ 1
6= 2t _2n
h=w, = <F_2n _
- " T 03" 20.94 radfscc
k= g2um = 20.99% x 4 ~ 1754 Njm
Mo, Amplitude (y,.. ) 1
LMpitude (¥, )
= e 1
Yar : 2% {because D= iz @lvesonance)
e - folk 27071754
o 2yrr.\y 2x1.2 =0.0641
E=BM%
Nor: )
: B ¢ &
G =B S
Cee zmn
00611 = — ¢
234%20.94
€ = 10.74 Ns/m

dug o weight of machine is 0.5 mm
1s400N at a velocity of 30 mmy/s, As

Sume nagligible beam weight.
Macking

Solution;
Apphed Irequenc
1 @
® = 1000rpm
_ 1000
& = - *2n = 104,72 radjsec
Damping force, y
Cy = 400N
A00 400
C= ——==—==13,
V& 3.33 Ns/mm
Stitfness. ko= Lo 7000
= Vo = —0-5— = 14000 M/mm
Naruralrrcquem':y‘ o, < ,‘I’It ’{1—5655
Ven = 17000
Q610

w, = 140.07 radfscc

Crilical damping coelficient, ¢, )
7000
CU = 2mm,, = ZXmXT'ﬂU.(w =189.9 Ns/mm

c 1333
: : i) = —— == = 0.087
& {damping ratic} PR 0.08

E= 6.7%

& 104.72
r(lrequency ratio} = -;—‘:: 19007 =075

. o ! 1 1
Xdynamic magnification factor} = 7 = = = =
-7 +2g) ‘ﬁ1-o.752) +{2x0.75%0.067)f

=223

simply supported beam having & span of 4 m supporis a machine having
waight of 50 kN at il midspan as shown in figure bstow. The motor runs a1 300 rpm and tha rotor Is oul
of balance to the extent of w{weight of rotor} = 400 N at a radius r{eccentricily) = 270 mm. Calculate
the amplituds at sleady slale response. ASsume viscous damping of system 1o be 10% of critical

damping, elaslic modulus Is 2 x 10° K/mm? and moment of Inartia Is 50 x 10% mu,

a(’ a”;ﬂﬁ?

Solutlon:
) - 300
Appliedfexcilation frequency. & o= 300mpm= -sTxmz =101 = 31.42 rad/secC

-2 4
Amplitude of excitalion (orce, Fo= o = 9;—.1%x 270x31.42% = 10868.44 N

. 48E7
Siifiness of the beam, k = __{.3_

]

S 8
P 48x 2% 10 xaﬁox ‘0-=?5G0 Wjmm
4000
‘ i 50000
Mass of the molor, YT 500G.B4 g
Ik 7500 10° .
Natural frequency, W, = \{E =\ "EEE =38.36 rad/sec

] 3[42__0‘“9

Frequency ratio, fT o 3836

J,.
]
| ©

=

Since, damping rafio,



r————

Amplilude of steady state response motion is
o = e
,!(‘. -] s (2
N 10868.44 1 7500

1, 2 ]
\{(. ~0.819%) +(2x0.819x0.7
3.94mm V

i

11.17 Transmissibility of Force p

3c! fs) .
:
» e} at achineis lrans| ”
* Whenam “[ﬂelske tcflaﬁoﬁl vibrati ydugtom hing raaslerred to i‘OOI orvice

ralio of maximum forc:
2on |
. Flarehae oo the ttoar as aresuil of vibration of a machine to maxi -vgrsa. -
o upport of the simple oscillator siructure subjecled (o ;" e
e \armaoni i
o onic motion,
-3 (i}
a—-—- NN =y sinGt 3—_»
o y
{a)
——11 c |7 |
L e | |
bom ¥ —f
e m._
o] . ¥s) —_—
= oy=F) -~ -
Flg.11.14{0)dam i : :
o X
. ‘ ped :cv!.*atarho:momcaﬂyurited:hmughituuppon {b)ree body di
. ram ligute, the differential equation is e
..+c ..' - |
+  Solving (stxxi)lmy . “y51+k{y_y5) o
and (3{xxif)) cquations simullareously, we have soluti S
\ olulion
“) = Flksin(@r+f-8)
=0 2 ' =
) *“—————r———-——-—w_rz} +(2*———-,€)2 <. 3xxiii)
ore,
fo = Yodlk? +(0a)° = yyky
- ok +(00)° = yukyf 1+ (22)
tanf) = Pi—)=
p=-=art ‘
* Also Zf_Q = —'“(Z—QF
yo = r“:g———a__wsin (T)t'* -0
,J.;j-ra) +(2{’)2 ( p-0) .3 {xxiv)

1on 0l he support v o} he osci
it e 1SSIcn of § support motio
This express) isfor it e relative tranismiss ol th cil

ator,

e ————

s+ Equation {3(uxiv)) i5 in

degree of relative isolatl

Transrrissibilily.

Teansmissiviity (T}

Flg. 11.15 Transm fssi

\portant for vitiratiof

4

 isolating equipment for protecling lhe

swuclure. The

on is called transmissibilily, delined as
y (amplitude of motion of the oscillator)

Yo

_[ (1+2r) r
= o) ()

Froquuncy ratho tr = T)

Bhity versus frequencyfatiofor vibrationisolation

NOTE From Fig, 11,15

() r=00r2
iy 7> 3. T, <1

« The steady slate respanse in lerms of rela

where,

we can see that, when requency ralio

T=1

) 0O<r< JE,T,)1
(iv) r=1, T isvery high

tive motion between the mass M and the supportis

un 2 sin(@t-8)
Yo \K\— rz)L w2y
28
tan0 = '—UT
1-r°

Hote: Maximum force (F;) vansmitied (o tho toundavion is; F; = £yT,

the sleady slate amplilude ©

Example _1'1 .1(}' Figure shown below illustrates a mac
of stiiness k = 18 x 10> N/im wilh
mation, with a stroke of 0.1 m and speed 35

{ vibrallon of machine

nine weighing 90 kg mounted on a spring

damping factor 15%. A 3 kg piston within machine has reciprocaling
00 cpm. Assuma pision

rmotion 1o he harmonic. Calculate
nsmitled to the loundation.

and vibraling force lral

._I




Solution:
& = 3500rpm= 239, o e
N = 366.52 rad,
Amplitude of excitation force, ‘ F ? N .
TS med
F = ¥ ‘
- b = 320.05%366.52% = 20150,54 N (e =2 005 m)
, stiffness (k) = 18 x 10° Njn 2
Mass (m) = 90kg
=
Naluralllequency((un) = E = f18 < 10°
Vm V" " 141.42 radfsec

Frequency ratio (1) = Z:i = ?516«?5 =2.592

Damping ratio, & = 0.15

Amplitude of sleady state motion

)’nru. = /—" FQ/k -
y (1-r ) + (2{@)2
o 2015054/18x10"
\/(: ~25922) 4 (2% 2.502.%0. :5}:
= 19X 109m=194mm
Transmissibility (T, ) = —i*(—z“i 0.22

. 2
\‘1"’2,] *(2"3)2
Force transmitled (F,)- = FoxT,

= 20150.54 % 0.22 .
= J43312N

el
N

-degrée Freadom of Systemt to Forced Gene

DynamicLoading

-

D.Responséof On

Real struclures are subjected loloads which are not harmonic.
uld be obtgined through integration lechnique.

« Forsuchcases, responseco

11.18 Impulsive Loading and Duhamel's Integral

« The impulsive Joading is applied lor short -
duration and corrasponding impuise is
product of the force and duration ime i.e.,

dF = Ri-at
« By Newlon's law of motion
ar
Tl RO
m%;i = F{1) T redt i N
Flrydt Fig. 11.16 Generalload history s impuisiveloading
Rearranging: av = v

+  Now consider this impulse £ (1) dt acting o7 the undamped osciflator struciure.

Using equation of molion; ¥ = yucosw!-b—‘%smw! and applying initial conditions: g = g, initial
velocily = ¥, atlime ruwe have
]
F{t)dt
- = sinw{l~-T
) = —sinel=1)
e i)

t
1 .
e W = Fn—n‘fF(t)smu)[f -7)dr
[

ihe integral part is puhamel’s Integral
oduced by exciling
¢ Ihe lransient COMPORENts of the molion)
ement {y,): initial velotily {y); the total

In abiove equation,

»  Equation{d(i)) gives total displacement pr Iorce F {1} acting cnyindamped oscittator
structure (including both sleady state an
On including initial conditions al t = 0; initial dispiac
’displacemcnt ol an undomped single degree of frecdom systemis

Vo . T gy ;
A = yooosel+ —Jsmuu‘ e !ﬂ Fla)sine{t-T)dr .4

i
11.19 Constant Force

| ny

l ! Fig. 11.17 Undamped osciliator actedupon by o constant force



*  Assuming initial conciitions at { = 0,
Yo =0
V, = Ojwehave

1
A = —ngl%smm(r_f)d;

]

*  Onintegration

"y = ;?;.‘TCOS(B(I‘A:}I; |
Ho = fagy_
i (1-cosur}= y, (1-cos ) A6
.V(f) = ,—:%nlsinmt
Ao
Yu

0
—— ‘

«dts ponse gie gy - emto o sudde 'Yﬂppﬂ(’d(cﬂﬂaﬂ”ol(e
F’g 11.18 Res, on: D’Gl".‘”daﬂ?pedﬂﬂ fe d ree-of- Jteedomsyst 3 i

11.20 Rectangular Load
* AconslaniforceF, iss
i " s
o o denty applied for limited duration as shown
. | )
Tilbt, duration, equation {A(iii}}in applicatle
£ i

* Aty time, we oblain

F
Yo = fﬁ-cosmﬂ)
1 t
£
Yy = esinaty . Flg.11.19

k
Se(a A ¥ = onditions ar dIED ace byl—f 1
For the 12800n: Ifef ¢ ) we yse and ! atl=1 as nitiat ¢ i | t
2] [ d o o

equation motion i Y.
L., ¥ = YgCosul +-Lg
w Sl we abiain

F
ne = 20~
p [0 COS0l4)00s (! ~ 1)+ sinat, sinw(i -t,)]

o = —iC ol - - 1
y({) = { Qs (f fq) CDSUII} 4 ( )
LA

. E.Fourier Analysisand Responsein the Frequency Domain
« Applicationot Fourier series:

) theresponse of a system Lo perio
fiy and Ine response of asystemfo non-petiodic

dic torces
forces in a Irequency domain

11.21 Fourier Analysis

«  Figure below shows periadic loading ona single degree of freedom syslem.

Na /.

bt

2]

Fig.1 1.20 Arbitrory periodic function

Fourier series is summation of an infinile number of sine and cosins {erms

+ Fourier series can be wiillen as
Fl = & +acostl+a; COS2BI + 2y COS 3! + ..

+8, COSMM +...+ by sind@( + b, Sin200 + .0, sinnd! + ...

o Fly = ao+2{a,,wsrﬁt+b,,sinrxm} LB
n-\
e .=
where, ® =7
«  The evaluation of the coellicient is done as
1 h-7
a = ?L: F(!]d{
2y T -
a = ?Jn F{f)cosniatdt (Foraz 1)
(For nz1)

27 P
b = ?jh F(t)sinmal of

Where. , may be any value of time hut usually laken as aither zero ar =5 -

esents average of the periodic lunction F1)

Note: ®  3,repr
Fharmonic of frequencies. .

. a‘.and b are ampliludes ol



11.22 Response of Singie vegree of Freedom Undam
The response represented by Fourier sories 6]

component of tha serigs.
L]

Ped System to a Periodic Force
oblained by the superposilion of the response of each

When the transient is neglecled, the response of an undamped systam (is steady stale response}

0., yh= {E—k{sinml for any sine lerm i given as {from equalion 3(vii}):
-r

Also, for cosine lerm

*  Totalrespanse:

where, ikl is sleady slale response.

Y8 =

VAUR

Wi =

b, A
—Lsmnmf

K
7

na
where, 7, = —
w

a,lk "
Lj;cosmul
-

& 1 (s, _ b .
—k~+m!:;,'—(7c-cosnm(+—;-smnml .5 (i)

F. Multi-degree of Freedom System ( MDOF)

floor level, assumptions are required,
There are:

Praclically, he mulli-storey buildings are modalied
For building ransformationinio a discrele n

and analysed as MDOF system,

umber of degree ol freedom with lumped masses at the

{iy Enlire massis concenlraled al lloor levels
(i} Axial forces and delormations are neglected

(iii) The floor comprising slabs and beams arg infini

remain horizontal vrithaut rotation.

subjectad 1o the shear lorces only.

The shear building can be modelled as MDOF

S}
Flg.11.21 {a) Modelof the shearbuitding and () Free-body diogram,

lely figid as compared (o the columns and

systern. I1s behaviour resemblos the canlilever beam

Fy{fy— Myt
&y =)
LIIEN ;)
F) ‘ﬁ-_ (RS
LAUEES
r’ Ry =)

F,m-——‘{;]_}' M,
Je,

b) N

m are
» Equations of motion, for ree vibralion of undapmed MOOF syste

.

i +kxy—Kele—x) = 0
mzfz+kz(~"z‘-‘1)‘k3(x3‘12) =0
myiy+ky(xa=xz) = 0

It

= Z
vhers, K

¢ int

where, his lenQ‘.h and nis number of columns.
On rearranging equalions
l'ﬂ}ﬁ + (k‘ + ka).q - ka,tz =

W
o o

Ty ~ Koy + (kg + Iz} xp — Kavg =
My%y —ky¥p thoxg = o]
Representing equation {8(ii}) inmalrix form
oo ol M+l -k O1[x
0' m, 0 PEi+]| e Rtk K%
0 0 My .:fls 0 -.'\'3 1(3 X3
- M7+ K1) - o
where,
[ M7 is mass malrix
[kl is stiliness matrix
+  Using solution form as

‘ A0 = (o] sinfor + o)
ing Ei ¢ blem:
the equation of motion reduced to the following Eigen value problel

(K- o 2 {MIHS = {Of
v For non-trivie! solution, determinant of ([€] - w,

+  Forcacheigenvalue m,
deflecied shape. §).

11.23 Orthogonality of Modes

12E  pimn

-6

.6 {if)

LBy s

B}

2{4) = O} is called as Ihe characteristic enuation (an
i igen 7 Where w, is nalural trequency.
igen valuc problem) in degree n, with n eigen values o, n e st
ot ' 2 {herg is eigen vector knovn 1o be the mode shape {u

i ing o:thogenality condilions:
Wodes corresponding to different naturat Irequencies {w,)sahsly the foliowing orthog
@5 Cores
7m0l = O tors=s
and [9)7{MI(Q), = 1 fors=r

LGV

Note: Mor:lel orthogonalily properly states that work don

i ™ is 2c10.
going thraugh the disptacements coriesponding lo I mode s 2

= -
e by inerhial forces corresponding to ol mode is



Msa A WJ[M]KLE D Hres

end [0 = v forr=s
= Twomades [¢), and {6}, are orihogenal i sach other.

m_m' figure shown below:

{a)  Write the equation of molion
{b) Determins the natural fraquencles

{c) Determine the modas for the systefm
. !

k=k K{&:g}‘ x K=k @.‘1

Solutlon:

i) . I My

———— .
- ——

ma, :
b |

Kyfry-xy)

Dilterenfial equation for dynamic equllibrium of mass mys

”ﬁ!"’kbﬁ “'kz(.‘ﬁ "1'2) =0

Onrearranging:
. (ﬂﬁ, + {ki + kz)mi - kzxz =0
= M 43k -2z, = 0

Fot mass m,, the dillerential equation of motion is
Moty ~kolxi -} g -x) = 0
Myip=kpvy+(ky +Ka)xa —Haxq = O

= My%5 = 2Kz, + 3kx, ~ kxg =0

For mass m, the dilterentiat equation of motion is

My¥y+ka{zg~xy) = 0
Ontearranging:

mg:\:g —Hzka + k3x.'] =0

= My —hxy +hxy, = O
Represeniing equation of motion in the matrix form
m 0 0}y % -2k 0« 0
0 m O[Et+l-2& 3k -k Xt 40
00 miif {0 -« k)lu o
Also, eigen value equation is
{4 - oo 2 (A0 fo)

[

]

-8 (vi)

’ 3k-mw, -2k o el [0
ﬁ 2k Bk-me? -k |i42p _ {0
] - 0 -k k-t | 105 0
I
: Tha solulion is
ikl - w2 M| = O
-mw,” -2k 0
2k Fk-mel K PN
= nl =
Q -k k—mm,”

= mofb-7 kPt + 10 Kma -2 = 0

2 Y]
k k (K)
3 A2 Bla-2l—) =
Y -7[m]x +1o[mJ ) =0
where d = a2

On solving, we obtaln

w, :.2425 -

-] -

k
— = 0,488, [—
)‘2 = 0238[ ) = (.l)ﬂ2 0 m

"
A, = 1.64(»{%} = %=1.2BJ;—;
1.00

}" s 4-1.06
: = 2.26,/~ ,th de shape is :
{a)Forw,, = 2 = t‘ & Mol P 0557

1.000

k is 10,685
b)For ©_, = 0-433\j: . Ihe mode shape is {4
I the? m 107

o 3

1.000

- 1 1.381
F n = 1.28 )L‘ , the mode shape is
() For the lrequency = 1.2 181

11.24 Normal Mode Methed

«  Normal mode method is used (or the syst
so thay can be realed as single degree of freedom. .
«  Evalualion of normal modes reguires the use of cigen values {w?} and eigen veclors (o]

em matrices diagonal as degrees ol frecdom gats separaled

11.24.1 Normalization ‘
« Narmalization to transiorm ta modal co-ordinales of syslem matrices.

A{f = (e[l



whare, x(f} is 1he vector of displacement of individual masses.
{Z 0 is vecior of displacement al global coordinales
[¢]is transformation matrix

Normalization of mass matrix

[hﬂrwm = [QI' M’f] [$]

["quam_wm = [¢]T [k] N]

Asiormases = )T (FL0]

The elements the normalized mass, stillness and for

ce malrices are called as modal masses.,
modal sliliness and modal fosces tespeclively.

Note: The

topfmy, = w2 Ble.

ralio of modal values is equal Io square of corrasponding natural irequencies Le., kdmyy =2

11.25 Response of MDOF System

L]

The equation of motion for the forced MOOF system is 3

MI{F]+CNs )+ Ky = {F(Y

where {M] = mass malrix

[#} = shiffness malrix
{C} = damping matrix
{R1N) = excilation force matrix

Summary

(@

*  The equalion of malion of undamped free vibralion of single degree of freedom systemis,

mji+ky =0, where, y is displacemenl ang ¥ is accelesalion in y-direction,

The equation rotlon can also be oblained by D'Alembert's principle,

Expression of the molion of simple undamped oscillalor modelling struciures with SDOF
Vo

syslem is ¥ = ygcoswr +-v(—nclsmtu(.

+  The equalion of mation of damped single degree of freedom syslemis my +cy +ky =0.

There are lhree types of damping: critically damped, ovardamped and unclerdamped,
*+  For crilicaily damped systam, ghe solulion {s:

Wi = (G +ColyeSr2m

For overdamped case, the solution is
W) = CeV o6l

For underdamped case, the solution is
i = Ce™™ cog{wgl - n)

' 2 (Vo +yoEm, ¥
where, Qamplitude) = \L’& + ”“( : D‘z 2]

Vi 4y, N
and tan ¢ = LP‘M
WpYo

.

’» . Thedecayis expressed as loparilhmic decrement {8).

The equation of motion of undamped harmonic excitation is: my + ky = Fy sinit
The solution of his differential equation is

Folk v, — .

= sinGt - rsinwt}
o 1'fz[ ftalion is:
The equation of molion of dampaed harmonlic excitation is:
my +c¥ + iy = Ry sin@l
The solution is:

¥ Sin{ I - )]
(1-F +(@rtf

y(§)= &7 (Acosap! + Bsinapl) +

wihare y, = Ffk
Dynamic magnilication factor,

0= Y, {icady state pmpludd) - 1

Y er{stcive dofioeton) (1 - :2}2 +(2ef

Also. D= ‘—,:_; il 7= 1 (thal is case of resonance}
Transmissibifity is degree of refalive isolalich.
' ] 2
Y, {ampsisd ol metion of te oseiiat) - N 1+ (2215) -
= Yo V((_‘" Y+ (29)

= Maximum force transmilted is : Fr= KT,

1 .

Duhamels integral is: JOF(t)smm(!-t)dc .

Response of an undamped oscillaor acled upen by & constant foreeis
N F B

Wiy = —:—(1—cosmf) = y,.{1-coswr}

Responsa of an undamped asciflator acted upona reclangular load is

B

=2 {—1;)-coswt)

W = —{eoswll-1y S
Applic:lion ol Fouricr sesies is 10 know the response of 2 system to periodic lorces

nen-periodic forces in a frequency dowam. - cosinetarms
Fourler series is summation of an infinite nurmber of sine an

A= % 3. (a, cosnit + b, sinnit)
Hut

.. 2an
W= —
where T

Response of SDOF undamped system o & poriodic foree is

- b, .o
dy ! _{i‘.cogmﬁnismnm!]
W= g J’Z;"ﬁ-:,’:‘ k K



& .
where, ~= is a steady stale responzae

k

¢ The egualion of ;rlolian for MDOF system is

(M)} + K}t =0
where, [M] = mass matrix

{k] = slitfness matrix

;?.;_:omecﬁvé‘ Brain Teasers

Q.1 In which case the dynamic system has no
oscillatory motion and retums 1o equilibrium
posilion at & slower rata
{a) Critically damped (b) Overdamped
{c) Underdamped  (d) Anyof the above

Q.2 The dampingin adynamic system is assumed
toba _____{or simple mathematical analysis,
{a) Viscousdamping (b) Coulomb damping
(c) Negative damping{d} Frictiondamping

Q.3 Transmissibilily is nol significantly affecled by

damping in the region
o o
fay —<0.2 5y —=15
@, © Wy
& _
ey —>1 »
© o @@ 5 <1
G.4 Transmissibilty is infinity at lrequency ralio very
close to
(@ ¢ oy
fc} 1.2 ay 2
Q.5 Theresponseis greatly affected by damping in
tharegion
& _
a) —— < 0.7 “-_l)_
@ 3. ) . >03
& _
¢y = 1 -g)— =
© o @ 5. =0

Q.6 Transmissibility is more than ¥, when the

frequency ratiois
{a} <05 {by 1.0
© > @ <2

o
Q.7 The Iransient motion fasts for
(a) the enlire duration of excitalion force
{b) the shon duration m the beginnidg of he
vibration ¥
{c) theshort duralionin the end of the vibration
(d} arbitrary duration périod thatis it may occur
orend anyinslam‘c!uring the vibration

Q.8 The steadyslale molio;avdepends mainly upon
{a) naturalfrequency
(o) damped natural frequency
{c} resonantlrequency
(d) excitation frequency

Q8 Atresonance, lransmissibility only depends upon
the ’
{a) damping ratio
(b} frequencyraiio
{c) excilationlrequency
(d) resonantirequency *

Q.10 In multi-degree-of-freedom system, the modes
salisly the following orthagonalily refation
@ 19,7 (Mo =0 (B 1817 [M{g],=0
© WIIK18,=0 (@) fol, [M (¢}, =0

QJ? Normalized force malrixis -
(@ A} L) 19 {F e
€ o'tA (d) lollA

Q.12 Innormal mode method, aiter normalization
{a} [k]brcomes diagonal
{b) [Af]becomes diagonal
{€) [4).[M]and[R 1] becomes diagonal
{d) [K]}and [Af} become diagonal

Q.13 A syslem having natural frequency 20 radfsec
and damping ralio of 10% is subjected 10 &
harmanic force of [505in(100 t] k. The frequency

ratio is
@ 02 ) 2
{cy 5 (d) dalainsutficient

Q.14 Which of the lollowing is correct assumption
regarding shear building
{a) The floor slab is intinitety ngid
{b) Axialforce and deformation are accounied
{c) Thecolumas are infinitely rigid
(¢} Al the elements are inlinitely fgid

Q.15 Viscous damping is
(a) proportional o displacement
(b) proportional o velocily
(c) proponional lo acceleralion
{dfy None allhe above

Q.16 Damping ratio is delined as the rano of
{a) critical damping o system damping
{b) syslem damping to crilical damping
{c} natural damping lo syslem damping
(d) Moneol the above

Q.17 The equivalent stiliness for lhe syslem shown
betowis units. It llexural rigidily of beam
is unity and tength ot beamis 2m. The stiliness
of spring is 12 unit

AR

[

e

g 373 @ w2 i
(d} i {b) 2

© 3 @ 4

Q.18 Equivalent stiltness of a bearm sysiem is 10% Nfm
ang mass of the object resling on the beam
syslem is 1000 kg. The natural [requency is
{a) 2radfscc L) Sradfsec
(¢} 10radfsec {d) 2Gradfsec

A w

Q.19 In single-degree-al-ireedom syslem, mMass is
ingreased by 1 kg and the ralio of modilied
frequency to the naturat requency (duelomass

incrernent) is 1.1, The mass of single degree ol
{reedom system is
(a) 2kg
{c) Bkg

Q.20 In an undamged Iree vibration of single degree
of freedom, the maximum velocily is 0.3 m/s and
natural [requency is 10 radfsec. The amplitude
of vibration is
() 30mm
{c) 100m

() 5kg
(d) 10kg

{b) e0mm
(@) 210mm

Q.21 ln anundamped free vibralion of singlc degree
of freedom, the initial displacement and vetocity
are 0.01 mand 0.50 s respectively. The natural
trequency is 5 radfsec. The arnplitude of vibralion

is
(a) 0.005m {by 0.im
) 02Zm {d) tm

Q.22 A vibrating SDOF system 15 viscously damped
such thal ratio of two consecutive amplitudes is
1.00100.60. The logarithmic decrement is
(@) 0510 by 0693
(¢} 1.099 vy 1,609

Q.23 The logarithmic decrement lor adamped freely
vibrating SDOF system is 0.08 The damping
ratio is in percentage s
{a) 0.1 ) 1
© 13 (d) 10

.24 In a damped Ireely vibraung SDOF syslenm, ihe

damping ratio is 0.012 and critical damping
coelficient is 1600 Ns/m. Then damped

coefficient is ___ Ms/m.
(a) 86 () 108
{c) 192 (Kh) 229

Q.25 Adamped [reely vibrating SDOF syslem weighs
25 kg, sprng with stiffness 20 Nfmm and
damping ratip is 0.08. The damped coellicient

of systemis ________ Ns/m.
fa) 9118 (1 103.G4
{¢) 113.14 (d) 156,92

Q.26 ASDOF systern has undampsd natural frequency
30060 rad/sec and the damping rata equal to



0.5. The nalural frequency of damped system is

radfsec.
(@) 12ie0 {b) 18660
(c) 25980 (d) 35000

Q.27 A viscously damped system having resonant
amplitude of 1.5 m, spring of siifness of
1600 Nfm is subjected 1o harmenie loading of
300 N. The damping cocilicientin percentage is
{ay 4.75 (b) 5.25
{c) 625 (dy 9.00

Q.28 Viscous damping force acling upon SDOF system
'is 1000 Nat a vetocity of 50 mmvs. The damping

coefficient is = 107 Ns/m
@ 20 (b} S0
{c) & {d) 100

Q.29 InSDOF system, [he Irequency ralio is 0.50 and
damping ratio is 10%. The dynamic magnilicator

factor is
{a) Oge {0 1.32
() 1.99 (d) 258

Q.30 The expression for Iransmissibility ol forceis

Q.31 For SDOF systerm. he amplitide of excitation
torceis 1000 N and the ransmissibility of force
150.25. The rarsmitled ioroe s
{a) 250N {b) 500N
(c) 750 {t)) 1000N

Q.32 Expression of the response of undamped
oscillator acted upon by a conslant foree is

{a} %(1~Ia‘nmf) (b} b

F
© —-kg(hsinw!) {d) i(1—(:0501!)
Q.33 Respense ol anundamped oscillater actmg upon
by a rectangular load is -
F,

@ 7

) %—cos wr{t-1,)

o) X(cosw! -cosuly}

x“c?} x loﬁ

(d) {cosoft-1y)- cosm!}

Q.34 Response of SDOF undamped syslem 1o a
periodic force is

@

3
(o) %’i««i ]rz i’icosm?»l

(c)

@ 2 +Z

7 (Fpeserat S
- —~co';nmr + =2 sinnms
k feal= k J

Answers ’

1. (b) 2.(a) 3.{8) 4.(b) 5 (o)
6. (8) 7. (b} 8 (d) 9. (a) 10.(b)
1. {e) 12, (d) 13. (c} 14. (a) 15. (b}
16, (b) 17. (d) 18. (¢) 19. (b} 20. ()]
21. (b) 22. (a) 23. (c) 24. (c} 25. (c)
26. {c) 27. (c) 28. (a) 29, (b) 30. (d}
31, (@) 32 (d) 33, (d) 34. (d)

Hints and Explanations:

12, (d)
Excitation torce matrix may nol be diagnnal,
13, (e}

.

17, (¢}
Slifiness of beam,
t 48ES
- a6
K, = 12unit

Equivalant sullness. e
11,138
k,,( 6 12 12

{because sprinig are in series)

k«: = 4.ynit
18. {c}
5
@ = Jk—“’— = ,}%: 10 radfs
n m b
18. (b}
! &
ol ry
2
Orgraiirl $opoey) ) _m+t
Orihdtiod feauerty) m
m+1
k=
0.2tm=1
m=476kg
20. (a)
V= An
0.3
== =003 m=30mm
A 0 0.0
21, (b}
7
, (%
A{mm&:aﬂn)= )’6*[2"_]
(]
f 0,50)2
! = fl=—1 =0.1m
= \0,012 T( z 0
22, {a} N
The logarithmic decrement {8)is
1.00
= Q.51
6= ln[ y?) !”(O.GO)
23. {c}

0.08

6 a’
E(damping rato) = Pl o =0.013=123%

24,

25,

26.

- 27,

28.

w

{.

(c) '

C{damped coelficient)

=k, =0.012 x 1600

=1.2x% 16 = 13.2Ns/m

(c)

¢ =EC, =Ex2¥km

= D0Bx2x V20 107 x25
= 113.14 Nsfm

{c)

W {Natural frequency for damped systemn)
= ofi—8 = 30000,1-0.5°
= 28QB0.76 rad/sec

(c})

. 1
0 (damping coellicient) = %

. 1
{because alresonance, D= =}

2
Ymae o 1
Yx 5
E= —&'—& {because ¥, = FfH)
2¥
- 300/1600 = 0.0625
2x15
= &=625%
{a}
cy =F
cxX50x 1070 = 1000
10°
= —— = 20000 Na/m
€= 50
= 20 x 107 Ns/m
v)
1
= = e =
;i(‘i-—r‘) +{2r5)
1
) J[is ~08%) +(2x0.5x0.
(a)
F{iransmitied force)
=Ffyx T,
= 1000 x0.25 = 250N

= 1.32



